1
|
Faizan S, Wali AF, Talath S, Rehman MU, Sivamani Y, Nilugal KC, Shivangere NB, Attia SM, Nadeem A, Elayaperumal S, Kumar BRP. Novel dihydropyrimidines as promising EGFR & HER2 inhibitors: Insights from experimental and computational studies. Eur J Med Chem 2024; 275:116607. [PMID: 38908102 DOI: 10.1016/j.ejmech.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Dihydropyrimidines are widely recognized for their diverse biological properties and are often synthesized by the Biginelli reactions. In this backdrop, a novel series of Biginelli dihydropyrimidines were designed, synthesized, purified, and analyzed by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. Anticancer activity against MCF-7 breast cancer cells was evaluated as part of their cytotoxicity in comparison with the normal Vero cells. The cytotoxicity of dihydropyrimidines ranges from moderate to significant. Among the 38 dihydropyrimidines screened, compounds 16, 21, and 39 exhibited significant cytotoxicity. These 3 compounds were subjected to flow cytometry studies and EGFRwt Kinase inhibition assay using lapatinib as a standard. The study included evaluation for the inhibition of EGFR and HER2 expression at five different concentrations. At a concentration of 1000 nM compound 21 showed 98.51 % and 96.79 % inhibition of EGFR and HER2 expression. Moreover, compounds 16, 21 and 39 significantly inhibited EGFRwt activity with IC50 = 69.83, 37.21 and 76.79 nM, respectively. In addition, 3D-QSAR experiments were conducted to elucidate Structure activity relationships in a 3D grid space by comparing the experimental and predicted cytotoxic activities. Molecular docking studies were performed to validate the results by in silico method. All together, we developed a new series of Biginelli dihydropyrimidines as dual EGFR/HER2 inhibitors.
Collapse
Affiliation(s)
- Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuvaraj Sivamani
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Kiran C Nilugal
- School of Pharmacy, Management and Science University, Selangor, 40100, Malaysia
| | | | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumitha Elayaperumal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Constituent College of the JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
2
|
Gužvić M. Simultaneous Isolation and Amplification of mRNA and Genomic DNA of a Single Cell. Methods Mol Biol 2024; 2752:71-100. [PMID: 38194029 DOI: 10.1007/978-1-0716-3621-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Many biological or pathological processes are driven by cells difficult to identify or isolate, i.e., rare cells. Very often, these cells have elusive biology. Therefore, their detailed characterization is of utmost importance. There are many approaches that allow analysis of few or even many targets within one class of biomacromolecules/analytes (e.g., DNA, RNA, proteins, etc.) in single cells. However, due to rarity of the cells of interest, there is a great need to comprehensively analyze multiple analytes within these cells, in other words to perform multi-omics analysis. In this chapter, I describe a method to isolate, separate, and amplify total mRNA and genomic DNA of a single cells, using whole transcriptome (WTA) and whole genome amplification (WGA). These WTA and WGA products enable simultaneous analysis of transcriptome and genome of a single cell using various downstream high-throughput approaches.
Collapse
Affiliation(s)
- Miodrag Gužvić
- Department of Urology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Naishima NL, Faizan S, Raju RM, Sruthi ASVL, NG V, Sharma GK, Vasanth KS, Shivaraju VK, Ramu R, Kumar BRP. Design, Synthesis, Analysis, Evaluation of Cytotoxicity Against MCF-7 Breast Cancer Cells, 3D QSAR Studies and EGFR, HER2 Inhibition Studies on Novel Biginelli 1,4-Dihydropyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat Commun 2020; 11:4977. [PMID: 33020483 PMCID: PMC7536220 DOI: 10.1038/s41467-020-18701-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation.
Collapse
|