1
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Edison LK, Kudva IT, Kariyawasam S. Comparative Transcriptome Analysis of Shiga Toxin-Producing Escherichia coli O157:H7 on Bovine Rectoanal Junction Cells and Human Colonic Epithelial Cells during Initial Adherence. Microorganisms 2023; 11:2562. [PMID: 37894220 PMCID: PMC10609592 DOI: 10.3390/microorganisms11102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are notorious foodborne pathogens, capable of causing severe diarrhea and life-threatening complications in humans. Cattle, acting as both primary reservoirs and asymptomatic carriers of STEC, predominantly harbor the pathogen in their rectoanal junction (RAJ), facilitating its transmission to humans through contaminated food sources. Despite the central role of cattle in STEC transmission, the molecular mechanisms governing STEC's adaptation in the RAJ of the asymptomatic reservoir host and its subsequent infection of human colonic epithelial cells, resulting in diarrhea, remain largely unexplored. This study aims to uncover these complicated dynamics by focusing on the STEC O157:H7 serotype within two distinct host environments, bovine RAJ cells and human colonic epithelial cells, during initial colonization. We employed comparative transcriptomics analysis to investigate differential gene expression profiles of STEC O157:H7 during interactions with these cell types. STEC O157:H7 was cultured either with bovine RAJ cells or the human colonic epithelial cell line CCD CoN 841 to simulate STEC-epithelial cell interactions within these two host species. High-throughput RNA sequencing revealed 829 and 1939 bacterial genes expressed in RAJ and CCD CoN 841, respectively. After gene filtering, 221 E. coli O157:H7 genes were upregulated during initial adherence to CCD CoN cells and 436 with RAJ cells. Furthermore, 22 genes were uniquely expressed with human cells and 155 genes with bovine cells. Our findings revealed distinct expression patterns of STEC O157:H7 genes involved in virulence, including adherence, metal iron homeostasis, and stress response during its initial adherence (i.e., six hours post-infection) to bovine RAJ cells, as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlighted the potential role of some genes in host adaptation and tissue-specific pathogenicity. These findings shed new light on the potential mechanisms of STEC O157:H7 contributing to colonize the intestinal epithelium during the first six hours of infection, leading to survival and persistence in the bovine reservoir and causing disease in humans.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
3
|
Kudva IT, Biernbaum EN, Cassmann ED, Palmer MV. Bovine Rectoanal Junction In Vitro Organ Culture Model System to Study Shiga Toxin-Producing Escherichia coli Adherence. Microorganisms 2023; 11:1289. [PMID: 37317263 DOI: 10.3390/microorganisms11051289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Studies evaluating the interactions between Shiga toxin-producing Escherichia coli O157:H7 (O157) and the bovine recto-anal junction (RAJ) have been limited to either in vitro analyses of bacteria, cells, or nucleic acids at the RAJ, providing limited information. Alternatively, expensive in vivo studies in animals have been conducted. Therefore, our objective was to develop a comprehensive in vitro organ culture system of the RAJ (RAJ-IVOC) that accurately represents all cell types present in the RAJ. This system would enable studies that yield results similar to those observed in vivo. Pieces of RAJ tissue, obtained from unrelated cattle necropsies, were assembled and subjected to various tests in order to determine the optimal conditions for assaying bacterial adherence in a viable IVOC. O157 strain EDL933 and E. coli K12 with known adherence differences were used to standardize the RAJ-IVOC adherence assay. Tissue integrity was assessed using cell viability, structural cell markers, and histopathology, while the adherence of bacteria was evaluated via microscopy and culture methods. DNA fingerprinting verified the recovered bacteria against the inoculum. When the RAJ-IVOC was assembled in Dulbecco's Modified Eagle Medium, maintained at a temperature of 39 °C with 5% CO2 and gentle shaking for a duration of 3-4 h, it successfully preserved tissue integrity and reproduced the expected adherence phenotype of the bacteria being tested. The RAJ-IVOC model system provides a convenient method to pre-screen multiple bacteria-RAJ interactions prior to in vivo experiments, thereby reducing animal usage.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Erika N Biernbaum
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of human exposure. RECENT FINDINGS Advances in understanding E. coli O157:H7 pathogenesis include molecular mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal microbiome, inflammation, and reservoir maintenance. SUMMARY Many aspects of E. coli O157:H7 disease remain unclear and include the role of the human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm management likely hold solutions to reduce infections and increase food safety/security.
Collapse
|
5
|
Ortiz Y, García-Heredia A, Merino-Mascorro A, García S, Solís-Soto L, Heredia N. Natural and synthetic antimicrobials reduce adherence of enteroaggregative and enterohemorrhagic Escherichia coli to epithelial cells. PLoS One 2021; 16:e0251096. [PMID: 33939753 PMCID: PMC8092791 DOI: 10.1371/journal.pone.0251096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Adherence of bacteria to the human intestinal mucosa can facilitate their internalization and the development of pathological processes. Escherichia coli O104:H4 is considered a hybrid strain (enteroaggregative hemorrhagic E. coli [EAHEC]), sharing virulence factors found in enterohemorrhagic (EHEC), and enteroaggregative (EAEC) E. coli pathotypes. The objective of this study was to analyze the effects of natural and synthetic antimicrobials (carvacrol, oregano extract, brazilin, palo de Brasil extract, and rifaximin) on the adherence of EHEC O157:H7, EAEC 042, and EAHEC O104:H4 to HEp-2 cells and to assess the expression of various genes involved in this process. Two concentrations of each antimicrobial that did not affect (p≤0.05) bacterial viability or damage the bacterial membrane integrity were used. Assays were conducted to determine whether the antimicrobials alter adhesion by affecting bacteria and/or alter adhesion by affecting the HEp-2 cells, whether the antimicrobials could detach bacteria previously adhered to HEp-2 cells, and whether the antimicrobials could modify the adherence ability exhibited by the bacteria for several cycles of adhesion assays. Giemsa stain and qPCR were used to assess the adhesion pattern and gene expression, respectively. The results showed that the antimicrobials affected the adherence abilities of the bacteria, with carvacrol, oregano extract, and rifaximin reducing up to 65% (p≤0.05) of E. coli adhered to HEp-2 cells. Carvacrol (10 mg/ml) was the most active compound against EHAEC O104:H4, even altering its aggregative adhesion pattern. There were changes in the expression of adhesion-related genes (aggR, pic, aap, aggA, and eae) in the bacteria and oxidative stress-related genes (SOD1, SOD2, CAT, and GPx) in the HEp-2 cells. In general, we demonstrated that carvacrol, oregano extract, and rifaximin at sub-minimal bactericidal concentrations interfere with target sites in E. coli, reducing the adhesion efficiency.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States of America
| | - Angel Merino-Mascorro
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Luisa Solís-Soto
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
6
|
Pobeguts OV, Ladygina VG, Evsyutina DV, Eremeev AV, Zubov AI, Matyushkina DS, Scherbakov PL, Rakitina DV, Fisunov GY. Propionate Induces Virulent Properties of Crohn's Disease-Associated Escherichia coli. Front Microbiol 2020; 11:1460. [PMID: 32733408 PMCID: PMC7360682 DOI: 10.3389/fmicb.2020.01460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Crohn's disease (CD) is a severe chronic immune-mediated granulomatous inflammatory disease of the gastrointestinal tract. The mechanisms of CD pathogenesis remain obscure. Metagenomic analysis of samples from CD patients revealed that several of them have the elevated level of Escherichia coli with adhesive-invasive phenotype (AIEC). Previously, we isolated an E. coli strain CD isolate ZvL2 from a patient with CD, which features AIEC phenotype. Here, we demonstrate that prolonged growth on propionate containing medium stimulates virulent properties of CD isolate ZvL2, while prolonged growth on glucose reduces these properties to levels indistinguishable from laboratory strain K-12 MG1655. Propionate presence also boosts the ability of CD isolate ZvL2 to penetrate and colonize macrophages. The effect of propionate is reversible, re-passaging of CD isolate on M9 medium supplemented with glucose leads to the loss of its virulent properties. Proteome analysis of CD isolate ZvL2 growth in medium supplemented with propionate or glucose revealed that propionate induces expression porins OmpA and OmpW, transcription factors PhoP and OmpR, and universal stress protein UspE, which were previously found to be important for macrophage colonization by enteropathogenic bacteria.
Collapse
Affiliation(s)
- Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Valentina G. Ladygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Daria V. Evsyutina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Artem V. Eremeev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Aleksandr I. Zubov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Daria S. Matyushkina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | | | - Daria V. Rakitina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Gleb Y. Fisunov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| |
Collapse
|