1
|
Pradhan D, Biswasroy P, Kulkarni S, Taliyan R, Pradhan DK, Bhola RK, Mahapatra S, Ghosh G, Rath G. Identification of starvation-mimetic bioactive phytocomponent from Withania somnifera using in-silico molecular modelling and flow cytometry-based analysis for the management of malaria. J Biomol Struct Dyn 2024; 42:528-549. [PMID: 37087726 DOI: 10.1080/07391102.2023.2201855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 04/24/2023]
Abstract
Multidrug resistance episodes in malaria increased from 3.9% to 20% from 2015 to 2019. Synchronizing the clinical manifestation in chronological sequence led to a unique impression on glucose demand (increased up to 100-fold) by the parasite-infected RBCs. Hence, restriction in the glucose uptake to parasite-infected RBCs could be an alternative approach to conquer the global burden of malaria to a greater extent. A C28 steroidal lactone Withaferin A (WS-3) isolated from Withania somnifera leave extract shows better thermodynamically stable interactions with the glucose transporters (GLUT-1 and PfHT) to standard drugs metformin and lopinavir. MD simulations for a trajectory period of 100 ns reflect stable interactions with the interactive amino acid residues such as Pro141, Gln161, Gln282, Gln283, Trp388, Phe389, and Phe40, Asn48, Phe85, His168, Gln169, Asn311 which potentiating inhibitory activity of WS-3 against GLUT-1 and PfHT respectively. WS-3 was non-hemotoxic (%hemolysis <5%) for a high concentration of up to 1 mg/ml in the physiological milieu. However, the %hemolysis significantly increased up to 30.55 ± 0.929% in a parasitophorous simulated environment (pH 5.0). Increased hemolysis of WS-3 could be due to the production of ROS in an acidic environment. Further, the inhibitory activity of WS-3 against both glucose transporters was supported with flow cytometry-based analysis of parasite-infected RBCs. Results show that WS-3 has low mean fluorescence intensities for both target proteins compared to conventional drugs, suggesting a potential sugar transporter inhibitor against GLUT-1 and PfHT for managing malaria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
- R and D Division, Ixoreal Biomed. Pvt. Ltd, Hyderabad, Telangana, India
| | - Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Rajiv Taliyan
- Department of Pharmacy, BITS Pilani, Pilani, Rajasthan, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College & Hospital, Baripada, Odisha, India
| | - Rajesh Kumar Bhola
- Department of Hematology, Institute of Medical Sciences and Sum Hospital, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sonali Mahapatra
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Bhide AR, Surve DH, Jindal AB. Nanocarrier based active targeting strategies against erythrocytic stage of malaria. J Control Release 2023; 362:297-308. [PMID: 37625598 DOI: 10.1016/j.jconrel.2023.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The Global Technical Strategy for Malaria 2016-2030 aims to achieve a 90% reduction in malaria cases, and strategic planning and execution are crucial for accomplishing this target. This review aims to understand the complex interaction between erythrocytic receptors and parasites and to use this knowledge to actively target the erythrocytic stage of malaria. The review provides insight into the malaria life cycle, which involves various receptors such as glycophorin A, B, C, and D (GPA/B/C/D), complement receptor 1, basigin, semaphorin 7a, Band 3/ GPA, Kx, and heparan sulfate proteoglycan for parasite cellular binding and ingress in the erythrocytic and exo-erythrocytic stages. Synthetic peptides mimicking P. falciparum receptor binding ligands, human serum albumin, chondroitin sulfate, synthetic polymers, and lipids have been utilized as ligands and decorated onto nanocarriers for specific targeting to parasite-infected erythrocytes. The need of the hour for treatment and prophylaxis against malaria is a broadened horizon that includes multiple targeting strategies against the entry, proliferation, and transmission stages of the parasite. Platform technologies with established pre-clinical safety and efficacy should be translated into clinical evaluation and formulation scale-up. Future development should be directed towards nanovaccines as proactive tools against malaria infection.
Collapse
Affiliation(s)
- Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India
| | - Dhanashree H Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India.
| |
Collapse
|
3
|
Alaithan H, Kumar N, Islam MZ, Liappis AP, Nava VE. Novel Therapeutics for Malaria. Pharmaceutics 2023; 15:1800. [PMID: 37513987 PMCID: PMC10383744 DOI: 10.3390/pharmaceutics15071800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria is a potentially fatal disease caused by protozoan parasites of the genus Plasmodium. It is responsible for significant morbidity and mortality in endemic countries of the tropical and subtropical world, particularly in Africa, Southeast Asia, and South America. It is estimated that 247 million malaria cases and 619,000 deaths occurred in 2021 alone. The World Health Organization's (WHO) global initiative aims to reduce the burden of disease but has been massively challenged by the emergence of parasitic strains resistant to traditional and emerging antimalarial therapy. Therefore, development of new antimalarial drugs with novel mechanisms of action that overcome resistance in a safe and efficacious manner is urgently needed. Based on the evolving understanding of the physiology of Plasmodium, identification of potential targets for drug intervention has been made in recent years, resulting in more than 10 unique potential anti-malaria drugs added to the pipeline for clinical development. This review article will focus on current therapies as well as novel targets and therapeutics against malaria.
Collapse
Affiliation(s)
- Haitham Alaithan
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute of Public Health, George Washington University, Washington, DC 20037, USA
| | - Mohammad Z Islam
- Department of Pathology and Translational Pathology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Angelike P Liappis
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
4
|
Jiang X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins 2022; 90:1766-1778. [PMID: 35445447 PMCID: PMC9790349 DOI: 10.1002/prot.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciencesthe University of New South WalesSydneyNew South Wales
| |
Collapse
|
5
|
Owoloye AJ, Ligali FC, Enejoh OA, Musa AZ, Aina O, Idowu ET, Oyebola KM. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors. PLoS One 2022; 17:e0268269. [PMID: 36026508 PMCID: PMC9417013 DOI: 10.1371/journal.pone.0268269] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT1) protein involved in hexose permeation is considered a potential drug target. In this study, we tested the antimalarial activity of some compounds against PfHT1 using computational techniques. We performed high throughput virtual screening of 21,352 small-molecule compounds against PfHT1. The stability of the lead compound complexes was evaluated via molecular dynamics (MD) simulation for 100 nanoseconds. We also investigated the pharmacodynamic, pharmacokinetic and physiological characteristics of the compounds in accordance with Lipinksi rules for drug-likeness to bind and inhibit PfHT1. Molecular docking and free binding energy analyses were carried out using Molecular Mechanics with Generalized Born and Surface Area (MMGBSA) solvation to determine the selectivity of the hit compounds for PfHT1 over the human glucose transporter (hGLUT1) orthologue. Five important PfHT1 inhibitors were identified: Hyperoside (CID5281643); avicularin (CID5490064); sylibin (CID5213); harpagoside (CID5481542) and quercetagetin (CID5281680). The compounds formed intermolecular interaction with the binding pocket of the PfHT1 target via conserved amino acid residues (Val314, Gly183, Thr49, Asn52, Gly183, Ser315, Ser317, and Asn48). The MMGBSA analysis of the complexes yielded high free binding energies. Four (CID5281643, CID5490064, CID5213, and CID5481542) of the identified compounds were found to be stable within the PfHT1 binding pocket throughout the 100 nanoseconds simulation run time. The four compounds demonstrated higher affinity for PfHT1 than the human major glucose transporter (hGLUT1). This investigation demonstrates the inhibition potential of sylibin, hyperoside, harpagoside, and avicularin against PfHT1 receptor. Robust preclinical investigations are required to validate the chemotherapeutic properties of the identified compounds.
Collapse
Affiliation(s)
- Afolabi J. Owoloye
- Center for Genomic Research in Biomedicine (CeGRIB), College of Basic and Applied Sciences, Mountain Top University, Ibafo, Nigeria
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Funmilayo C. Ligali
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Biochemistry Department, Faculty of Basic Medical Science, University of Lagos, Lagos, Nigeria
| | - Ojochenemi A. Enejoh
- Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | | | | | - Emmanuel T. Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Kolapo M. Oyebola
- Center for Genomic Research in Biomedicine (CeGRIB), College of Basic and Applied Sciences, Mountain Top University, Ibafo, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
6
|
Abugri J, Ayariga J, Sunwiale SS, Wezena CA, Gyamfi JA, Adu-Frimpong M, Agongo G, Dongdem JT, Abugri D, Dinko B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022; 8:e10390. [PMID: 36033316 PMCID: PMC9398786 DOI: 10.1016/j.heliyon.2022.e10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
There is an unmet need to unearth alternative treatment options for malaria, wherein this quest is more pressing in recent times due to high morbidity and mortality data arising mostly from the endemic countries coupled with partial diversion of attention from the disease in view of the SARS-Cov-2 pandemic. Available therapeutic options for malaria have been severely threatened with the emergence of resistance to almost all the antimalarial drugs by the Plasmodium falciparum parasite in humans, which is a worrying situation. Artemisinin combination therapies (ACT) that have so far been the mainstay of malaria have encountered resistance by malaria parasite in South East Asia, which is regarded as a notorious ground zero for the emergence of resistance to antimalarial drugs. This review analyzes a few key druggable targets for the parasite and the potential of specific inhibitors to mitigate the emerging antimalarial drug resistance problem by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Moreover, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage these findings for antimalarial drug production.
Collapse
Affiliation(s)
- James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Joseph Ayariga
- The Biomedical Engineering Programme, Alabama State University, Montgomery, AL, 36104, USA
| | - Samuel Sunyazi Sunwiale
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Cletus Adiyaga Wezena
- Department of Microbiology, School of Biosciences, University for Development Studies (UDS), Nyankpala Campus, Tamale, Ghana
| | - Julien Agyemang Gyamfi
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Julius Tieroyaare Dongdem
- Department of Biochemistry and Molecular Medicine. School of Medicine. University for Development Studies (UDS), Tamale-Campus, Ghana
| | - Daniel Abugri
- Department of Biological Sciences, Microbiology PhD Programme, Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, USA
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho. Ghana
| |
Collapse
|
7
|
Nerlich C, Epalle NH, Seick P, Beitz E. Discovery and Development of Inhibitors of the Plasmodial FNT-Type Lactate Transporter as Novel Antimalarials. Pharmaceuticals (Basel) 2021; 14:1191. [PMID: 34832972 PMCID: PMC8624176 DOI: 10.3390/ph14111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium spp. malaria parasites in the blood stage draw energy from anaerobic glycolysis when multiplying in erythrocytes. They tap the ample glucose supply of the infected host using the erythrocyte glucose transporter 1, GLUT1, and a hexose transporter, HT, of the parasite's plasma membrane. Per glucose molecule, two lactate anions and two protons are generated as waste that need to be released rapidly from the parasite to prevent blockage of the energy metabolism and acidification of the cytoplasm. Recently, the missing Plasmodium lactate/H+ cotransporter was identified as a member of the exclusively microbial formate-nitrite transporter family, FNT. Screening of an antimalarial compound selection with unknown targets led to the discovery of specific and potent FNT-inhibitors, i.e., pentafluoro-3-hydroxy-pent-2-en-1-ones. Here, we summarize the discovery and further development of this novel class of antimalarials, their modes of binding and action, circumvention of a putative resistance mutation of the FNT target protein, and suitability for in vivo studies using animal malaria models.
Collapse
Affiliation(s)
| | | | | | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (C.N.); (N.H.E.); (P.S.)
| |
Collapse
|
8
|
Shriwas P, Roberts D, Li Y, Wang L, Qian Y, Bergmeier S, Hines J, Adhicary S, Nielsen C, Chen X. A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism. Cancer Metab 2021; 9:14. [PMID: 33771231 PMCID: PMC8004435 DOI: 10.1186/s40170-021-00248-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cancer cells drastically increase the uptake of glucose and glucose metabolism by overexpressing class I glucose transporters (GLUT1-4) to meet their energy and biomass synthesis needs and are very sensitive and vulnerable to glucose deprivation. Although targeting glucose uptake via GLUTs has been an attractive anticancer strategy, the relative anticancer efficacy of multi-GLUT targeting or single GLUT targeting is unclear. Here, we report DRB18, a synthetic small molecule, is a potent anticancer compound whose pan-class I GLUT inhibition is superior to single GLUT targeting. METHODS Glucose uptake and MTT/resazurin assays were used to measure DRB18's inhibitory activities of glucose transport and cell viability/proliferation in human lung cancer and other cancer cell lines. Four HEK293 cell lines expressing GLUT1-4 individually were used to determine the IC50 values of DRB18's inhibitory activity of glucose transport. Docking studies were performed to investigate the potential direct interaction of DRB18 with GLUT1-4. Metabolomics analysis was performed to identify metabolite changes in A549 lung cancer cells treated with DRB18. DRB18 was used to treat A549 tumor-bearing nude mice. The GLUT1 gene was knocked out to determine how the KO of the gene affected tumor growth. RESULTS DRB18 reduced glucose uptake mediated via each of GLUT1-4 with different IC50s, which match with the docking glidescores with a correlation coefficient of 0.858. Metabolomics analysis revealed that DRB18 altered energy-related metabolism in A549 cells by changing the abundance of metabolites in glucose-related pathways in vitro and in vivo. DRB18 eventually led to G1/S phase arrest and increased oxidative stress and necrotic cell death. IP injection of DRB18 in A549 tumor-bearing nude mice at 10 mg/kg body weight thrice a week led to a significant reduction in the tumor volume compared with mock-treated tumors. In contrast, the knockout of the GLUT1 gene did not reduce tumor volume. CONCLUSIONS DRB18 is a potent pan-class I GLUT inhibitor in vitro and in vivo in cancer cells. Mechanistically, it is likely to bind the outward open conformation of GLUT1-4, reducing tumor growth through inhibiting GLUT1-4-mediated glucose transport and metabolisms. Pan-class I GLUT inhibition is a better strategy than single GLUT targeting for inhibiting tumor growth.
Collapse
Affiliation(s)
- Pratik Shriwas
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Dennis Roberts
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Yunsheng Li
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Liyi Wang
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Jennifer Hines
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Corinne Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA. .,Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA. .,Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. .,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA. .,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA. .,Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 43701, USA.
| |
Collapse
|
9
|
Gezelle J, Saggu G, Desai SA. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021; 37:414-429. [PMID: 33640269 DOI: 10.1016/j.pt.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.
Collapse
Affiliation(s)
- Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
10
|
Huang C, Zhou Y, Yang J, Cui Q, Li Y. A New Metric Quantifying Chemical and Biological Property of Small Molecule Metabolites and Drugs. Front Mol Biosci 2021; 7:594800. [PMID: 33385011 PMCID: PMC7770129 DOI: 10.3389/fmolb.2020.594800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
One prominent class of drugs is chemical small molecules (CSMs), but the majority of CSMs are of very low druggable potential. Therefore, it is quite important to predict drug-related properties (druggable properties) for candidate CSMs. Currently, a number of druggable properties (e.g., logP and pKa) can be calculated by in silico methods; still the identification of druggable CSMs is a high-risk task, and new quantitative metrics for the druggable potential of CSMs are increasingly needed. Here, we present normalized bond energy (NBE), a new metric for the above purpose. By applying NBE to the DrugBank CSMs whose properties are largely known, we revealed that NBE is able to describe a number of critical druggable properties including logP, pKa, membrane permeability, blood-brain barrier penetration, and human intestinal absorption. Moreover, given that the human endogenous metabolites can serve as important resources for drug discovery, we applied NBE to the metabolites in the Human Metabolome Database. As a result, NBE showed a significant difference in metabolites from various body fluids and was correlated with some important properties, including melting point and water solubility.
Collapse
Affiliation(s)
- Chuanbo Huang
- MOE Key Laboratory of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- MOE Key Laboratory of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jichun Yang
- MOE Key Laboratory of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- MOE Key Laboratory of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanhui Li
- MOE Key Laboratory of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Int J Mol Sci 2020; 22:E148. [PMID: 33375682 PMCID: PMC7794770 DOI: 10.3390/ijms22010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.
Collapse
Affiliation(s)
- Ekaterina S. Potekhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dina Y. Bass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
| | - Alexander V. Ivanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
12
|
Eldesouky HE, Salama EA, Lanman NA, Hazbun TR, Seleem MN. Potent Synergistic Interactions between Lopinavir and Azole Antifungal Drugs against Emerging Multidrug-Resistant Candida auris. Antimicrob Agents Chemother 2020; 65:e00684-20. [PMID: 33046487 PMCID: PMC7927799 DOI: 10.1128/aac.00684-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The limited therapeutic options and the recent emergence of multidrug-resistant Candida species present a significant challenge to human medicine and underscore the need for novel therapeutic approaches. Drug repurposing appears as a promising tool to augment the activity of current azole antifungals, especially against multidrug-resistant Candida auris In this study, we evaluated the fluconazole chemosensitization activities of 1,547 FDA-approved drugs and clinical molecules against azole-resistant C. auris This led to the discovery that lopinavir, an HIV protease inhibitor, is a potent agent capable of sensitizing C. auris to the effect of azole antifungals. At a therapeutically achievable concentration, lopinavir exhibited potent synergistic interactions with azole drugs, particularly with itraconazole against C. auris (fractional inhibitory concentration index [ΣFICI] ranged from 0.04 to 0.09). Additionally, the lopinavir/itraconazole combination enhanced the survival rate of C. auris-infected Caenorhabditis elegans by 90% and reduced the fungal burden in infected nematodes by 88.5% (P < 0.05) relative to that of the untreated control. Furthermore, lopinavir enhanced the antifungal activity of itraconazole against other medically important Candida species, including C. albicans, C. tropicalis, C. krusei, and C. parapsilosis Comparative transcriptomic profiling and mechanistic studies revealed that lopinavir was able to significantly interfere with the glucose permeation and ATP synthesis. This compromised the efflux ability of C. auris and consequently enhanced the susceptibility to azole drugs, as demonstrated by Nile red efflux assays. Altogether, these findings present lopinavir as a novel, potent, and broad-spectrum azole-chemosensitizing agent that warrants further investigation against recalcitrant Candida infections.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ehab A Salama
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist 2020; 13:4047-4060. [PMID: 33204122 PMCID: PMC7666977 DOI: 10.2147/idr.s279433] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is among the most devastating and widespread tropical parasitic diseases in which most prevalent in developing countries. Antimalarial drug resistance is the ability of a parasite strain to survive and/or to multiply despite the administration and absorption of medicine given in doses equal to or higher than those usually recommended. Among the factors which facilitate the emergence of resistance to existing antimalarial drugs: the parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharmacokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor-quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. Molecular markers of antimalarial drug resistance are used to screen for the emergence of resistance and assess its spread. It provides information about the parasite genetics associated with resistance, either single nucleotide polymorphisms or gene copy number variations which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine proteases, and aminopeptidases are the novel targets for the development of new antimalarial drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets of antimalarial drugs.
Collapse
Affiliation(s)
- Melkamu Adigo Shibeshi
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
14
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|