1
|
Ahmed A, Liu Y, He P, He P, Wu Y, Munir S, He Y. Bacillus quorum quenching shapes the citrus mycobiome through interkingdom signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177074. [PMID: 39454793 DOI: 10.1016/j.scitotenv.2024.177074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Microbiomes are sustained through infinite yet mutually interacting microbial communities, with bacteria and fungi serving as the major constituents. In recent times, microbial interventions have become popular for microbiome manipulation to achieve sustainable goals. Whether and how the introduced biocontrol agent drives fungal microbial assemblages (mycobiome) and the role of interkingdom signaling in shaping the microbiome structure and function remain poorly understood. Here, we implemented wild-type (WT) Bacillus subtilis L1-21 and its quorum quenching (QQ) mutants (L1-21Δytnp, and L1-21Δyxel) individually and as consortia to explore the enrichment patterns of key mycobiome members in Huanglongbing (HLB) infected citrus compartments including leaf endosphere, root endosphere, and rhizosphere soil. The application of WT and its QQ mutants produced differential mycobiome enrichment across citrus compartments. Our findings reveal that application of WT B. subtilis enriched beneficial fungi such as Trichoderma (15.82 %) in leaf endosphere. In contrast, pathogenic fungi Fusarium (47.5 %) and Gibberella (0.47 %) involved in citrus root decline were adundant in the L1-21Δytnp treated root endosphere while Nigrospora (11 %) was predominant in L1-21Δyxel treated leaf endosphere, affirming the role of bacterial quorum sensing (QS) molecules in shaping the fungal community composition. In general, based on the fungal functional prediction, fungal pathogens were highly abundant in mutant-treated plants, particularly in leaf endosphere (L1-21Δytnp: 25 %; L1-21Δyxel: 36.35 %) compared to WT (20.93%). Additionally, some fungal members exhibited strong compartment specificity and both mutants induced distinct mycobiome shifts in rhizosphere soil, leaf, and root endopshere. In conclusion, B. subtilis QQ modifies bacterial QS networks facilitating beneficial fungi to establish, while loss of QQ leads to enrichment of pathogenic fungal groups. Our study provides a direct link of perception and regulation of mycobiome through bacterial-based QS and QQ system, and its association with disease outcomes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yinglong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Corbella M, Bravo J, Demkiv AO, Calixto AR, Sompiyachoke K, Bergonzi C, Brownless ALR, Elias MH, Kamerlin SCL. Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases. JACS AU 2024; 4:3519-3536. [PMID: 39328773 PMCID: PMC11423328 DOI: 10.1021/jacsau.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Several enzymes from the metallo-β-lactamase-like family of lactonases (MLLs) degrade N-acyl L-homoserine lactones (AHLs). They play a role in a microbial communication system known as quorum sensing, which contributes to pathogenicity and biofilm formation. Designing quorum quenching (QQ) enzymes that can interfere with this communication allows them to be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific communication signals requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of GcL, which is a highly proficient and thermostable MLL with broad substrate specificity. We show that GcL not only accepts a broad range of substrates but also hydrolyzes these substrates through at least two different mechanisms. Further, the preferred mechanism appears to depend on both the substrate structure and/or the nature of the residues lining the active site. We demonstrate that other lactonases, such as AiiA and AaL, show similar mechanistic promiscuity, suggesting that this is a shared feature among MLLs. Mechanistic promiscuity has been seen previously in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and protein engineering perspective: in addition to optimizing for specific substrates, it may be possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes but also of other mechanistically promiscuous enzymes.
Collapse
Affiliation(s)
- Marina Corbella
- Departament
de Química Inorgànica (Seeió de Química
Orgànica) & Institut de Química Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martíi Franquès 1, 08028 Barcelona, Spain
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joe Bravo
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Andrey O. Demkiv
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Ana Rita Calixto
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Kitty Sompiyachoke
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Celine Bergonzi
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Alfie-Louise R. Brownless
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mikael H. Elias
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Shina Caroline Lynn Kamerlin
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
4
|
Sompiyachoke K, Elias MH. Engineering quorum quenching acylases with improved kinetic and biochemical properties. Protein Sci 2024; 33:e4954. [PMID: 38520282 PMCID: PMC10960309 DOI: 10.1002/pro.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Many Gram-negative bacteria use N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as AHL acylases, chemically degrade these molecules which prevents signal reception by bacteria and inhibits undesirable biofilm-related traits. These capabilities make acylases appealing candidates for controlling microbes, yet candidates with high activity levels and substrate specificity and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to generate these improved properties using the Protein One-Stop Shop Server. The engineering of acylases is complicated by low-throughput enzymatic assays. Alleviating this challenge, we report a time-course kinetic assay for AHL acylases that monitors the real-time production of homoserine lactone. Using the assay, we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2°C, which translated into high resistance against organic solvents and increased compatibility with material coatings. While the MacQ mutants were unexpectedly destabilized, they had considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
- Biotechnology InstituteSt. PaulMinnesotaUSA
| |
Collapse
|
5
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
6
|
Huang S, Bergonzi C, Smith S, Hicks RE, Elias MH. Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel. Microbiol Spectr 2023; 11:e0517822. [PMID: 37668433 PMCID: PMC10580884 DOI: 10.1128/spectrum.05178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/27/2023] [Indexed: 09/06/2023] Open
Abstract
Microbial colonization can be detrimental to the integrity of metal surfaces and lead to microbiologically influenced corrosion. Biocorrosion is a serious problem for aquatic and marine industries in the world and severely affects the maritime transportation industry by destroying port infrastructure and increasing fuel usage and the time and cost required for maintenance of transport vessels. Here, we evaluate the potential of a stable quorum quenching lactonase enzyme to reduce biocorrosion in the field. Over the course of 21 months, steel samples coated with lactonase-containing acrylic paint were submerged at two different sites and depths in the Duluth-Superior Harbor (Lake Superior, MN, USA) and benchmarked against controls, including the biological biocide surfactin. In this experiment, the lactonase treatment outperformed the surfactin biocide treatment and significantly reduced the number of corrosion tubercles (37%; P < 0.01) and the corroded surface area (39%; P < 0.01) as compared to the acrylic-coated control coupons. In an attempt to evaluate the effects of signal disruption of surface microbial communities and the reasons for lower corrosion levels, 16S rRNA sequencing was performed and community populations were analyzed. Interestingly, surface communities were similar between all treatments, and only minor changes could be observed. Among these changes, several groups, including sulfate-reducing bacteria (SRB), appeared to correlate with corrosion levels, and more specifically, SRB abundance levels were lower on lactonase-treated steel coupons. We surmise that these minute community changes may have large impacts on corrosion rates. Overall, these results highlight the potential use of stable quorum quenching lactonases as an eco-friendly antifouling coating additive. IMPORTANCE Biocorrosion severely affects the maritime transportation industry by destroying port infrastructure and increasing fuel usage and the time and cost required to maintain transport vessels. Current solutions are partly satisfactory, and the antifouling coating still largely depends on biocide-containing products that are harmful to the environment. The importance of microbial signaling in biofouling and biocorrosion is not elucidated. We here take advantage of a highly stable lactonase that can interfere with N-acyl homoserine lactone-based quorum sensing and remain active in a coating base. The observed results show that an enzyme-containing coating can reduce biocorrosion over 21 months in the field. It also reveals subtle changes in the abundance of surface microbes, including sulfate-reducing bacteria. This work may contribute to pave the way for strategies pertaining to surface microbiome changes to reduce biocorrosion.
Collapse
Affiliation(s)
- Siqian Huang
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| | - Celine Bergonzi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| | - Sherry Smith
- Independant Scholar, Minneapolis, Minnesota, USA
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
Sompiyachoke K, Elias MH. Engineering Quorum Quenching Acylases with Improved Kinetic and Biochemical Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555929. [PMID: 37693529 PMCID: PMC10491313 DOI: 10.1101/2023.09.01.555929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many Gram-negative bacteria respond to N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as acylases, chemically degrade AHL signals, prevent signal reception by bacteria, and inhibit undesirable traits related to biofilm. These capabilities make these enzymes appealing candidates for controlling microbes. Yet, enzyme candidates with high activity levels, high substrate specificity for specific interference, and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to obtain improved acylase variants. The engineering of acylase is complicated by low-throughput enzymatic assays. To alleviate this challenge, we report a time-course kinetic assay for AHL acylase that tracks the real-time production of homoserine lactone. Using the protein one-stop shop server (PROSS), we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2 °C, which translated into high resistance against organic solvents and increased compatibility with material coatings. We also generated mutants of MacQ with considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. In fact, the variants presented here exhibit unique combinations of stability and activity levels. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
- University of Minnesota, Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
8
|
Parga A, Muras A, Otero-Casal P, Arredondo A, Soler-Ollé A, Àlvarez G, Alcaraz LD, Mira A, Blanc V, Otero A. The quorum quenching enzyme Aii20J modifies in vitro periodontal biofilm formation. Front Cell Infect Microbiol 2023; 13:1118630. [PMID: 36816581 PMCID: PMC9932050 DOI: 10.3389/fcimb.2023.1118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Recent studies have revealed the presence of N-acyl-homoserine lactones (AHLs) quorum sensing (QS) signals in the oral environment. Yet, their role in oral biofilm development remains scarcely investigated. The use of quorum quenching (QQ) strategies targeting AHLs has been described as efficient for the control of pathogenic biofilms. Here, we evaluate the use of a highly active AHL-targeting QQ enzyme, Aii20J, to modulate oral biofilm formation in vitro. Methods The effect of the QQ enzyme was studied in in vitro multispecies biofilms generated from oral samples taken from healthy donors and patients with periodontal disease. Subgingival samples were used as inocula, aiming to select members of the microbiota of the periodontal pocket niche in the in vitro biofilms. Biofilm formation abilities and microbial composition were studied upon treating the biofilms with the QQ enzyme Aii20J. Results and Discussion The addition of the enzyme resulted in significant biofilm mass reductions in 30 - 60% of the subgingival-derived biofilms, although standard AHLs could not be found in the supernatants of the cultured biofilms. Changes in biofilm mass were not accompanied by significant alterations of bacterial relative abundance at the genus level. The investigation of 125 oral supragingival metagenomes and a synthetic subgingival metagenome revealed a surprisingly high abundance and broad distribution of homologous of the AHL synthase HdtS and several protein families of AHL receptors, as well as an enormous presence of QQ enzymes, pointing to the existence of an intricate signaling network in oral biofilms that has been so far unreported, and should be further investigated. Together, our findings support the use of Aii20J to modulate polymicrobial biofilm formation without changing the microbiome structure of the biofilm. Results in this study suggest that AHLs or AHL-like molecules affect oral biofilm formation, encouraging the application of QQ strategies for oral health improvement, and reinforcing the importance of personalized approaches to oral biofilm control.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, Santa Comba-Negreira, (CS) SERGAS, Santiago de Compostela, Spain
| | - Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Agnès Soler-Ollé
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Gerard Àlvarez
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Luis D. Alcaraz
- Department of Cellular Biology, Faculty of Sciences, National Autonomous University of Mexico, Coyoacán, Mexico
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Valencia, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Ana Otero,
| |
Collapse
|
9
|
Raya D, Shreya A, Kumar A, Giri SK, Salem DR, Gnimpieba EZ, Gadhamshetty V, Dhiman SS. Molecular regulation of conditioning film formation and quorum quenching in sulfate reducing bacteria. Front Microbiol 2022; 13:1008536. [PMID: 36386676 PMCID: PMC9659907 DOI: 10.3389/fmicb.2022.1008536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 09/19/2023] Open
Abstract
Sensing surface topography, an upsurge of signaling biomolecules, and upholding cellular homeostasis are the rate-limiting spatio-temporal events in microbial attachment and biofilm formation. Initially, a set of highly specialized proteins, viz. conditioning protein, directs the irreversible attachment of the microbes. Later signaling molecules, viz. autoinducer, take over the cellular communication phenomenon, resulting in a mature microbial biofilm. The mandatory release of conditioning proteins and autoinducers corroborated the existence of two independent mechanisms operating sequentially for biofilm development. However, both these mechanisms are significantly affected by the availability of the cofactor, e.g., Copper (Cu). Generally, the Cu concentration beyond threshold levels is detrimental to the anaerobes except for a few species of sulfate-reducing bacteria (SRB). Remarkably SRB has developed intricate ways to resist and thrive in the presence of Cu by activating numerous genes responsible for modifying the presence of more toxic Cu(I) to Cu(II) within the periplasm, followed by their export through the outer membrane. Therefore, the determinants of Cu toxicity, sequestration, and transportation are reconnoitered for their contribution towards microbial adaptations and biofilm formation. The mechanistic details revealing Cu as a quorum quencher (QQ) are provided in addition to the three pathways involved in the dissolution of cellular communications. This review articulates the Machine Learning based data curing and data processing for designing novel anti-biofilm peptides and for an in-depth understanding of QQ mechanisms. A pioneering data set has been mined and presented on the functional properties of the QQ homolog in Oleidesulfovibrio alaskensis G20 and residues regulating the multicopper oxidase properties in SRB.
Collapse
Affiliation(s)
- Dheeraj Raya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Aritree Shreya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Himachal Pradesh, India
| | - David R. Salem
- Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Etienne Z. Gnimpieba
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Saurabh Sudha Dhiman
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Sciences, South Dakota Mines, Rapid City, SD, United States
| |
Collapse
|
10
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
11
|
Urvoy M, Lami R, Dreanno C, Delmas D, L'Helguen S, Labry C. Quorum Sensing Regulates the Hydrolytic Enzyme Production and Community Composition of Heterotrophic Bacteria in Coastal Waters. Front Microbiol 2021; 12:780759. [PMID: 34956143 PMCID: PMC8709541 DOI: 10.3389/fmicb.2021.780759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Heterotrophic microbial communities play a central role in biogeochemical cycles in the ocean by degrading organic matter through the synthesis of extracellular hydrolytic enzymes. Their hydrolysis rates result from the community’s genomic potential and the differential expression of this genomic potential. Cell-cell communication pathways such as quorum sensing (QS) could impact both aspects and, consequently, structure marine ecosystem functioning. However, the role of QS communications in complex natural assemblages remains largely unknown. In this study, we investigated whether N-acylhomoserine lactones (AHLs), a type of QS signal, could regulate both hydrolytic activities and the bacterial community composition (BCC) of marine planktonic assemblages. To this extent, we carried out two microcosm experiments, adding five different AHLs to bacterial communities sampled in coastal waters (during early and peak bloom) and monitoring their impact on enzymatic activities and diversity over 48 h. Several specific enzymatic activities were impacted during both experiments, as early as 6 h after the AHL amendments. The BCC was also significantly impacted by the treatments after 48 h, and correlated with the expression of the hydrolytic activities, suggesting that changes in hydrolytic intensities may drive changes in BCC. Overall, our results suggest that QS communication could participate in structuring both the function and diversity of marine bacterial communities.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, Plouzané, France.,Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR 3579), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | | | | | - Stéphane L'Helguen
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, France
| | | |
Collapse
|
12
|
El Aichar F, Muras A, Parga A, Otero A, Nateche F. Quorum quenching and anti-biofilm activities of halotolerant Bacillus strains isolated in different environments in Algeria. J Appl Microbiol 2021; 132:1825-1839. [PMID: 34741374 DOI: 10.1111/jam.15355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS The current study aimed to screen Bacillus strains with wide-spectrum quorum quenching (QQ) activity against N-acyl-l-homoserine lactones (AHLs), helpful in controlling virulence traits in Gram-negatives, including biofilm formation and also with anti-biofilm activity against Gram-positives. METHODS AND RESULTS A total of 94 halotolerant strains of Bacillus isolated from soil and salt-lake sediment samples in Algeria were examined for the presence of QQ activity against AHLs, the presence of the aiiA gene, encoding an AHL lactonase enzyme typical of Bacillus spp., antimicrobial and anti-biofilm activities against Pseudomonas aeruginosa and Streptococcus mutans. Of all strains of Bacillus spp. isolated, 48.9% showed antibacterial activity. In addition, 40% of these isolates showed a positive QQ activity against long-chain AHLs, of which seven strains presented the aiiA gene. Among the species with broad-spectrum QQ activity, the cell extract of Bacillus thuringiensis DZ16 showed antibiofilm activity against P. aeruginosa PAO1, reducing 60% using the Amsterdam active attachment (AAA) biofilm cultivation model. In addition, the cell extract of B. subtilis DZ17, also presenting a broad-spectrum QQ activity, significantly reduced Strep. mutans ATCC 25175 biofilm formations by 63% and 53% in the xCELLigence and the AAA model, respectively, without affecting growth. Strain DZ17 is of particular interest due to its explicit halophilic nature because it can thrive at salinities in the range of 6%-30%. CONCLUSIONS B. thuringiensis DZ16 and B. subtilis DZ17 strains have interesting antibacterial, QQ, and anti-biofilm activities. The high range of salinities accepted by these strains increases their biotechnological potential. This may open up their use as probiotics, the treatment and prevention of conventional and emerging infectious diseases. SIGNIFICANCE AND IMPACT OF STUDY The use of safe, economical and effective probiotics is limited to control the infections related to multi-resistant bacteria. In our study, we provide two promising agents with QQ, anti-biofilm and antibacterial activities.
Collapse
Affiliation(s)
- Fairouz El Aichar
- Microbiology Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences (FSB), University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.,Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Farida Nateche
- Microbiology Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences (FSB), University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
13
|
Urvoy M, Lami R, Dreanno C, Daudé D, Rodrigues AMS, Gourmelon M, L'Helguen S, Labry C. Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria. Environ Microbiol 2021; 23:7183-7200. [PMID: 34528354 DOI: 10.1111/1462-2920.15775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Biofilms of heterotrophic bacteria cover organic matter aggregates and constitute hotspots of mineralization, primarily acting through extracellular hydrolytic enzyme production. Nevertheless, regulation of both biofilm and hydrolytic enzyme synthesis remains poorly investigated, especially in estuarine ecosystems. In this study, various bioassays, mass spectrometry and genomics approaches were combined to test the possible involvement of quorum sensing (QS) in these mechanisms. QS is a bacterial cell-cell communication system that relies notably on the emission of N-acylhomoserine lactones (AHLs). In our estuarine bacterial collection, we found that 28 strains (9%), mainly Vibrio, Pseudomonas and Acinetobacter isolates, produced at least 14 different types of AHLs encoded by various luxI genes. We then inhibited the AHL QS circuits of those 28 strains using a broad-spectrum lactonase preparation and tested whether biofilm production as well as β-glucosidase and leucine-aminopeptidase activities were impacted. Interestingly, we recorded contrasted responses, as biofilm production, dissolved and cell-bound β-glucosidase and leucine-aminopeptidase activities significantly increased in 4%-68% of strains but decreased in 0%-21% of strains. These findings highlight the key role of AHL-based QS in estuarine bacterial physiology and ultimately on biogeochemical cycles. They also point out the complexity of QS regulations within natural microbial assemblages.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, Plouzané, F-29280, France.,Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - Stéphane L'Helguen
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | | |
Collapse
|
14
|
Huang S, Bergonzi C, Schwab M, Elias M, Hicks RE. Correction: Evaluation of biological and enzymatic quorum quencher coating additives to reduce biocorrosion of steel. PLoS One 2021; 16:e0253354. [PMID: 34111219 PMCID: PMC8192007 DOI: 10.1371/journal.pone.0253354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0217059.].
Collapse
|
15
|
Mion S, Carriot N, Lopez J, Plener L, Ortalo-Magné A, Chabrière E, Culioli G, Daudé D. Disrupting quorum sensing alters social interactions in Chromobacterium violaceum. NPJ Biofilms Microbiomes 2021; 7:40. [PMID: 33888726 PMCID: PMC8062528 DOI: 10.1038/s41522-021-00211-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a communication system used by bacteria to coordinate a wide panel of biological functions in a cell density-dependent manner. The Gram-negative Chromobacterium violaceum has previously been shown to use an acyl-homoserine lactone (AHL)-based QS to regulate various behaviors, including the production of proteases, hydrogen cyanide, or antimicrobial compounds such as violacein. By using combined metabolomic and proteomic approaches, we demonstrated that QS modulates the production of antimicrobial and toxic compounds in C. violaceum ATCC 12472. We provided the first evidence of anisomycin antibiotic production by this strain as well as evidence of its regulation by QS and identified new AHLs produced by C. violaceum ATCC 12472. Furthermore, we demonstrated that targeting AHLs with lactonase leads to major QS disruption yielding significant molecular and phenotypic changes. These modifications resulted in drastic changes in social interactions between C. violaceum and a Gram-positive bacterium (Bacillus cereus), a yeast (Saccharomyces cerevisiae), immune cells (murine macrophages), and an animal model (planarian Schmidtea mediterranea). These results underscored that AHL-based QS plays a key role in the capacity of C. violaceum to interact with micro- and macroorganisms and that quorum quenching can affect microbial population dynamics beyond AHL-producing bacteria and Gram-negative bacteria.
Collapse
Affiliation(s)
- Sonia Mion
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | | | | | | | | | - Eric Chabrière
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France.
| | - Gérald Culioli
- Université de Toulon, MAPIEM, Toulon, France. .,Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|
16
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
17
|
Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18:1221-1233. [PMID: 32749905 DOI: 10.1080/14787210.2020.1794815] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Numerous bacterial behaviors are regulated by a cell-density dependent mechanism known as Quorum Sensing (QS). QS relies on communication between bacterial cells using diffusible signaling molecules known as autoinducers. QS regulates physiological processes such as metabolism, virulence, and biofilm formation. Quorum Quenching (QQ) is the inhibition of QS using chemical or enzymatic means to counteract behaviors regulated by QS. AREAS COVERED We examine the main, diverse QS mechanisms present in bacterial species, with a special emphasis on AHL-mediated QS. We also discuss key in vitro and in vivo systems in which interference in QS was investigated. Additionally, we highlight promising developments, such as the substrate preference of the used enzymatic quencher, in the application of interference in QS to counter bacterial virulence. EXPERT OPINION Enabled via the recent isolation of highly stable quorum quenching enzymes and/or molecular engineering efforts, the effects of the interference in QS were recently evaluated outside of the traditional model of single species culture. Signal disruption in complex microbial communities was shown to result in the disruption of complex microbial behaviors, and changes in population structures. These new findings, and future studies, may result in significant changes in the traditional views about QS.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| |
Collapse
|
18
|
Billot R, Plener L, Jacquet P, Elias M, Chabrière E, Daudé D. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control. J Biol Chem 2020; 295:12993-13007. [PMID: 32690609 DOI: 10.1074/jbc.rev120.013531] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Enzymes able to degrade or modify acyl-homoserine lactones (AHLs) have drawn considerable interest for their ability to interfere with the bacterial communication process referred to as quorum sensing. Many proteobacteria use AHL to coordinate virulence and biofilm formation in a cell density-dependent manner; thus, AHL-interfering enzymes constitute new promising antimicrobial candidates. Among these, lactonases and acylases have been particularly studied. These enzymes have been isolated from various bacterial, archaeal, or eukaryotic organisms and have been evaluated for their ability to control several pathogens. Engineering studies on these enzymes were carried out and successfully modulated their capacity to interact with specific AHL, increase their catalytic activity and stability, or enhance their biotechnological potential. In this review, special attention is paid to the screening, engineering, and applications of AHL-modifying enzymes. Prospects and future opportunities are also discussed with a view to developing potent candidates for bacterial control.
Collapse
Affiliation(s)
- Raphaël Billot
- Gene&GreenTK, Marseille, France; IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | | | | | - Mikael Elias
- Molecular Biology and Biophysics and Biotechnology Institute, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix-Marseille Université, Marseille, France.
| | | |
Collapse
|