1
|
Giarritiello F, De La Motte LR, Drago L. Viscosupplementation and Synovial Fluid Rheology: A Hidden Risk for Bacterial Biofilm Formation in Joint Infections? Microorganisms 2025; 13:700. [PMID: 40284537 PMCID: PMC12029640 DOI: 10.3390/microorganisms13040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Synovial fluid (SF) plays a critical role in joint lubrication, load distribution, and maintaining homeostasis within the synovial cavity. Its rheological properties, primarily influenced by hyaluronic acid (HA) and other macromolecules, are essential for normal joint function. However, alterations in the physicochemical characteristics of SF can occur due to septic conditions, including septic arthritis (SA) and periprosthetic joint infections (PJIs), which significantly impact joint health. Bacterial colonization in infected joints often leads to the formation of biofilms, microbial aggregates encased in an extracellular matrix, which confer resistance to antibiotics and host immune responses. Biofilm formation in SF-altered environments is a major challenge in treating joint infections, particularly in patients with prosthetic implants. Viscosupplementation, primarily through intra-articular hyaluronic acid (HA) injections, has been widely used to restore SF viscosity and function in degenerative joint diseases. More recently, polyacrylamide (PAA)-based gels have emerged as an alternative viscosupplementation strategy. However, concerns have been raised regarding the potential impact of viscosupplements on biofilm formation and bacterial adhesion in septic joints, as changes in SF viscosity and composition may influence bacterial colonization and persistence. This review aims to assess the interaction between viscosupplementation and biofilm formation in septic joint pathologies, examining the effects of HA and PAA on SF rheology and bacterial adhesion. Understanding these interactions is crucial for optimizing therapeutic strategies and mitigating the risk of biofilm-associated infections in patients undergoing viscosupplementation.
Collapse
Affiliation(s)
- Fabiana Giarritiello
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, 20138 Milan, Italy; (F.G.); (L.R.D.L.M.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Luigi Regenburgh De La Motte
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, 20138 Milan, Italy; (F.G.); (L.R.D.L.M.)
| | - Lorenzo Drago
- UOC Laboratory of Clinical Medicine with Specialized Areas, IRCCS MultiMedica, 20138 Milan, Italy; (F.G.); (L.R.D.L.M.)
- Department of Biomedical Health Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Vishwanath K, Su J, Colville MJ, Paszek M, Reesink HL, Bonassar LJ. Bioengineered lubricin alters the lubrication modes of cartilage in a dose-dependent manner. J Orthop Res 2025; 43:531-540. [PMID: 39521731 DOI: 10.1002/jor.26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
The low friction nature of articular cartilage has been attributed to the synergistic interaction between lubricin and hyaluronic acid in the synovial fluid (SF). Lubricin is a mucinous glycoprotein that lowers the boundary mode coefficient of friction of articular cartilage in a dose-dependent manner. While there have been multiple attempts to produce recombinant lubricin and lubricin mimetic cartilage lubricants over the last two decades, these materials have not found clinical use due to challenges associated with large scale production, manufacturing, and purification. Recently, a novel method using codon scrambling was developed to produce a stable, full-length bioengineered equine lubricin (eLub) in large reproducible quantities. While preliminary frictional analysis of eLub and other recombinantly produced forms revealed they can lubricate cartilage, a complete tribological characterization is lacking, with previous studies evaluating the friction coefficient only at a single dose or a single speed. The objective of this study was to analyze the dose-dependent tribological properties of eLub using the Stribeck framework of tribological analysis. Recombinantly produced eLub at doses greater than 1.5 mg/mL exhibits friction coefficients on par with healthy bovine SF, and a maximal 5 mg/mL dose exhibits a nearly 50% lower friction coefficient than healthy SF. eLub also modulates the shift in lubrication mode of the cartilage from the high friction boundary mode to the low friction minimum mode at high concentrations.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marshall J Colville
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Yoon D, Vishwanath K, Dankert J, Butler JJ, Azam MT, Gianakos AL, Colville MJ, Lopez SG, Paszek MJ, Reesink HL, Kennedy JG, Bonassar LJ, Irwin RM. Delayed lubricin injection improves cartilage repair tissue quality in an in vivo rabbit osteochondral defect model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636825. [PMID: 39974965 PMCID: PMC11839081 DOI: 10.1101/2025.02.06.636825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Osteochondral lesions (OCL) are common among young patients and often require surgical interventions since cartilage has a poor capacity for self-repair. Bone marrow stimulation (BMS) has been used clinically for decades to treat OCLs, however a persisting challenge with BMS and other cartilage repair strategies is the inferior quality of the resulting fibrocartilaginous repair tissue. Lubrication-based therapies have the potential to improve the quality of cartilage repair tissue as joint lubrication is linked to local cartilage tissue strains and subsequent cellular responses including death and apoptosis. Recently, a full length recombinant human lubricin (rhLubricin) was developed and has been shown to lower friction in cartilage. This study investigated the effect of a single delayed injection of rhLubricin on cartilage repair in an in vivo rabbit OCL model using gross macroscopic evaluation, surface profilometry, histology, and tribology. Moderate improvement in macroscopic scores for cartilage repair were observed. Notably, quantitative analysis of Safranin-O histology showed that rhLubricin treated joints had significantly higher glycosaminoglycan content compared to saline treated joints, and there were no differences in repair integration between groups. Furthermore, rhLubricin treated joints had significantly lower friction coefficients tested across three sliding speeds compared to saline treated joints (rhLubricin: 0.15 ± 0.03 at 0.1 mm/s to 0.12 ± 0.03 at 10 mm/s, Saline: 0.22 ± 0.06 at 0.1 mm/s to 0.19 ± 0.05 at 10 mm/s). Overall, a single delayed injection of rhLubricin improved the quality and lubricating ability of the repair cartilage tissue without inhibiting repair tissue integration.
Collapse
Affiliation(s)
- Donghwan Yoon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - John Dankert
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - James J. Butler
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Mohammad T. Azam
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Arianna L. Gianakos
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Marshall J. Colville
- College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - Serafina G. Lopez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Matthew J. Paszek
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Heidi L. Reesink
- College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - John G. Kennedy
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Rebecca M. Irwin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| |
Collapse
|
4
|
Vishwanath K, McClure SR, Bonassar LJ. Heterogeneous distribution of viscosupplements in vivo is correlated to ex vivo frictional properties of equine cartilage. J Biomed Mater Res A 2024; 112:2149-2159. [PMID: 38923105 DOI: 10.1002/jbm.a.37766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Intra-articular injections of hyaluronic acid (HA) are the cornerstone of osteoarthritis (OA) treatments. However, the mechanism of action and efficacy of HA viscosupplementation are debated. As such, there has been recent interest in developing synthetic viscosupplements. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively lubricate and bind to the surface of cartilage in vitro. However, its ability to localize to cartilage and alter the tribological properties of the tissue in a live articulating large animal joint is not known. The goal of this study was to quantify the distribution and extent of localization of pAAm in the equine metacarpophalangeal or metatarsophalangeal joint (fetlock joint), and determine whether preferential localization of pAAm influences the tribological properties of the tissue. An established planar fluorescence imaging technique was used to visualize and quantify the distribution of fluorescently labeled pAAm within the joint. While the pAAm hydrogel was present on all surfaces, it was not uniformly distributed, with more material present near the site of the injection. The lubricating ability of the cartilage in the joint was then assessed using a custom tribometer across two orders of magnitude of sliding speed in healthy synovial fluid. Cartilage regions with a greater coverage of pAAm, that is, higher fluorescent intensities, exhibited friction coefficients nearly 2-fold lower than regions with lesser pAAm (Rrm = -0.59, p < 0.001). Collectively, the findings from this study indicate that intra-articular viscosupplement injections are not evenly distributed inside a joint, and the tribological outcomes of these materials is strongly determined by the ability of the material to localize to the articulating surfaces in the joint.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | | | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Saletti M, Pepi S, Paolino M, Venditti J, Giuliani G, Bonechi C, Leone G, Magnani A, Rossi C, Cappelli A. Crosslinking by Click Chemistry of Hyaluronan Graft Copolymers Involving Resorcinol-Based Cinnamate Derivatives Leading to Gel-like Materials. Gels 2024; 10:751. [PMID: 39590107 PMCID: PMC11594237 DOI: 10.3390/gels10110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The well-known "click chemistry" reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was used to transform under very mild conditions hyaluronan-based graft copolymers HA(270)-FA-Pg into the crosslinked derivatives HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL. In particular, medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted at various extents (i.e., 10, 20, and 40%) with fluorogenic ferulic acid (FA) residue bonding propargyl groups were used in the CuAAC reaction with novel azido-terminated crosslinking agents Tri(Ethylene Glycol) Ethyl Resorcinol Acrylate (TEGERA) and Hexa(Ethylene Glycol) Ethyl Resorcinol Acrylate (HEGERA). The resulting HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL materials were characterized from the point of view of their structure by performing NMR studies. Moreover, the swelling behavior and rheological features were assessed employing TGA and DSC analysis to evaluate the potential gel-like properties of the resulting crosslinked materials. Despite the 3D crosslinked structure, HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL frameworks showed adequate swelling performance, the required shear thinning behavior, and coefficient of friction values close to those of the main commercial HA solutions used as viscosupplements (i.e., 0.20 at 10 mm/s). Furthermore, the presence of a crosslinked structure guaranteed a longer residence time. Indeed, HA(270)-FA-TEGERA-CL-40 and HA(270)-FA-HEGERA-CL-40 after 48 h showed a four times greater enzymatic resistance than the commercial viscosupplements. Based on the promising obtained results, the crosslinked materials are proposed for their potential applicability as novel viscosupplements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.S.); (S.P.); (M.P.); (J.V.); (G.G.); (C.B.); (G.L.); (A.M.); (C.R.)
| |
Collapse
|
6
|
Prajapati M, Vishwanath K, Huang L, Colville M, Reesink H, Paszek M, Bonassar LJ. Specific Degradation of the Mucin Domain of Lubricin in Synovial Fluid Impairs Cartilage Lubrication. ACS Biomater Sci Eng 2024; 10:6915-6926. [PMID: 39425698 DOI: 10.1021/acsbiomaterials.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Progressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood. Here, we demonstrate the application of a novel mucinase (StcE) to selectively degrade lubricin's mucin domain in SF to measure its impact on joint lubrication and friction. Notably, StcE effectively degraded the lubricating ability of SF in a dose-dependent manner starting at nanogram concentrations (1-3.2 ng/mL). Further, the highest StcE doses effectively degraded lubrication to levels on par with trypsin, suggesting that cleavage at the mucin domain of lubricin is sufficient to completely inhibit the lubrication mechanism of the collective protein component in SF. These findings demonstrate the value of mucin-specific experimental approaches to characterize the lubricating properties of SF and reveal key trends in joint lubrication that help us better understand cartilage function in lubrication-deficient joints.
Collapse
Affiliation(s)
- Megh Prajapati
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, New York 14853, United States
| | - Lingting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Heidi Reesink
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, New York 14850, United States
| |
Collapse
|
7
|
DeMoya CD, Joenathan A, Lawson TB, Felson DT, Schaer TP, Bais M, Albro MB, Mäkelä J, Snyder BD, Grinstaff MW. Advances in viscosupplementation and tribosupplementation for early-stage osteoarthritis therapy. Nat Rev Rheumatol 2024; 20:432-451. [PMID: 38858605 PMCID: PMC11348290 DOI: 10.1038/s41584-024-01125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Joint kinematic instability, arising from congenital or acquired musculoskeletal pathoanatomy or from imbalances in anabolism and catabolism induced by pathophysiological factors, leads to deterioration of the composition, structure and function of cartilage and, ultimately, progression to osteoarthritis (OA). Alongside articular cartilage degeneration, synovial fluid lubricity decreases in OA owing to a reduction in the concentration and molecular weight of hyaluronic acid and surface-active mucinous glycoproteins that form a lubricating film over the articulating joint surfaces. Minimizing friction between articulating joint surfaces by lubrication is fundamental for decreasing hyaline cartilage wear and for maintaining the function of synovial joints. Augmentation with highly viscous supplements (that is, viscosupplementation) offers one approach to re-establishing the rheological and tribological properties of synovial fluid in OA. However, this approach has varied clinical outcomes owing to limited intra-articular residence time and ineffective mechanisms of chondroprotection. This Review discusses normal hyaline cartilage function and lubrication and examines the advantages and disadvantages of various strategies for restoring normal joint lubrication. These strategies include contemporary viscosupplements that contain antioxidants, anti-inflammatory drugs or platelet-rich plasma and new synthetic synovial fluid additives and cartilage matrix enhancers. Advanced biomimetic tribosupplements offer promise for mitigating cartilage wear, restoring joint function and, ultimately, improving patient care.
Collapse
Affiliation(s)
- Christian D DeMoya
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Anisha Joenathan
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Taylor B Lawson
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - David T Felson
- Section of Rheumatology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Thomas P Schaer
- PENN VET Institute for Medical Translation, University of Pennsylvania School of Veterinary Medicine New Bolton Center, Kennett Square, PA, USA
| | - Manish Bais
- Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Michael B Albro
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Janne Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Brian D Snyder
- Department of Orthopaedic Surgery, Boston Children's Hospital Boston, Boston, MA, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
8
|
Vishwanath K, Secor EJ, Watkins A, Reesink HL, Bonassar LJ. Loss of effective lubricating viscosity is the primary mechanical marker of joint inflammation in equine synovitis. J Orthop Res 2024; 42:1438-1447. [PMID: 38291343 DOI: 10.1002/jor.25793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024]
Abstract
Inflammation of the synovium, known as synovitis, plays an important role in the pathogenesis of osteoarthritis (OA). Synovitis involves the release of a wide variety of pro-inflammatory mediators in synovial fluid (SF) that damage the articular cartilage extracellular matrix and induce death and apoptosis in chondrocytes. The composition of synovial fluid is dramatically altered by inflammation in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. However, the relationship between key biochemical markers of joint inflammation and mechanical function of SF is not well understood. Here, we demonstrate the application of a novel analytical framework to measure the effective viscosity for SF lubrication of cartilage, which is distinct from conventional rheological viscosity. Notably, in a well-established equine model of synovitis, this effective lubricating viscosity decreased by up to 10,000-fold for synovitis SF compared to a ~4 fold change in conventional viscosity measurements. Further, the effective lubricating viscosity was strongly inversely correlated (r = -0.6 to -0.8) to multiple established biochemical markers of SF inflammation, including white blood cell count, prostaglandin E2 (PGE2), and chemokine ligand (CCLs) concentrations, while conventional measurements of viscosity were poorly correlated to these markers. These findings demonstrate the importance of experimental and analytical approaches to characterize functional lubricating properties of synovial fluid and their relationships to soluble biomarkers to better understand the progression of OA.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Erica J Secor
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
10
|
Colville MJ, Huang LT, Schmidt S, Chen K, Vishwanath K, Su J, Williams RM, Bonassar LJ, Reesink HL, Paszek MJ. Recombinant manufacturing of multispecies biolubricants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592580. [PMID: 38746339 PMCID: PMC11092771 DOI: 10.1101/2024.05.05.592580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce O-glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.
Collapse
Affiliation(s)
- Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Samuel Schmidt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Kevin Chen
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
de Roy L, Schlickenrieder K, Rüger M, Faschingbauer M, Ignatius A, Seitz AM. Impact of degeneration and material pairings on cartilage friction: Cartilage versus glass. J Orthop Res 2024; 42:745-752. [PMID: 37975270 DOI: 10.1002/jor.25738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The association of knee joint osteoarthritis and altered frictional properties of the degenerated cartilage remains ambiguous, because previous in vitro studies did not consider the characteristic loads and velocities during gait. Therefore, the aim of this study was to quantify the friction behavior of degenerated human cartilage under characteristic stance and swing phase conditions. A dynamic pin-on-plate tribometer was used to test the tribological systems of cartilage against cartilage and cartilage against glass, both with synthetic synovial fluid as lubricant. Using the International Cartilage Repair Society classification, the cartilage samples were assigned to a mildly or a severely degenerated group before testing. Friction coefficients were calculated under stance and swing phase conditions at the beginning of the test and after 600 s of testing. The most important finding of this study is that cartilage against glass couplings displayed significantly higher friction for the severely degenerated samples compared to the mildly degenerated ones, whereas cartilage against cartilage couplings only indicated slight tendencies under the observed test conditions. Consequently, care should be taken when transferring in vitro findings from cartilage against cartilage couplings to predict the friction behavior in vivo. Therefore, we recommend in vitro tribological testing methods which account for gait-like loading conditions and to replicate physiological material pairings, particularly in preclinical medical device validation studies.
Collapse
Affiliation(s)
- Luisa de Roy
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schlickenrieder
- Faculty of Production Engineering and Management, Ulm University of Applied Sciences, Ulm, Germany
| | - Matthias Rüger
- Department of Pediatric Orthopedics and Traumatology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, RKU, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Andreas M Seitz
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Lee JH, Kim PY, Pyun YC, Park J, Kang TW, Seo JS, Lee DH, Khang G. Cartilage regeneration using transforming growth factor-beta 3-loaded injectable crosslinked hyaluronic acid hydrogel. Biomater Sci 2024; 12:479-494. [PMID: 38090986 DOI: 10.1039/d3bm01008b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cartilage defects can be difficult to heal, potentially leading to complications such as osteoarthritis. Recently, a tissue engineering approach that uses scaffolds and growth factors has been proposed to regenerate new cartilage tissues. Herein, we investigated the application of hyaluronic acid (HA) gel loaded with transforming growth factor-beta 3 (TGF-β3) for enhanced cartilage regeneration. We assessed the clinical conditions required to efficiently enhance the ability of the modified HA gel to repair defective cartilage. Based on our findings, the prepared HA gel exhibited good physicochemical and mechanical properties and was non-toxic and non-inflammatory. Moreover, HA gel-loaded TGF-β3 (HAT) had improved biocompatibility and promoted the synthesis of cartilage-specific matrix and collagen, further improving its ability to repair defects. The application of HAT resulted in an initial burst release of HA, which degraded slowly in vivo. Finally, HAT combined with microfracture-inducing bone marrow stem cells could significantly improve the cartilage microenvironment and regeneration of cartilage defects. Our results indicate that HA is a suitable material for developing growth factor carriers, whereas HAT is a promising candidate for cartilage regeneration. Furthermore, this differentiated strategy provides a rapid and effective clinical approach for next-generation cartilage regeneration.
Collapse
Affiliation(s)
- Ju Hwa Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Pil Yun Kim
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
- CGBio Co., Ltd, Soeul, Republic of Korea
| | - Yun Chang Pyun
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Jonggyu Park
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Tae Woong Kang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
13
|
de Roy L, Eichhorn K, Faschingbauer M, Schlickenrieder K, Ignatius A, Seitz AM. Impact of hyaluronic acid injection on the knee joint friction. Knee Surg Sports Traumatol Arthrosc 2023; 31:5554-5564. [PMID: 37843587 PMCID: PMC10719131 DOI: 10.1007/s00167-023-07602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE The purpose of this in vitro study was to investigate whether or not hyaluronic acid supplementation improves knee joint friction during osteoarthritis progression under gait-like loading conditions. METHODS Twelve human cadaveric knee joints were equally divided into mild and moderate osteoarthritic groups. After initial conservative preparation, a passive pendulum setup was used to test the whole joints under gait-like conditions before and after hyaluronic acid supplementation. The friction-related damping properties given by the coefficient of friction µ and the damping coefficient c (in kg m2/s) were calculated from the decaying flexion-extension motion of the knee. Subsequently, tibial and femoral cartilage and meniscus samples were extracted from the joints and tested in an established dynamic pin-on-plate tribometer using synthetic synovial fluid followed by synthetic synovial fluid supplemented with hyaluronic acid as lubricant. Friction was quantified by calculating the coefficient of friction. RESULTS In the pendulum tests, the moderate OA group indicated significantly lower c0 values (p < 0.05) under stance phase conditions and significantly lower µ0 (p = 0.01) values under swing phase conditions. No degeneration-related statistical differences were found for µend or cend. Friction was not significantly different (p > 0.05) with regard to mild and moderate osteoarthritis in the pin-on-plate tests. Additionally, hyaluronic acid did not affect friction in both, the pendulum (p > 0.05) and pin-on-plate friction tests (p > 0.05). CONCLUSION The results of this in vitro study suggested that the friction of cadaveric knee joint tissues does not increase with progressing degeneration. Moreover, hyaluronic acid viscosupplementation does not lead to an initial decrease in knee joint friction.
Collapse
Affiliation(s)
- Luisa de Roy
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Kerstin Eichhorn
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, RKU, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schlickenrieder
- Faculty of Production Engineering and Management, Ulm University of Applied Sciences, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Helmholtzstraße 14, 89081, Ulm, Germany.
| |
Collapse
|
14
|
Porcello A, Hadjab F, Ajouaou M, Philippe V, Martin R, Abdel-Sayed P, Hirt-Burri N, Scaletta C, Raffoul W, Applegate LA, Allémann E, Jordan O, Laurent A. Ex Vivo Functional Benchmarking of Hyaluronan-Based Osteoarthritis Viscosupplement Products: Comprehensive Assessment of Rheological, Lubricative, Adhesive, and Stability Attributes. Gels 2023; 9:808. [PMID: 37888381 PMCID: PMC10606320 DOI: 10.3390/gels9100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Maryam Ajouaou
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Wassim Raffoul
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| |
Collapse
|
15
|
Wen S, Iturriaga V, Vásquez B, del Sol M. Comparison of Four Treatment Protocols with Intra-Articular Medium Molecular Weight Hyaluronic Acid in Induced Temporomandibular Osteoarthritis: An Experimental Study. Int J Mol Sci 2023; 24:14130. [PMID: 37762430 PMCID: PMC10531553 DOI: 10.3390/ijms241814130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to compare the effect between a single intra-articular infiltration (1i) and two infiltrations (2i) of medium molecular weight hyaluronic acid (MMW-HA) of high viscosity (HV) and low viscosity (LV) on the histopathological characteristics of temporomandibular joint (TMJ) osteoarthritis (OA) induced in rabbits. An experimental study was conducted on Oryctolagus cuniculus rabbits, including 42 TMJs, distributed between (1) TMJ-C, control group; (2) TMJ-OA, group with OA; (3) TMJ-OA-wt, group with untreated OA; (4) group treated with HA-HV-1i; (5) group treated with HA-HV-2i; (6) group treated with HA-LV-1i; and (7) group treated with HA-LV-2i. The results were evaluated using the Osteoarthritis Research Society International (OARSI) scale and descriptive histology considering the mandibular condyle (MC), the articular disc (AD), and the mandibular fossa (MF). The Kruskal-Wallis test was used for the statistical analysis, considering p < 0.05 significant. All treated groups significantly decreased the severity of OA compared to the TMJ-OA-wt group. The HA-HV-2i group showed significant differences in the degree of OA from the TMJ-OA group. The degree of OA in the HA-HV-2i group was significantly lower than in the HA-LV-1i, HA-LV-2i, and HA-HV-1i groups. The protocol that showed better results in repairing the joint was HA-HV-2i. There are histological differences depending on the protocol of the preparation used: two infiltrations seem to be better than one, and when applying two doses, high viscosity shows better results.
Collapse
Affiliation(s)
- Schilin Wen
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Grupo de Investigación de Pregrado en Odontología, Facultad de Ciencias de la Salud (FACSA), Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Veronica Iturriaga
- Temporomandibular Disorder and Orofacial Pain Program, Department of Integral Adult Care Dentistry, Universidad de La Frontera, Temuco 4780000, Chile;
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4780000, Chile
| | - Bélgica Vásquez
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Mariano del Sol
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
16
|
Meehan RT, Gill MT, Hoffman ED, Coeshott CM, Galvan MD, Wolf ML, Amigues IA, Kastsianok LM, Regan EA, Crooks JL, Czuczman GJ, Knight V. Ultrasound-Guided Injections of HYADD4 for Knee Osteoarthritis Improves Pain and Functional Outcomes at 3, 6, and 12 Months without Changes in Measured Synovial Fluid, Serum Collagen Biomarkers, or Most Synovial Fluid Biomarker Proteins at 3 Months. J Clin Med 2023; 12:5541. [PMID: 37685608 PMCID: PMC10488758 DOI: 10.3390/jcm12175541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Prior studies have demonstrated improved efficacy when intra-articular (IA) therapeutics are injected using ultrasound (US) guidance. The aim of this study was to determine if clinical improvement in pain and function after IA hyaluronic acid injections using US is associated with changes in SF volumes and biomarker proteins at 3 months. METHODS 49 subjects with symptomatic knee OA, BMI < 40, and KL radiographic grade II or III participated. Subjects with adequate aspirated synovial fluid (SF) volumes received two US-guided IA-HA injections of HYADD4 (24 mg/3 mL) 7 days apart. Clinical evaluations at 3, 6, and 12 months included WOMAC, VAS, PCS scores, 6 MWD, and US-measured SF depth. SF and blood were collected at 3 months and analyzed for four serum OA biomarkers and fifteen SF proteins. RESULTS Statistical differences were observed at 3, 6, and 12 months compared to baseline values, with improvements at 12 months for WOMAC scores (50%), VAS (54%), and PCS scores (24%). MMP10 levels were lower at 3 months without changes in SF volumes, serum levels of C2C, COMP, HA, CPII, or SF levels of IL-1 ra, IL-4, 6, 7, 8, 15, 18, ILGFBP-1, 3, and MMP 1, 2, 3, 8, 9. Baseline clinical features or SF biomarker protein levels did not predict responsiveness at 3 months. CONCLUSIONS Clinical improvements were observed at 12 months using US needle guidance for IA HA, whereas only one SF protein biomarker protein was different at 3 months. Larger studies are needed to identify which SF biomarkers will predict which individual OA patients will receive the greatest benefit from IA therapeutics.
Collapse
Affiliation(s)
- Richard T. Meehan
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Mary T. Gill
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Eric D. Hoffman
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Claire M. Coeshott
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Manuel D. Galvan
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Molly L. Wolf
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Isabelle A. Amigues
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Liudmila M. Kastsianok
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - Elizabeth A. Regan
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
| | - James L. Crooks
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Gregory J. Czuczman
- Departments of Medicine, Clinical Labs, Radiology and Divisions of Rheumatology, Immunology/Complement Labs, and Biostatistics and Bioinformatics, National Jewish Health, Denver, CO 80206, USA; (M.T.G.); (E.D.H.); (C.M.C.); (M.D.G.); (M.L.W.); (I.A.A.); (E.A.R.); (J.L.C.); (G.J.C.)
- Radiology Imaging Associates, Englewood, CO 80112, USA
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, CU Anschutz School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
17
|
Porcello A, Gonzalez-Fernandez P, Jeannerat A, Peneveyre C, Abdel-Sayed P, Scaletta C, Raffoul W, Hirt-Burri N, Applegate LA, Allémann E, Laurent A, Jordan O. Thermo-Responsive Hyaluronan-Based Hydrogels Combined with Allogeneic Cytotherapeutics for the Treatment of Osteoarthritis. Pharmaceutics 2023; 15:pharmaceutics15051528. [PMID: 37242774 DOI: 10.3390/pharmaceutics15051528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Paula Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| |
Collapse
|
18
|
Vishwanath K, McClure SR, Bonassar LJ. Polyacrylamide hydrogel lubricates cartilage after biochemical degradation and mechanical injury. J Orthop Res 2023; 41:63-71. [PMID: 35384042 DOI: 10.1002/jor.25340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Intra-articular injections of hyaluronic acid have been a mainstay of osteoarthritis treatment for decades. However, controversy surrounds the mechanism of action and efficacy of this therapy. As such, there has been recent interest in developing synthetic lubricants that lubricate cartilage. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively decrease lameness in horses. However, its mechanism of action and ability to lubricate cartilage is unknown. The goal of this study was to characterize the lubricating ability of this hydrogel and determine its efficacy for healthy and degraded cartilage. The study utilized previously established IL-1β-induced biochemical degradation and mechanical impact injury models to degrade cartilage. The lubricating ability of the hydrogel was then characterized using a custom-built tribometer using a glass counterface and friction was evaluated using the Stribeck framework for articular cartilage. pAAm hydrogel was shown to significantly lower the friction coefficient of cartilage explants from both degradation models (30%-40% reduction in friction relative to controls). A striking finding from this study was the aggregation of the pAAm hydrogel at the articulating surface. The surface aggregation was observed in the histological sections of explants from all treatment groups after tribological evaluation. Using the Stribeck framework, the hydrogel was mapped to higher Sommerfeld numbers and was characterized as a viscous lubricant predominantly in the minimum friction mode. In summary, this study revealed that pAAm hydrogel lubricates native and degraded cartilage explants effectively and may have an affinity for the articulating surface of the cartilage.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Scott R McClure
- Midwest Equine Surgery and Sports Medicine, Boone, Iowa, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Göncü Y. Development of hybrid hydrogel to facilitate knee joint movement with an engineering approach. J Appl Polym Sci 2022. [DOI: 10.1002/app.53083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yapıncak Göncü
- Engineering Architecture Faculty, Department of Biomedical Engineering Eskisehir Osmangazi University Eskişehir Turkey
| |
Collapse
|
20
|
Makvandi P, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. A Hyaluronic Acid-Based Formulation with Simultaneous Local Drug Delivery and Antioxidant Ability for Active Viscosupplementation. ACS OMEGA 2022; 7:10039-10048. [PMID: 35382294 PMCID: PMC8973125 DOI: 10.1021/acsomega.1c05622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 06/12/2023]
Abstract
Hyaluronic acid (HA) and its derivatives are widely used for intra-articular injection to augment compromised viscoelastic properties of damaged synovial fluid. Combining HA-based devices with anti-inflammatory drugs or bioactive principles in order to provide an additional benefit to the viscosupplementation is emerging as a new promising approach to improve the clinical outcome. Here, we aim to design a novel active viscosupplementation agent that can load and release hydrophobic drugs and at the same time possessing antioxidant properties. Optimized ternary systems named HCV based on HA, (2-hydroxypropyl)-β-cyclodextrin (CD), and vitamin E (VE), without being engaged in formal chemical bonding with each other, showed the best viscoelastic and lubrication properties along with antioxidant capabilities, able to solubilize and release DF. The physical-chemical characterization suggested that the HCV system displayed rheological synergism and higher thermal stability because of the presence of VE and its antioxidant activity, and the loading of hydrophobic drugs was improved by the presence of CD and VE. Cell morphology and viability tests on L929 cells exhibited high biocompatibility of the HCV system with higher level expression of anti-inflammatory interleukin-10.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Materials
Interface, viale Rinaldo
Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Francesca Della Sala
- Institute
of Polymers, Composites and Biomaterials, National Research Council,
IPCB-CNR, 80078 Naples, Italy
| | - Mario di Gennaro
- Institute
of Polymers, Composites and Biomaterials, National Research Council,
IPCB-CNR, 80078 Naples, Italy
- University
of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Nicola Solimando
- Altergon
Italia S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, Italy
| | - Maurizio Pagliuca
- Altergon
Italia S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, Italy
| | - Assunta Borzacchiello
- Institute
of Polymers, Composites and Biomaterials, National Research Council,
IPCB-CNR, 80078 Naples, Italy
| |
Collapse
|
21
|
Vishwanath K, Bonassar LJ. Intra-articular Hyaluronic Acid Injections. ORTHOBIOLOGICS 2022:109-122. [DOI: 10.1007/978-3-030-84744-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Hyaluronan and Derivatives: An In Vitro Multilevel Assessment of Their Potential in Viscosupplementation. Polymers (Basel) 2021; 13:polym13193208. [PMID: 34641024 PMCID: PMC8512809 DOI: 10.3390/polym13193208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
In this research work, viscosupplements based on linear, derivatized, crosslinked and complexed HA forms were extensively examined, providing data on the hydrodynamic parameters for the water-soluble-HA-fraction, rheology, sensitivity to enzymatic hydrolysis and capacity to modulate specific biomarkers’ expression in human pathological chondrocytes and synoviocytes. Soluble HA ranged from 0 to 32 mg/mL and from 150 to 1330 kDa MW. The rheological behavior spanned from purely elastic to viscoelastic, suggesting the diversity of the categories that are suitable for restoring specific/different features of the healthy synovial fluid. The rheological parameters were reduced in a diverse manner upon dilution and hyaluronidases action, indicating different durations of the viscosupplementation effect. Bioactivity was found for all the samples, increasing the expression of different matrix markers (e.g., hyaluronan-synthase); however, the hybrid cooperative complexes performed better in most of the experiments. Hybrid cooperative complexes improved COLII mRNA expression (~12-fold increase vs. CTR), proved the most effective at preserving cell phenotype. In addition, in these models, the HA samples reduced inflammation. IL-6 was down-regulated vs. CTR by linear and chemically modified HA, and especially by hybrid complexes. The results represent the first comprehensive panel of data directly comparing the diverse HA forms for intra-articular injections and provide valuable information for tailoring products’ clinical use as well as for designing new, highly performing HA-formulations that can address specific needs.
Collapse
|
23
|
Synthesis of a Lubricant to Mimic the Biorheological Behavior of Osteoarthritic and Revision Synovial Fluid. LUBRICANTS 2021. [DOI: 10.3390/lubricants9090087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rheological properties of synovial fluid (SF) are essential for the friction behavior and wear performance of total joint replacements. Standardized in vitro wear tests for endoprosthesis recommend diluted calf serum, which exhibits substantial different rheological properties compared to SF. Therefore, the in vitro test conditions do not mimic the in vivo conditions. SF samples from osteoarthritis knee patients and patients undergoing knee endoprosthesis revision surgery were compared biochemically and rheologically. The flow properties of SF samples were compared to synthetic fluid constituents, such as bovine serum albumin (BSA) and hyaluronic acid (HA). Interestingly, HA was identified as a significant contributor to shear-thinning. Using the acquired data and mathematical modelling, the flow behavior of human SF was modelled reliably by an adapted adjustment of biorelevant fluid components. Friction tests in a hard/soft bearing (ceramic/UHMWPE) demonstrated that, in contrast to serum, the synthetic model fluids generate a more realistic friction condition. The developed model for an SF mimicking lubricant is recommended for in vitro wear tests of endoprostheses. Furthermore, the results highlight that simulator tests should be performed with a modified lubricant considering an addition of HA for clinically relevant lubrication conditions.
Collapse
|
24
|
Feeney E, Galesso D, Secchieri C, Oliviero F, Ramonda R, Bonassar LJ. Inflammatory and Noninflammatory Synovial Fluids Exhibit New and Distinct Tribological Endotypes. J Biomech Eng 2020; 142:111001. [PMID: 32577715 DOI: 10.1115/1.4047628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 07/25/2024]
Abstract
Inferior synovial lubrication is a hallmark of osteoarthritis (OA), and synovial fluid (SF) lubrication and composition are variable among OA patients. Hyaluronic acid (HA) viscosupplementation is a widely used therapy for improving SF viscoelasticity and lubrication, but it is unclear how the effectiveness of HA viscosupplements varies with arthritic endotype. The objective of this study was to investigate the effects of the HA viscosupplement, Hymovis®, on the lubricating properties of diseased SF from patients with noninflammatory OA and inflammatory arthritis (IA). The composition (cytokine, HA, and lubricin concentrations) of the SF was measured as well as the mechanical properties (rheology, tribology) of the SF alone and in a 1:1 mixture with the HA viscosupplement. Using rotational rheometry, no difference in SF viscosity was detected between disease types, and the addition of HA significantly increased all fluids' viscosities. In noninflammatory OA SF, friction coefficients followed a typical Stribeck pattern, and their magnitude was decreased by the addition of HA. While some of the IA SF also showed typical Stribeck behavior, a subset showed more erratic behavior with highly variable and larger friction coefficients. Interestingly, this aberrant behavior was not eliminated by the addition of HA, and it was associated with low concentrations of lubricin. Aberrant SF exhibited significantly lower effective viscosities compared to noninflammatory OA and IA SF with typical tribological behavior. Collectively, these results suggest that different endotypes of arthritis exist with respect to lubrication, which may impact the effectiveness of HA viscosupplements in reducing friction.
Collapse
Affiliation(s)
- Elizabeth Feeney
- Nancy and Peter Meinig School of Biomedical Engineering, Cornell University, Weill Hall 152 526 Campus Road, Ithaca, NY 14853
| | - Devis Galesso
- Fidia Farmaceutici S.p.A, Via Ponte della Fabbrica 3/A, Abano Terme, Padua 35031, Italy
| | - Cynthia Secchieri
- Fidia Farmaceutici S.p.A, Via Ponte della Fabbrica 3/A, Abano Terme, Padua 35031, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Via Giustiniani, 2, Padua 35128, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Via Giustiniani, 2, Padua 35128, Italy
| | - Lawrence J Bonassar
- Nancy and Peter Meinig School of Biomedical Engineering, Cornell University, Weill Hall 152, 526 Campus Road, Ithaca, NY 14853; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Weill Hall 149, 526 Campus Road, Ithaca, NY 14853
| |
Collapse
|
25
|
Stellavato A, Abate L, Vassallo V, Donniacuo M, Rinaldi B, Schiraldi C. An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine. PLoS One 2020; 15:e0236164. [PMID: 32760085 PMCID: PMC7410276 DOI: 10.1371/journal.pone.0236164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronan (HA) is a nonsulfated glycosaminoglycan that has been widely used for biomedical applications. Here, we have analyzed the effect of HA on the rescue of primary cells under stress as well as its potential to recover muscle atrophy and validated the developed model in vitro using primary muscle cells derived from rats. The potentials of different HAs were elucidated through comparative analyses using pharmaceutical grade a) high (HHA) and b) low molecular weight (LHA) hyaluronans, c) hybrid cooperative complexes (HCC) of HA in three experimental set-ups. The cells were characterized based on the expression of myogenin, a muscle-specific biomarker, and the proliferation was analyzed using Time-Lapse Video Microscopy (TLVM). Cell viability in response to H2O2 challenge was evaluated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression of the superoxide dismutase enzyme (SOD-2) was assessed by western blotting. Additionally, in order to establish an in vitro model of atrophy, muscle cells were treated with tumor necrosis factor-alpha (TNF-α), along with hyaluronans. The expression of Atrogin, MuRF-1, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and Forkhead-box-(Fox)-O-3 (FoxO3a) was evaluated by western blotting to elucidate the molecular mechanism of atrophy. The results showed that HCC and HHA increased cell proliferation by 1.15 and 2.3 folds in comparison to un-treated cells (control), respectively. Moreover, both pre- and post-treatments of HAs restored the cell viability, and the SOD-2 expression was found to be reduced by 1.5 fold in HA-treated cells as compared to the stressed condition. Specifically in atrophic stressed cells, HCC revealed a noteworthy beneficial effect on the myogenic biomarkers indicating that it could be used as a promising platform for tissue regeneration with specific attention to muscle cell protection against stressful agents.
Collapse
Affiliation(s)
- Antonietta Stellavato
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
- * E-mail: (CS); (AS)
| | - Lucrezia Abate
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
| | - Valentina Vassallo
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
| | - Maria Donniacuo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
- * E-mail: (CS); (AS)
| |
Collapse
|
26
|
Rebenda D, Vrbka M, Čípek P, Toropitsyn E, Nečas D, Pravda M, Hartl M. On the Dependence of Rheology of Hyaluronic Acid Solutions and Frictional Behavior of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2659. [PMID: 32545213 PMCID: PMC7321645 DOI: 10.3390/ma13112659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/27/2023]
Abstract
Hyaluronic acid (HA) injections represent one of the most common methods for the treatment of osteoarthritis. However, the clinical results of this method are unambiguous mainly because the mechanism of action has not been clearly clarified yet. Viscosupplementation consists, inter alia, of the improvement of synovial fluid rheological properties by injected solution. The present paper deals with the effect of HA molecular weight on the rheological properties of its solutions and also on friction in the articular cartilage model. Viscosity and viscoelastic properties of HA solutions were analyzed with a rotational rheometer in a cone-plate and plate-plate configuration. In total, four HA solutions with molecular weights between 77 kDa and 2010 kDa were tested. The frictional measurements were realized on a commercial tribometer Bruker UMT TriboLab, while the coefficient of friction (CoF) dependency on time was measured. The contact couple consisted of the articular cartilage pin and the plate made from optical glass. The contact was fully flooded with tested HA solutions. Results showed a strong dependency between HA molecular weight and its rheological properties. However, no clear dependence between HA molecular weight and CoF was revealed from the frictional measurements. This study presents new insight into the dependence between rheological and frictional behavior of the articular cartilage, while such an extensive investigation has not been presented before.
Collapse
Affiliation(s)
- David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Pavel Čípek
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (E.T.); (M.P.)
| | - David Nečas
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| | - Martin Pravda
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (E.T.); (M.P.)
| | - Martin Hartl
- Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno, Czech Republic; (M.V.); (P.Č.); (D.N.); (M.H.)
| |
Collapse
|
27
|
Injection route affects intra-articular hyaluronic acid distribution and clinical outcome in viscosupplementation treatment for knee osteoarthritis: a combined cadaver study and randomized clinical trial. Drug Deliv Transl Res 2020; 11:279-291. [PMID: 32514702 DOI: 10.1007/s13346-020-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The coverage of hyaluronic acid (HA) on the impaired cartilage should be the precondition to exert its beneficial effect on knee osteoarthritis (KOA) according to the pharmacological mechanism. However, the intra-articular distribution of HA might be correlated with the route of drug delivery. Forty-two cadaver knees with radiographic evidence of osteoarthritis were given anteromedial (AM) or medial midpatellar (MMP) injection of HA (molecular weight 600-1500 kD) followed by gait stimulation. Although 2.5 ml HA delivered through both routes failed to cover the entire cartilage, HA covered 96.12% cartilage of patellofemoral joint (PFJ) and 71.44% of medial femorotibial joint (FTJ) through MMP route, whereas mainly distributed into FTJ and posterior condyles through AM route. HA in the MMP group distributed more in PFJ than that in the AM group (P < 0.001), but no significant difference presented in medial FTJ (P = 0.084). The clinical efficacy was also associated with the route of drug delivery. One hundred patients with unilateral mild-to-moderate KOA were recruited and randomly assigned to receive five weekly HA injections with AM route (n = 50) or MMP route (n = 50). Patients in the MMP group obtained better improvement in WOMAC index total score, pain score, stiffness score, and Lequesne index total score over the entire follow-up period, as compared to patients in the AM group (all P < 0.01). More patients in the MMP group claimed pain relief (71.7%, P = 0.024) and felt satisfying (63.1%, P = 0.007) than in the AM group at the end of follow-up. Therefore, intra-articular HA injection through MMP route is recommended in treating mild-to-moderate KOA. Graphical Abstract .
Collapse
|
28
|
Cook SG, Bonassar LJ. Interaction with Cartilage Increases the Viscosity of Hyaluronic Acid Solutions. ACS Biomater Sci Eng 2020; 6:2787-2795. [PMID: 33463274 DOI: 10.1021/acsbiomaterials.0c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Injection of hyaluronic acid (HA) viscosupplements is a prevalent treatment for patients suffering from mild to moderate osteoarthritis. The efficacy of these supplements is attributed to increased synovial fluid viscosity, which leads to improved lubrication and reduced pain. Therefore, viscosity is a key parameter to consider in the development of HA supplements. HA localizes near the cartilage surface, resulting in a viscosity gradient with heightened viscosity near the surface. Traditional rheological measurements confine HA between metal fixtures and therefore do not capture the effect of HA localization that occurs on cartilage. In these experiments, we investigate the effect of modifying rheometer fixtures with cartilage surface coatings on the effective viscosity of HA solutions. Our results demonstrate up to a 20-fold increase in effective viscosity when HA was confined between cartilage surfaces compared to steel surfaces. For low-molecular-weight HA, the effective viscosity was dependent on the gap height between the rheometer plates, which is consistent with the formation of a viscous boundary film. Together, these results indicate that this method for assessing HA viscosity may be more relevant to lubrication than traditional methods and may provide a more accurate method for predicting the viscosity of HA viscosupplements in vivo where HA is able to interact with the cartilage surface.
Collapse
Affiliation(s)
- Sierra G Cook
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Al-Khateeb R, Olszewska-Czyz I. Biological molecules in dental applications: hyaluronic acid as a companion biomaterial for diverse dental applications. Heliyon 2020; 6:e03722. [PMID: 32280803 PMCID: PMC7139111 DOI: 10.1016/j.heliyon.2020.e03722] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives The application of hyaluronic acid (HA) in dental treatments is relatively new, and modified-HA products can be vastly different from each other. This study aims to provide a basis for bridging specific characteristics of HA with its potential applications in dental treatments, evaluating and comparing different types of HA products and for future research on HA applications in dentistry. Data sources Information from the existing literature on HA applications has been cited. Study selection Furthermore, this study is specifically oriented to provide oral health care providers with a scientific basis for HA use along with the clinical aspects of HA. Conclusions Outcomes from existing and future studies cannot be generalised for HA use in dental applications. Therefore, we have proposed a scheme to bridge HA specific characteristics to its applications in dental treatments and compare different HA products used for the same clinical application to identify the most suitable one. Clinical significance Highlighting the use of HA in dental treatments and providing a basis for developing new methods, protocols, and products specifically oriented for dentistry.
Collapse
Affiliation(s)
- Rami Al-Khateeb
- Elaf Medical Supplies®, Al-Madena Al Monawara Street, Rana Centre, 5th Floor, PO. Box 1348, Zip 11941, Amman, Jordan
| | - Iwona Olszewska-Czyz
- Jagiellonian University, Medical College, Department of Periodontology and Clinical Oral Pathology, Cracow, Poland
| |
Collapse
|
30
|
Irwin R, Feeney E, Secchieri C, Galesso D, Cohen I, Oliviero F, Ramonda R, Bonassar L. Distinct tribological endotypes of pathological human synovial fluid reveal characteristic biomarkers and variation in efficacy of viscosupplementation at reducing local strains in articular cartilage. Osteoarthritis Cartilage 2020; 28:492-501. [PMID: 32105835 PMCID: PMC7707424 DOI: 10.1016/j.joca.2020.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Viscosupplementation has been used for decades to treat mild to moderate osteoarthritis, yet it is unknown if the lubricating function of different pathological synovial fluids (SF) vary, or if they respond differentially to viscosupplementation. The objectives of this study were to (i) evaluate the friction coefficients and induced shear strains in articular cartilage when lubricated with pathological SF, (ii) identify the effect of hyaluronic acid (HA) supplementation on friction coefficients and shear strains, and (iii) identify SF biomarkers that correlate with lubricating function. METHOD Human pathological SF was grouped by white blood cell count (inflammatory: >2000 cells/mm3, n = 6; non-inflammatory: <2000 cells/mm3, n = 6). Compositional analyses for lubricin and cytokines were performed. Friction coefficients and local tissue shear strain measurements were coupled using new, microscale rheological analyses by lubricating neonatal bovine cartilage explants with SF alone and in a 1:1 ratio with HA (Hymovis®). RESULTS Friction coefficients were not significantly different between the inflammatory and non-inflammatory pathologies (p = 0.09), and were poorly correlated with peak tissue strains at the cartilage articular surface (R2 = 0.34). A subset of inflammatory SF samples induced higher tissue strains, and HA supplementation was most effective at lowering friction and tissue strains in this inflammatory subset. Across all pathologies there were clear relationships between polymorphonuclear neutrophil (PMN), IL-8, and lubricin concentrations with cartilage tissue strains. CONCLUSION These results suggest that pathological SF is characterized by distinct tribological endotypes where SF lubricating behaviors are differentially modified by viscosupplementation and are identifiable by biomarkers.
Collapse
Affiliation(s)
- R.M. Irwin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - E. Feeney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - I. Cohen
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - F. Oliviero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - R. Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - L.J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Address correspondence and reprint requests to: L.J. Bonassar, Department of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, NY, 14853, USA. Tel.: 607-255-9381. (L.J. Bonassar)
| |
Collapse
|
31
|
Bonnevie ED, Bonassar LJ. A Century of Cartilage Tribology Research Is Informing Lubrication Therapies. J Biomech Eng 2020; 142:031004. [PMID: 31956901 DOI: 10.1115/1.4046045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 07/25/2024]
Abstract
Articular cartilage is one of the most unique materials found in nature. This tissue's ability to provide low friction and low wear over decades of constant use is not surpassed, as of yet, by any synthetic materials. Lubrication of the body's joints is essential to mammalian locomotion, but breakdown and degeneration of cartilage is the leading cause of severe disability in the industrialized world. In this paper, we review how theories of cartilage lubrication have evolved over the past decades and connect how theories of cartilage lubrication have been translated to lubrication-based therapies. Here, we call upon these historical perspectives and highlight the open questions in cartilage lubrication research. Additionally, these open questions within the field's understanding of natural lubrication mechanisms reveal strategic directions for lubrication therapy.
Collapse
Affiliation(s)
- Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850; Meinig School of Biomedical Engineering, Cornell University, 151 Weill Hall, 526 Campus Road, Ithaca, NY 14850
| |
Collapse
|
32
|
Sun Z, Bonassar LJ, Putnam D. Influence of Block Length on Articular Cartilage Lubrication with a Diblock Bottle-Brush Copolymer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:330-337. [PMID: 31855406 DOI: 10.1021/acsami.9b18933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report how the tribological properties of a class of diblock copolymers with architecture and function inspired by the lubricating glycoprotein lubricin correlate to chemical composition. This class of diblock copolymers, consisting of a cationic cartilage-binding block and a brush-lubricating block, demonstrates that boundary lubrication of articular cartilage more strongly depends on the cartilage-binding block than the lubrication block. Specifically, the cartilage-binding functional groups (tertiary or quaternary amines) and cartilage-binding block length significantly influence the degree of lubrication under boundary mode experimental conditions. An optimal number (∼24 in this case) of cartilage-binding groups led to the lowest coefficient of friction, and an increase or decrease in the number of cations in the binding block led to partial (>24, and between 12 and 24) or complete (=12) loss of lubricating ability. The length of the lubricating block (DP = 200 or 400) chosen in this study had no effect on the degree of lubrication. These results are put into context in terms of binding affinity to the cartilage and the spatial packing density of the polymer on the cartilage surface and can serve as a useful guide for future designs of synthetic lubricants that rival the efficacy of natural lubricants.
Collapse
Affiliation(s)
- Zhexun Sun
- Meinig School of Biomedical Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering , Cornell University , Ithaca , New York 14850 , United States
- Sibley School of Mechanical and Aerospace Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - David Putnam
- Meinig School of Biomedical Engineering , Cornell University , Ithaca , New York 14850 , United States
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| |
Collapse
|
33
|
Irwin RM, Bonassar LJ, Cohen I, Matuska AM, Commins J, Cole B, Fortier LA. The clot thickens: Autologous and allogeneic fibrin sealants are mechanically equivalent in an ex vivo model of cartilage repair. PLoS One 2019; 14:e0224756. [PMID: 31703078 PMCID: PMC6839864 DOI: 10.1371/journal.pone.0224756] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrin sealants are commonly used in cartilage repair surgeries to adhere cells or grafts into a cartilage defect. Both autologous and commercial allogeneic fibrin sealants are used in cartilage repair surgeries, yet there are no studies characterizing and comparing the mechanical properties of fibrin sealants from all-autologous sources. The objectives of this study were to investigate (i) the effect of fibrinogen and thrombin sources on failure mechanics of sealants, and (ii) how sealants affect the adhesion of particulated cartilage graft material (BioCartilage) to surrounding cartilage under physiological loading. Allogeneic thrombin and fibrinogen were purchased (Tisseel), and autologous sources were prepared from platelet-rich plasma (PRP) and platelet-poor plasma (PPP) generated from human blood. To compare failure characteristics, sealants were sandwiched between cartilage explants and pulled to failure. The effect of sealant on the adhesion of BioCartilage graft to cartilage was determined by quantifying microscale strains at the graft-cartilage interface using an in vitro cartilage defect model subjected to shear loading at physiological strains well below failure thresholds. Fibrinogen sources were not equivalent; PRP fibrinogen created sealants that were more brittle, failed at lower strains, and resulted in sustained higher strains through the graft-cartilage interface depth compared to PPP and allogeneic sources. PPP clotted slower compared to PRP, suggesting PPP may percolate deeper into the repair to provide more stability through the tissue depth. There was no difference in bulk failure properties or microscale strains at the graft-cartilage interface between the purely autologous sealant (autologous thrombin + PPP fibrinogen) and the commercial allogeneic sealant. Clinical Significance: All-autologous fibrin sealants fabricated with PPP have comparable adhesion strength as commercial allogeneic sealants in vitro, whereas PRP creates an inferior all-autologous sealant that sustains higher strains through the graft-cartilage interface depth.
Collapse
Affiliation(s)
- Rebecca M. Irwin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, United States of America
| | - Andrea M. Matuska
- Research and Development, Arthrex Inc., Naples, Florida, United States of America
| | - Jacqueline Commins
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Brian Cole
- Midwest Orthopedics at Rush, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Lisa A. Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|