1
|
Worku K, Kechero Y, Janssens GPJ. Effects of Supplementing Different Quantities of Moringa stenopetala Leaves on Plasma Metabolite and Acylcarnitine Profile, Body Condition Score and Milk Yield Performance in Zebu (Bos indicus) Cattle. J Anim Physiol Anim Nutr (Berl) 2025; 109:162-169. [PMID: 39279182 DOI: 10.1111/jpn.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
The formulation of multi-nutrient blocks based on low-cost and locally available browse feed resources can be a valid feeding strategy in Sub-Saharan Africa, where inadequate feed supply, both in quality and quantity, is a major constraint. We evaluated the four different inclusion percentages (M-0%, M-25%, M-35% and M-45%) of Moringa stenopetala leaf powder to multi-nutrient blocks on their change on blood metabolite of dairy cows under practical, ranging conditions. Multi-nutrient blocks with four inclusion rates of M. stenopetala leaves were applied as complementary feed for free ranging dairy cows. The study was performed on 24 free ranging dairy cows reared around Arba Minch town in the Southern Ethiopian Rift Valley. Blood samples were collected from the jugular vein of dairy cows both before and after supplementation. Plasma glucose, beta hydroxy butyrate (BHB), urea, creatinine, triglycerides and nonesterified fatty acids (NEFA) concentration was quantified spectrophotometrically. Dried serum spots were subject to quantitative electrospray tandem mass spectrometry to estimate changes in nutrient metabolism based on selected carnitines. Based on these measurements, the milk yield and body condition score were increased during the period of multi-nutrient block supplementation. During the supplementation period, the cows got higher plasma glucose, triglyceride and urea concentrations and lower concentrations of BHB, NEFA and creatinine. From the metabolite profiles, a more efficient nutrient use could be concluded. Although no clear dose-response relationship was observed, the highest inclusion of the M. stenopetala leaves in the multi-nutrient blocks gave the best performance. This outcome supports the idea of implementing M. stenopetala based multi-nutrient blocks on tropical smallholder farms that are not easily accessible to conventional extension services.
Collapse
Affiliation(s)
- Ketema Worku
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yisehak Kechero
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Fang Z, Zhou Z, Ju L, Shao Q, Xu Y, Song Y, Gao W, Lei L, Liu G, Du X, Li X. Free fatty acids induce bile acids overproduction and oxidative damage of bovine hepatocytes via inhibiting FXR/SHP signaling. J Steroid Biochem Mol Biol 2024; 244:106589. [PMID: 39053701 DOI: 10.1016/j.jsbmb.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Hepatic oxidative injury induced by free fatty acids (FFA) and metabolic disorders of bile acids (BA) increase the risk of metabolic diseases in dairy cows during perinatal period. However, the effects of FFA on BA metabolism remained poorly understood. In present study, high concentrations of FFA caused cell impairment, oxidative stress and BA overproduction. FFA treatment increased the expression of BA synthesis-related genes [cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7, sterol 12α-hydroxylase, sterol 27-hydroxylase and oxysterol 7α-hydroxylase], whereas reduced BA exportation gene (ATP binding cassette subfamily C member 1) and inhibited farnesoid X receptor/small heterodimer partner (FXR/SHP) pathway in bovine hepatocytes. Knockdown of nuclear receptor subfamily 1 group H member 4 (NR1H4) worsened FFA-caused oxidative damage and BA production, whereas overexpression NR1H4 ameliorated FFA-induced BA production and cell oxidative damage. Besides, reducing BA synthesis through knockdown of CYP7A1 can alleviate oxidative stress and hepatocytes impairment caused by FFA. In summary, these data demonstrated that regulation of FXR/SHP-mediated BA metabolism may be a promising target in improving hepatic oxidative injury of dairy cows during high levels of FFA challenges.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiru Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yongwei Xu
- Animal Husbandry and Veterinary Development Center, Xinjiang Uygur Autonomous Region, Xinyuan county 835800, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Arshad U, Santos JEP. Graduate Student Literature Review: Exploring choline's important roles as a nutrient for transition dairy cows. J Dairy Sci 2024; 107:4357-4369. [PMID: 38522836 DOI: 10.3168/jds.2023-24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024]
Abstract
In late gestation and in the first weeks postpartum, lipid droplets accumulate in the hepatic tissue resulting in approximately 40% to 50% of the dairy cows developing hepatic lipidosis in the first weeks of lactation. Elevated concentrations of triacylglycerol in the hepatic tissue are associated with increased risk of peripartum diseases and impaired productive performance. Cows with hepatic lipidosis need to dispose the excess of hepatic triacylglycerol, but this is a slow process in the bovine liver and relies on primary mechanisms such as complete oxidation and ketogenesis because of the limited export of triacylglycerols as lipoproteins. Choline is a lipotropic compound because, among other functions, it facilitates the export of lipids from the liver. Supplementing choline as rumen-protected choline (RPC) to diets of feed-restricted dairy cows reduces the degree of triacylglycerol infiltration into the hepatic parenchyma in part by enhancing export of triacylglycerol as nascent lipoprotein. The reduced accumulation of triacylglycerol in hepatic tissue in feed-restricted cows fed RPC might affect secondary pathways involved in hepatic disposal of fatty acids such as increased cellular autophagy and lipophagy and minimize endoplasmic reticulum stress response and hepatocyte inflammation. Collectively, these effects on secondary pathways might further reduce the severity of hepatic lipidosis in cows. One of the benefits of supplementing RPC is improved fat digestibility, perhaps because choline, through phosphatidylcholines, facilitates lipid transport within the enterocyte by increasing the synthesis of chylomicrons. Finally, when supplemented during the transition period, RPC improves productive performance of cows, irrespective of their body condition, that extends well beyond the period of supplementation. This review summarizes the current understanding of hepatic lipidosis in early lactation, recapitulates the absorption, transport and metabolism of choline, and discusses its role on hepatic metabolism and gastrointestinal functions, which collectively results in improved performance in dairy cows.
Collapse
Affiliation(s)
- U Arshad
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | | |
Collapse
|
4
|
Gao J, Zhou X, Gao H, Xu G, Xie C, Xie H. Investigation of the hypoglycemic mechanism of the ShenQi compound formula through metabonomics and 16S rRNA sequencing. Front Pharmacol 2024; 15:1349244. [PMID: 38708085 PMCID: PMC11066276 DOI: 10.3389/fphar.2024.1349244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Herbal formulations are renowned for their complex biological activities, acting on multiple targets and pathways, as evidenced by in vitro studies. However, the hypoglycemic effect and underlying mechanisms of Shenqi Compound (SQ), a traditional Chinese herbal formula, remain elusive. This study aimed to elucidate the hypoglycemic effects of SQ and explore its mechanisms of action, focusing on intestinal flora and metabolomics. Methods: A Type 2 diabetes mellitus (T2DM) rat model was established through a high-fat diet, followed by variable glucose and insulin injections to mimic the fluctuating glycemic conditions seen in diabetes. Results: An eight-week regimen of SQ significantly mitigated hyperglycemia, inflammation, and insulin resistance in these rats. Notably, SQ beneficially modulated the gut microbiota by increasing populations of beneficial bacteria, such as Lachnospiraceae_NK4A136_group and Akkermansia, while reducing and inhibiting harmful strains such as Ruminococcus and Phascolarctobacterium. Metabolomics analyses revealed that SQ intervention corrected disturbances in Testosterone enanthate and Glycerophospholipid metabolism. Discussion: Our findings highlight the hypoglycemic potential of SQ and its mechanisms via modulation of the gut microbiota and metabolic pathways, offering a theoretical foundation for the use of herbal medicine in diabetes management.
Collapse
Affiliation(s)
- Juan Gao
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiping Xu
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Sherlock DN, Abdel-Hamied E, Bucktrout R, Liang Y, Miura M, Loor JJ. Postruminal choline supply during negative nutrient balance alters components of hepatic mTOR signaling and plasma amino acids in lactating Holstein cows. J Dairy Sci 2023; 106:9733-9744. [PMID: 37641280 DOI: 10.3168/jds.2023-23239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023]
Abstract
Choline requirements for dairy cattle are unknown. However, enhanced postruminal supply of choline may increase flux through the methionine cycle to spare Met for other functions such as protein synthesis and phosphatidylcholine (PC) synthesis during periods of negative nutrient balance (NNB). The objective was to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on hepatic abundance and phosphorylation of mTOR (mechanistic target of rapamycin)-related signaling proteins, hepatic lipidome and plasma AA. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 DIM) were used in a replicated 5 × 5 Latin square design with 4 d of treatment and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements to induce NNB) with abomasal infusion of water (R0) or restriction plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected via biopsy on d 5 after infusions ended and used for Western blot analysis to measure proteins involved in mTOR signaling and untargeted lipidomics. Blood was collected on d 1 to 5 for plasma AA analysis. Statistical contrasts for protein and AA data were A0 versus R0 (CONT1), R0 versus the average of choline dose (CONT2) and tests of linear and quadratic effects of choline dose. Analysis of lipidomic data were performed with the web-based metabolomic processing tool MetaboAnalyst 5.0. Ratios of p-RPS6KB1:tRPS6KB1, p-EEF2:tEEF2, and p-EIF2:tEIF2 were greater with R (CONT1). Among those, supply of choline led to decreases in p-EEF2:tEEF2 (CONT2), p-EIF2:tEIF2 and tended to decrease p-EIF4BP1:tEIF4BP1. However, the effect was quadratic only for p-EEF2:tEEF2 and p-EIF2A:tEIF2A, reaching a nadir at 6.25 to 12.5 g/d choline ion. The ratio of p-RPS6KB1:tRPS6KB1 was not affected by supply of choline and was close to 2-fold greater at 25 g/d choline versus A0. Plasma Met concentration decreased with R (CONT1), but increased linearly with choline. Restriction also increased plasma 3-methyl-histidine (CONT1). The partial least squares discriminant analysis model of liver lipids distinguished treatments, with 13.4% of lipids being modified by treatment. One-way ANOVA identified 109 lipids with a false discovery rate ≤0.05. The largest group identified was PC species; all 35 detected decreased with R versus A0, but there were few differences among choline treatments. Overall, data suggested that dephosphorylation of EEF2 and EIF2A due to enhanced choline supply potentially helped maintain or increase protein synthesis during NNB. While activation of mTOR was not altered by choline, this idea of increased protein synthesis is partly supported by the increased circulating Met. However, enhanced postruminal choline had limited effects on the species of lipid produced during a period of NNB.
Collapse
Affiliation(s)
- D N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - R Bucktrout
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - Y Liang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801; Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801.
| |
Collapse
|
6
|
Arshad U, Husnain A, Poindexter MB, Zimpel R, Nelson CD, Santos JEP. Rumen-protected choline reduces hepatic lipidosis by increasing hepatic triacylglycerol-rich lipoprotein secretion in dairy cows. J Dairy Sci 2023; 106:7630-7650. [PMID: 37641262 DOI: 10.3168/jds.2022-23182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/25/2023] [Indexed: 08/31/2023]
Abstract
Objectives were to determine the effects of supplementing rumen-protected choline (RPC) on hepatic composition and secretion of triacylglycerol-rich lipoprotein when cows were subjected to feed restriction to develop fatty liver. It was hypothesized that RPC reduces hepatic triacylglycerol by enhancing secretion of hepatic lipoprotein. Pregnant, nonlactating parous Holstein cows (n = 33) at mean (± standard deviation) 234 ± 2.2 d of gestation were blocked by body condition (3.79 ± 0.49) and assigned to receive 0 g/d (CON), 25.8 g/d choline ion from a RPC product containing 28.8% choline chloride (CC; treatment L25.8), or 25.8 g/d of choline ion from a RPC product containing 60.0% CC (H25.8). Cows were fed for ad libitum intake for the first 5 d and restricted to 41% of the net energy for lactation required for maintenance and pregnancy from d 6 to 13. Intake of metabolizable methionine was maintained at 18 g/d during feed restriction by supplying rumen-protected methionine. Hepatic tissue was sampled on d 6 and 13 and analyzed for triacylglycerol and glycogen, and mRNA expression of hepatic tissue was investigated. On d 14, cows were not fed and received a 10% solution of tyloxapol intravenously at 120 mg/kg of body weight to block hydrolysis of triacylglycerols in very low density lipoprotein (VLDL). Blood was sampled sequentially for 720 min and analyzed for concentration of triacylglycerol and total cholesterol. Lymph was sampled 6 h after tyloxapol infusion, and analyzed for concentrations of fatty acids, β-hydroxybutyrate, glucose, triacylglycerol, and total cholesterol. A sample of serum collected at 720 min after tyloxapol was assayed for the metabolome composition. The area under the curve (AUC) of serum triacylglycerol, VLDL cholesterol, and total cholesterol were calculated. Orthogonal contrasts evaluated the effect of supplementing RPC (CON vs. [1/2 L25.8 + 1/2 H25.8]) and source of RPC (L25.8 vs. H25.8). Least squares means and standard errors of the means are presented in sequence as CON, L25.8, H25.8. During feed restriction, supplementation of RPC reduced hepatic triacylglycerol (9.0 vs. 4.1 vs. 4.5 ± 0.6%) and increased glycogen contents (1.9 vs. 3.5 vs. 4.1 ± 0.2%). Similarly, supplementation of RPC increased the expression of transcripts involved in the synthesis and assembly of lipoproteins (MTTP), cellular autophagy (ATG3), and inflammation (TNFA), and reduced the expression of transcripts associated with mitochondrial oxidation of fatty acids (HADHA, MLYCD) and stabilization of lipid droplets (PLIN2). After infusion of tyloxapol, RPC increased the AUC for serum triacylglycerol (21,741 vs. 32,323 vs. 28,699 ± 3,706 mg/dL × min) and VLDL cholesterol (4,348 vs. 6,465 vs. 5,740 ± 741 mg/dL × min) but tended to reduce the concentrations of triacylglycerol in lymph (16.7 vs. 13.8 vs. 11.9 ± 1.9 mg/dL). Feeding RPC tended to increase the concentrations of 89 metabolites in serum, after adjusting for false discovery, including 3 acylcarnitines, 1 AA-related metabolite, 11 bile acids, 1 ceramide, 6 diacylglycerols, 2 dihydroceramides, 1 glycerophospholipid, and 64 triacylglycerols compared with CON. Feeding 25.8 g/d of choline ion as RPC mediated increased hepatic triacylglycerol secretion to promote lipotropic effects that reduced hepatic lipidosis in dairy cows.
Collapse
Affiliation(s)
- U Arshad
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - A Husnain
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - M B Poindexter
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - R Zimpel
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - C D Nelson
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - J E P Santos
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
7
|
Arshad U, Zenobi MG, Tribulo P, Staples CR, Santos JEP. Dose-dependent effects of rumen-protected choline on hepatic metabolism during induction of fatty liver in dry pregnant dairy cows. PLoS One 2023; 18:e0290562. [PMID: 37796906 PMCID: PMC10553221 DOI: 10.1371/journal.pone.0290562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
Objectives were to determine the effects of supplementing increasing amounts of choline ion on hepatic composition and mRNA abundance in pregnant dry cows subjected to a fatty liver induction protocol. Holstein cows (35 primiparous and 41 multiparous) at mean (± standard deviation) of 211 ± 9.9 days of gestation were blocked by body condition (3.59 ± 0.33) and assigned to receive 0, 6.45, 12.90, 19.35, and 25.80 g/day of choline ion as rumen-protected choline (RPC) as a top-dress for 14 days. Cows were fed for ad libitum intake on days 1 to 5 and restricted to 30% of the required net energy for lactation from days 6 to 14 of the experiment. Hepatic tissue was sampled on days 5 and 14 and analyzed for concentrations of triacylglycerol and glycogen, and mRNA abundance was investigated. Orthogonal contrasts evaluated the effects of supplementing RPC (0 g/day vs. rest), and the linear, quadratic, and cubic effects of increasing intake of choline ion from 6.45 to 25.80 g/day. Results are depicted in sequence of treatments from 0 to 25.8. During feed restriction, RPC reduced the concentration of hepatic triacylglycerol by 28.5% and increased that of glycogen by 26.1%, and the effect of increasing RPC intake on triacylglycerol was linear (6.67 vs. 5.45 vs. 4.68 vs. 5.13 vs. 3.81 ± 0.92% wet-basis). Feeding RPC during feed restriction increased abundance of transcripts involved in choline metabolism (CHKA, PLD1), synthesis of apolipoprotein-B100 (APOB100), and antioxidant activity (GPX3), and decreased the abundance of transcripts involved in hepatic lipogenesis (DGAT2, SREBF1) and acute phase response (SAA3). Most effects were linear with amount of choline fed. Changes in hepatic mRNA abundance followed a pattern of reduced lipogenesis and enhanced lipids export, which help explain the reduced hepatic triacylglycerol content in cows fed RPC. Choline exerts lipotropic effects in dairy cows by altering transcript pathways linked to hepatic lipids metabolism.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Marcos G. Zenobi
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Paula Tribulo
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Charles R. Staples
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - José E. P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
8
|
Arshad U, Husnain A, Poindexter MB, Zimpel R, Perdomo MC, Santos JEP. Effect of source and amount of rumen-protected choline on hepatic metabolism during induction of fatty liver in dairy cows. J Dairy Sci 2023; 106:6860-6879. [PMID: 37210357 DOI: 10.3168/jds.2023-23270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
Objectives were to determine the effect of supplementing increased amounts of rumen-protected choline (RPC) from sources with low (L, 28.8%) or high (H, 60.0%) concentration of choline chloride on hepatic metabolism when cows were subjected to feed restriction to develop fatty liver. It was hypothesized that increased supplementation of RPC reduces hepatic triacylglycerol and enhances glycogen concentrations. Pregnant, nonlactating multiparous Holstein cows (n = 110) at mean (± standard deviation) 232 ± 3.9 d of gestation were blocked by body condition (4.01 ± 0.52) and assigned to receive 0 (CON), 12.9 (L12.9 or H12.9), or 25.8 (L25.8 or H25.8) g/d of choline ion. Cows were fed for ad libitum intake on d 1 to 5 and restricted to 50% of the NEL required for maintenance and pregnancy from d 6 to 13. Intake of metabolizable methionine was maintained at 19 g/d during the feed restriction period by supplying rumen-protected methionine. Hepatic tissue was sampled on d 6 and 13 and analyzed for triacylglycerol, glycogen, and mRNA expression of genes involved in choline, glucose, and fatty acids metabolism, cell signaling, inflammation, autophagy, lipid droplet dynamics, lipophagy, and endoplasmic reticulum stress response. Blood was sampled and analyzed for concentrations of fatty acids, β-hydroxybutyrate (BHB), glucose, triacylglycerol, total cholesterol, and haptoglobin. Orthogonal contrasts evaluated the effect of supplementing RPC [CON vs. (1/4·L12.9 + 1/4·L25.8 + 1/4·H12.9 + 1/4·H25.8)], source of RPC [(1/2·L12.9 + 1/2·L25.8) vs. (1/2·H12.9 + 1/2·H25.8)], amount of RPC [(1/2·L12.9 + 1/2·H12.9) vs. (1/2·L25.8 + 1/2·H25.8)], and interaction between source and amount [(1/2·L12.9 + 1/2·H25.8) vs. (1/2·H12.9 + 1/2·L25.8)]. Least squares means and standard error of the means are presented in sequence as CON, L12.9, L25.8, H12.9, H25.8. Supplementation of RPC reduced hepatic triacylglycerol (9.3 vs. 6.6 vs. 5.1 vs. 6.6 vs. 6.0 ± 0.6% as-is) and increased glycogen contents (1.8 vs. 2.6 vs. 3.6 vs. 3.1 vs. 4.1 ± 0.2% as-is) on d 13 of the experiment. Feeding RPC reduced serum haptoglobin (136.6 vs. 85.6 vs. 80.6 vs. 82.8 vs. 81.2 ± 4.6 µg/mL) during the feed restriction period; however, blood concentrations of fatty acids, BHB, glucose, triacylglycerol, and total cholesterol did not differ among treatments. During feed restriction, supplementation of RPC enhanced the mRNA expression of genes related to choline metabolism (BHMT), uptake of fatty acids (CD36), and autophagy (ATG3), and reduced the expression of a transcript associated with endoplasmic reticulum stress response (ERN1). An increase in the amount of choline ion from 12.9 to 25.8 g/d enhanced the mRNA expression of genes associated with synthesis and assembly of lipoproteins (APOB100), and inflammation (TNFA), whereas it reduced the expression of genes linked to gluconeogenesis (PC), oxidation of fatty acids (ACADM, MMUT), ketogenesis (ACAT1), and synthesis of antioxidants (SOD1) on d 13 of the experiment. Feeding RPC, independent of the product used, promoted lipotropic effects that reduced hepatic lipidosis in dairy cows.
Collapse
Affiliation(s)
- U Arshad
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - A Husnain
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - M B Poindexter
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - R Zimpel
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - M C Perdomo
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611
| | - J E P Santos
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
9
|
Caputo MJ, Li W, Kendall SJ, Larsen A, Weigel KA, White HM. Liver and Muscle Transcriptomes Differ in Mid-Lactation Cows Divergent in Feed Efficiency in the Presence or Absence of Supplemental Rumen-Protected Choline. Metabolites 2023; 13:1023. [PMID: 37755303 PMCID: PMC10536747 DOI: 10.3390/metabo13091023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Improving dairy cow feed efficiency is critical to the sustainability and profitability of dairy production, yet the underlying mechanisms that contribute to individual cow variation in feed efficiency are not fully understood. The objectives of this study were to (1) identify genes and associated pathways that are altered in cows with high- or low-residual feed intake (RFI) using RNA sequencing, and (2) determine if rumen-protected choline supplementation during mid-lactation would influence performance or feed efficiency. Mid-lactation (134 ± 20 days in milk) multiparous Holstein cows were randomly assigned to either supplementation of 0 g/d supplementation (CTL; n = 32) or 30 g/d of a rumen-protected choline product (RPC; 13.2 g choline ion; n = 32; Balchem Corp., New Hampton, NY, USA). Residual feed intake was determined as dry matter intake regressed on milk energy output, days in milk, body weight change, metabolic body weight, and dietary treatment. The 12 cows with the highest RFI (low feed efficient; LE) and 12 cows with the lowest RFI (high feed efficient; HE), balanced by dietary treatment, were selected for blood, liver, and muscle analysis. No differences in production or feed efficiency were detected with RPC supplementation, although albumin was greater and arachidonic acid tended to be greater in RPC cows. Concentrations of β-hydroxybutyrate were greater in HE cows. Between HE and LE, 268 and 315 differentially expressed genes in liver and muscle tissue, respectively, were identified through RNA sequencing. Pathway analysis indicated differences in cell cycling, oxidative stress, and immunity in liver and differences in glucose and fatty acid pathways in muscle. The current work indicates that unique differences in liver and muscle post-absorptive nutrient metabolism contribute to sources of variation in feed efficiency and that differences in amino acid and fatty acid oxidation, cell cycling, and immune function should be further examined.
Collapse
Affiliation(s)
- Malia J. Caputo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| | - Wenli Li
- United States Department of Agriculture-Agriculture Research Station, Madison, WI 53706, USA;
| | - Sophia J. Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| | - Anna Larsen
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
- United States Department of Agriculture-Agriculture Research Station, Madison, WI 53706, USA;
| | - Kent A. Weigel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| | - Heather M. White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.J.C.); (S.J.K.); (A.L.); (K.A.W.)
| |
Collapse
|
10
|
Chandler TL, Kendall SJ, White HM. Fatty acid challenge shifts cellular energy metabolism in a substrate-specific manner in primary bovine neonatal hepatocytes. Sci Rep 2023; 13:15020. [PMID: 37700067 PMCID: PMC10497564 DOI: 10.1038/s41598-023-41919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Adipose tissue mobilization increases circulating fatty acid (FA) concentrations, leads to increased hepatic FA uptake, and influences hepatic metabolism. Our objective was to trace carbon flux through metabolic pathways in primary bovine neonatal hepatocytes challenged with FA, and to examine the effect of FA challenge on oxidative stress. Primary bovine neonatal hepatocytes were isolated from 4 Holstein bull calves and maintained for 24 h before treatment with either 0 or 1 mM FA cocktail. After 21 h, either [1-14C]C16:0 or [2-14C]sodium pyruvate was added to measure complete and incomplete oxidation and cellular glycogen. Cellular and media triglyceride (TG), and glucose and ß-hydroxybutyrate (BHB) export were quantified, as well as reactive oxygen species and cellular glutathione (GSH/GSSH). Fatty acid treatment increased cellular, but not media TG, and although complete oxidation of [1-14C]C16:0 was not affected by FA, BHB export was increased. Reactive oxygen species were increased with FA treatment and GSSH was marginally increased such that the ratio of GSH:GSSG was marginally decreased. Glucose export increased, and cellular glycogen marginally increased with FA treatment while [2-14C]sodium pyruvate oxidation was decreased. These data suggest that FA treatment shifts cellular energy metabolism in a substrate-specific manner, spares pyruvate carbon from oxidation, and stimulates glucose synthesis.
Collapse
Affiliation(s)
- T L Chandler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - S J Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Holdorf HT, Kendall SJ, Ruh KE, Caputo MJ, Combs GJ, Henisz SJ, Brown WE, Bresolin T, Ferreira REP, Dorea JRR, White HM. Increasing the prepartum dose of rumen-protected choline: Effects on milk production and metabolism in high-producing Holstein dairy cows. J Dairy Sci 2023; 106:5988-6004. [PMID: 37225582 DOI: 10.3168/jds.2022-22905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/21/2023] [Indexed: 05/26/2023]
Abstract
Peripartum rumen-protected choline (RPC) supplementation is beneficial for cow health and production, yet the optimal dose is unknown. In vivo and in vitro supplementation of choline modulates hepatic lipid, glucose, and methyl donor metabolism. The objective of this experiment was to determine the effects of increasing the dose of prepartum RPC supplementation on milk production and blood biomarkers. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to one of 4 prepartum choline treatments that were fed from -21 d relative to calving (DRTC) until calving. From calving until +21 DRTC, cows were fed diets targeting 0 g/d choline ion (control, CTL) or the recommended dose (15 g/d choline ion; RD) of the same RPC product that they were fed prepartum. The resulting treatments targeted: (1) 0 g/d pre- and postpartum [0.0 ± 0.000 choline ion, percent of dry matter (%DM); CTL]; (2) 15 g/d pre- and postpartum of choline ion from an established product (prepartum: 0.10 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.004 choline ion, %DM; ReaShure, Balchem Corp.; RPC1RD▸RD); (3) 15 g/d pre- and postpartum of choline ion from a concentrated RPC prototype (prepartum: 0.09 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; RPC2, Balchem Corp.; RPC2RD▸RD); or (4) 22 g/d prepartum and 15 g/d postpartum from RPC2 [prepartum: 0.13 ± 0.005 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; high prepartum dose (HD), RPC2HD▸RD]. Treatments were mixed into a total mixed ration, and cows had ad libitum access via a roughage intake control system (Hokofarm Group). From calving to +21 DRTC, all cows were fed a common base diet and treatments were mixed into the total mixed ration (supplementation period, SP). Thereafter, all cows were fed a common diet (0 g/d choline ion) until +100 DRTC (postsupplementation period, postSP). Milk yield was recorded daily and composition analyzed weekly. Blood samples were obtained via tail vessel upon enrollment, approximately every other day from -7 to +21 DRTC, and at +56 and +100 DRTC. Feeding any RPC treatment reduced prepartum dry matter intake compared with CTL. During the SP, no evidence for a treatment effect on energy-corrected milk (ECM) yield was found, but during the postSP, RPC1RD▸RD and RPC2RD▸RD treatments tended to increase ECM, protein, and fat yields. During the postSP, the RPC1RD▸RD and RPC2RD▸RD treatments tended to increase, and RPC2HD▸RD increased, the de novo proportion of total milk fatty acids. During the early lactation SP, RPC2HD▸RD tended to increase plasma fatty acids and β-hydroxybutyrate concentrations, and RPC1RD▸RD and RPC2RD▸RD reduced blood urea nitrogen concentrations compared with CTL. The RPC2HD▸RD treatment reduced early lactation serum lipopolysaccharide binding protein compared with CTL. Overall, peripartum RPC supplementation at the recommended dose tended to increase ECM yield postSP, but no evidence was seen of an additional benefit on milk production with an increased prepartum dose of choline ion. The effects of RPC on metabolic and inflammatory biomarkers support the potential for RPC supplementation to affect transition cow metabolism and health and may support the production gains observed.
Collapse
Affiliation(s)
- H T Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - K E Ruh
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M J Caputo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - G J Combs
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Henisz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - W E Brown
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - T Bresolin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - R E P Ferreira
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - J R R Dorea
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
12
|
Li X, Du Y, Xue C, Kang X, Sun C, Peng H, Fang L, Han Y, Xu X, Zhao C. SIRT2 Deficiency Aggravates Diet-Induced Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites. Int J Mol Sci 2023; 24:8970. [PMID: 37240315 PMCID: PMC10219207 DOI: 10.3390/ijms24108970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
| |
Collapse
|
13
|
Mečionytė I, Palubinskas G, Anskienė L, Japertienė R, Juodžentytė R, Žilaitis V. The Effect of Supplementation of Rumen-Protected Choline on Reproductive and Productive Performances of Dairy Cows. Animals (Basel) 2022; 12:ani12141807. [PMID: 35883353 PMCID: PMC9311752 DOI: 10.3390/ani12141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to evaluate the effects of organic herbal preparations containing rumen-protected choline (RPC) in dairy cow milk’s BHB and progesterone (P4) concentration changes, reproduction, and production performances. Cows were divided into the following two groups: The CHOL (n = 60) cow diet was supplemented with 10 g/day RPC from 20 days pre-calving to 20 days post-calving, and CONT (n = 60) were fed a conventional diet. BHB and P4 concentrations were measured at 5−64 DIM and 21−64 DIM, respectively, with DelPro 4.2. BHB was lower in the CHOL group at 5−64 DIM than CONT p > 0.05. The first post-calving P4 peak, p < 0.001, was determined earlier in the CHOL group, and the P4 profile during 21−64 DIM was similar, p > 0.05. The insemination rate was lower, and the interval between calvings was shorter. The first insemination time was earlier in the CHOL group, p < 0.05. Milk yield was higher in the CHOL group at 21−64 DIM, p > 0.05. The CHOL group had more fat in their milk at 31−60 DIM, p < 0.05. There were no significant differences in protein and SCC between the groups, p > 0.05. Based on our results, we concluded that the supplementation of RPC pre- and post-calving had statistically significant effects on the first peak of P4, and benefited the reproduction performances, milk yield, and milk fat during the early postpartum period.
Collapse
Affiliation(s)
- Indrė Mečionytė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.); (R.J.); (R.J.)
- Correspondence: ; Tel.: +370-6715-7553
| | - Giedrius Palubinskas
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.); (R.J.); (R.J.)
| | - Lina Anskienė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.); (R.J.); (R.J.)
| | - Renata Japertienė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.); (R.J.); (R.J.)
| | - Renalda Juodžentytė
- Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania; (G.P.); (L.A.); (R.J.); (R.J.)
| | - Vytuolis Žilaitis
- Large Animals Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, 47181 Kaunas, Lithuania;
| |
Collapse
|
14
|
Erb SJ, Chandler TL, White HM. Responsiveness of PNPLA3 and lipid-related transcription factors is dependent upon fatty acid profile in primary bovine hepatocytes. Sci Rep 2022; 12:888. [PMID: 35042927 PMCID: PMC8766451 DOI: 10.1038/s41598-021-04755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
Knockdown of patatin-like phospholipase domain-containing protein 3 (PNPLA3) increased triglycerides (TG) in primary bovine hepatocytes, suggesting that PNPLA3 plays a causal role in hepatic TG clearing. In vivo, PNPLA3 abundance across the periparturient period is inversely related to hepatic TG accumulation and circulating fatty acid (FA) concentrations. The purpose of this research was to determine if PNPLA3, as well as other lipases, transcription factors, or FA-mediated genes, are regulated by FA mimicking liver lipid accumulation (ACCUM) and liver lipid clearing (RECOV) or singular FA physiologically found in dairy cows at 0.5 mM of circulating RECOV (iRECOV). Abundance of PNPLA3 tended to decrease with ACCUM and increased quadratically with RECOV (P ≤ 0.10), differing from PNPLA3 expression, but consistent with previous in vivo research. Adipose TG lipase abundance, but not other lipase abundances, was quadratically responsive to both ACCUM and RECOV (P ≤ 0.005). Abundance of PNPLA3 and SREBP1c and expression of LXRA responded similarly to iRECOV, with C18:0 tending to decrease abundance (P ≤ 0.07). Results indicate that bovine PNPLA3 is translationally regulated by FA and although a LXRA-SREBP1c pathway mediation is possible, the mechanism warrants further investigation.
Collapse
Affiliation(s)
- Sophia J Erb
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 934B, Madison, WI, 53706, USA
| | - Tawny L Chandler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 934B, Madison, WI, 53706, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Heather M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 934B, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Holdorf HT, White HM. Effects of rumen-protected choline supplementation in Holstein dairy cows during electric heat blanket-induced heat stress. J Dairy Sci 2021; 104:9715-9725. [PMID: 34127269 DOI: 10.3168/jds.2020-19794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Dairy cows experiencing heat stress (HS) attempt to thermoregulate through multiple mechanisms, such as reducing feed intake and milk production and altering blood flow to increase heat dissipation. Effects of choline on energy metabolism and immune function may yield it a viable nutritional intervention to mitigate negative effects of HS. The primary objective of this experiment was to determine if supplementation of rumen-protected choline during, or before and during, an increased heat load would ameliorate the negative effects of HS on production and immune status. Heat stress was induced via an electric heat blanket model with a 3-d baseline period and 7-d HS period for all cows. Multiparous mid-lactation (208 ± 31 days in milk) Holstein cows were fed the same basal herd diet, blocked by pre-experiment milk yield, and randomly assigned to receive one of the following: (1) no rumen-protected (RP) choline (n = 7); (2) RP choline (60 g/d) via top-dress during the HS period (n = 8); or (3) RP choline (60 g/d) via top-dress during the baseline and HS periods (n = 8). Imposing HS via electric heat blanket raised respiration rate with all cows surpassing the HS threshold of 60 breaths/min. The increase in respiration rate tended to be ameliorated with either schedule of RP choline supplementation. Milk yield tended to increase when RP choline was supplemented in both the baseline period and during HS. Supplementation of RP choline tended to reduce blood fatty acid and triglyceride and tended to increase the revised quantitative insulin sensitivity check index. The role of RP choline supplementation to partially ameliorate the effects of HS should be further explored as a potential nutritional strategy to mitigate the negative consequences of HS on health and production.
Collapse
Affiliation(s)
- H T Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
16
|
Pralle RS, Erb SJ, Holdorf HT, White HM. Greater liver PNPLA3 protein abundance in vivo and in vitro supports lower triglyceride accumulation in dairy cows. Sci Rep 2021; 11:2839. [PMID: 33531537 PMCID: PMC7854614 DOI: 10.1038/s41598-021-82233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fatty liver syndrome is a prevalent metabolic disorder in peripartum dairy cows that unfavorably impacts lactation performance and health. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipase that plays a central role in human non-alcoholic fatty liver disease etiology but has received limited attention in bovine fatty liver research. Thus, we investigated the relationship between tissue PNPLA3 expression and liver triglyceride accumulation in vivo via a ketosis induction protocol in multiparous dairy cows peripartum, as well as in vitro via small interfering RNA knockdown of PNPLA3 mRNA expression in bovine primary hepatocytes. Results demonstrated a negative association (P = 0.04) between liver PNPLA3 protein abundance and liver triglyceride content in peripartum dairy cows, while adipose PNPLA3 protein abundance was not associated with liver triglyceride content or blood fatty acid concentration. Knockdown of PNPLA3 mRNA resulted in reduced PNPLA3 protein abundance (P < 0.01) and greater liver triglyceride content (P < 0.01). Together, these results suggest greater liver PNPLA3 protein abundance may directly limit liver triglyceride accumulation peripartum, potentially preventing bovine fatty liver or accelerating recovery from fatty liver syndrome.
Collapse
Affiliation(s)
- Ryan S Pralle
- Department of Dairy Science, University of Wisconsin-Madison, Madison, 53706, USA
| | - Sophia J Erb
- Department of Dairy Science, University of Wisconsin-Madison, Madison, 53706, USA
| | - Henry T Holdorf
- Department of Dairy Science, University of Wisconsin-Madison, Madison, 53706, USA
| | - Heather M White
- Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Drive, Rm 934B, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Palmitate and pyruvate carbon flux in response to choline and methionine in bovine neonatal hepatocytes. Sci Rep 2020; 10:19078. [PMID: 33154483 PMCID: PMC7645801 DOI: 10.1038/s41598-020-75956-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Choline and methionine may serve unique functions to alter hepatic energy metabolism. Our objective was to trace carbon flux through pathways of oxidation and glucose metabolism in bovine hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM). Primary hepatocytes were isolated from 4 Holstein calves and maintained for 24 h before treatment with CC (0, 10, 100, 1000 μmol/L) and DLM (0, 100, 300 μmol/L) in a factorial design. After 21 h, [1-14C]C16:0 or [2-14C]pyruvate was added to measure complete and incomplete oxidation, and cellular glycogen. Reactive oxygen species (ROS), cellular triglyceride (TG), and glucose and ß-hydroxybutyrate (BHB) export were quantified. Exported very-low density lipoprotein particles were isolated for untargeted lipidomics and to quantify TG. Interactions between CC and DLM, and contrasts for CC (0 vs. [10, 100, 1000 μmol/L] and linear and quadratic contrast 10, 100, 1000 μmol/L) and DLM (0 vs. [100, 300 μmol/L] and 100 vs. 300 μmol/L) were evaluated. Presence of CC increased complete oxidation of [1-14C]C16:0 and decreased BHB export. Glucose export was decreased, but cellular glycogen was increased by the presence of CC and increasing CC. Presence of CC decreased ROS and marginally decreased cellular TG. No interactions between CC and DLM were detected for these outcomes. These data suggest a hepato-protective role for CC to limit ROS and cellular TG accumulation, and to alter hepatic energy metabolism to support complete oxidation of FA and glycogen storage regardless of Met supply.
Collapse
|
18
|
Connolly S, Dona A, Hamblin D, D'Occhio MJ, González LA. Changes in the blood metabolome of Wagyu crossbred steers with time in the feedlot and relationships with marbling. Sci Rep 2020; 10:18987. [PMID: 33149174 PMCID: PMC7642383 DOI: 10.1038/s41598-020-76101-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Wagyu crossbred steers (n = 167) were used to (1) compare the metabolome of individual animals at two distant time-points (days 196 and 432) in a feedlot (this corresponded to 272 and 36 days before slaughter); and (2) determine relationships between the metabolome and marbling, and the effect of days in the feedlot (time-points) on these relationships. 1H NMR spectroscopy followed by standard recoupling of variables analysis produced 290 features or 'peaks' from which 38 metabolites were identified. There was a positive correlation between the relative concentration (RC) at days 196 and 432 for 35 of 38 metabolites (P > 0.05). The RC of 21 metabolites mostly involved in muscle energy and glucose metabolism increased (P < 0.05) from day 196 to 432, and the RC of 13 metabolites mostly involved in lipid metabolism decreased (P < 0.05). There were 14 metabolites correlated with marbling including metabolites involved in energy and fat metabolism (glucose, propionate, 3-hydroxybutyrate, lipids). The relationship between marbling and the RC of metabolites was affected by time-point, being positive for 3-hydroxybutyrate and acetate (P < 0.05) at day 432 but not at day 196. The findings indicate that the blood metabolome in Wagyu crossbred steers changes with time in a feedlot. Notwithstanding, the metabolome has potential to predict marbling in Wagyu. The ability to predict marbling from the blood metabolome appears to be influenced by days in a feedlot and presumably the stage of development towards a mature body conformation.
Collapse
Affiliation(s)
- Samantha Connolly
- Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia.,Hamblin Pty Ltd, 'Strathdale', Blue Mountain, Sarina, QLD, 4737, Australia
| | - Anthony Dona
- Kolling Institute of Medical Research, Northern Medical School, The University of Sydney, St Leonard's, NSW, 2065, Australia
| | - Darren Hamblin
- Hamblin Pty Ltd, 'Strathdale', Blue Mountain, Sarina, QLD, 4737, Australia
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - Luciano A González
- Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, 2006, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
19
|
Caprarulo V, Erb SJ, Chandler TL, Zenobi MG, Barton BA, Staples CR, White HM. The effects of prepartum energy intake and peripartum rumen-protected choline supplementation on hepatic genes involved in glucose and lipid metabolism. J Dairy Sci 2020; 103:11439-11448. [PMID: 33222856 DOI: 10.3168/jds.2020-18840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Nutritional interventions, either by controlling dietary energy (DE) or supplementing rumen-protected choline (RPC) or both, may mitigate negative postpartum metabolic health outcomes. A companion paper previously reported the effects of DE density and RPC supplementation on production and health outcomes. The objective of this study was to examine the effects of DE and RPC supplementation on the expression of hepatic oxidative, gluconeogenic, and lipid transport genes during the periparturient period. At 47 ± 6 d relative to calving (DRTC), 93 multiparous Holstein cows were randomly assigned in groups to dietary treatments in a 2 × 2 factorial of (1) excess energy (EXE) without RPC supplementation (1.63 Mcal of NEL/kg of dry matter; EXE-RPC); (2) maintenance energy (MNE) without RPC supplementation (1.40 Mcal of NEL/kg dry matter; MNE-RPC); (3) EXE with RPC supplementation (EXE+RPC); and (4) MNE with RPC supplementation (MNE+RPC). To achieve the objective of this research, liver biopsy samples were collected at -14, +7, +14, and +21 DRTC and analyzed for mRNA expression (n = 16/treatment). The interaction of DE × RPC decreased glucose-6-phosphatase and increased peroxisome proliferator-activated receptor α in MNE+RPC cows. Expression of cytosolic phosphoenolpyruvate carboxykinase was altered by the interaction of dietary treatments with reduced expression in EXE+RPC cows. A dietary treatment interaction was detected for expression of pyruvate carboxylase although means were not separated. Dietary treatment interactions did not alter expression of carnitine palmitoyltransferase 1A or microsomal triglyceride transfer protein. The 3-way interaction of DE × RPC × DRTC affected expression of carnitine palmitoyltransferase 1A, glucose-6-phosphatase, and peroxisome proliferator-activated receptor α and tended to affect cytosolic phosphoenolpyruvate carboxykinase. Despite previously reported independent effects of DE and RPC on production variables, treatments interacted to influence hepatic metabolism through altered gene expression.
Collapse
Affiliation(s)
- V Caprarulo
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706; Department of Health, Animal Science and Food Safety, University of Milan, Milan 20134, Italy
| | - S J Erb
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - T L Chandler
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - M G Zenobi
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | - C R Staples
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - H M White
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
20
|
Zhang B, Li M, Yang W, Loor JJ, Liang Y, Wang S, Zhao Y, Guo H, Ma X, Yu L, Xu C. Mitochondrial dysfunction and endoplasmic reticulum stress in calf hepatocytes are associated with fatty acid-induced ORAI calcium release-activated calcium modulator 1 signaling. J Dairy Sci 2020; 103:11945-11956. [PMID: 32981726 DOI: 10.3168/jds.2020-18684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022]
Abstract
The store-operated Ca2+ entry (SOCE) moiety ORAI calcium release-activated calcium modulator 1 (ORAI1) located in the endoplasmic reticulum (ER) participates in key cellular functions such as protein folding, transport, and secretion, and lipid metabolism. We used an in vitro approach to test whether exogenous fatty acids alter ORAI1 signaling and to explore potential consequences on mitochondrial dysfunction and ER stress. First, hepatocytes isolated from 4 healthy female calves (1 d old, 40-50 kg) were challenged with a 1.2 mM mixture of oleic, linoleic, palmitic, stearic, and palmitoleic acids for 0.5, 1, 3, 6, 9, and 12 h to measure oxidative stress [intracellular reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and hydrogen peroxide] and ER stress (protein abundance of PERK, IRE, ATF6, and GRP78). Concentrations of GSH and SOD decreased at 0.5 h, and MDA and hydrogen peroxide increased at 1 h; ER stress proteins increased at 6 h. To determine whether ER stress was caused by oxidative stress, primary calf hepatocytes were treated with the same 1.2 mM fatty acid mix or the reactive oxygen species (ROS) inhibitor N-acetylcysteine (NAC) for 6 h. We found that NAC prevented an increase in ER stress protein abundance. Next, the role of ORAI1 on ER stress was measured by transfecting hepatocytes with small interfering (si)ORAI1 or the ORAI1 inhibitor BTP2, followed by a challenge with 1.2 mM fatty acids for 3 h. Without inhibiting ORAI1, exogenous fatty acids upregulated ORAI1 mRNA and protein abundance, oxidative stress, ER stress proteins, and protein abundance of marker indicators of an opened mitochondrial permeability transition pore (mPTP). Inhibition with BPT2 or silencing via siORAI1 abrogated oxidative stress, including increased GSH concentration and SOD activity, decreased MDA, hydrogen peroxide, and ROS concentration; ER stress protein abundance was downregulated, and mitochondrial function was restored. Last, changes in markers of mPTP opening were evaluated by culturing hepatocytes for 6 h with the sarcoendoplasmic Ca2+ ATPase inhibitor thapsigargin or the calcium ionophore ionomycin. We detected an increase in VDAC1, CLPP, and CypD protein abundance, all of which indicated opening of the mPTP. Overall, data from these in vitro studies suggest that ORAI1 mediates ER stress induced by high concentrations of fatty acids, in part through alleviating mitochondrial dysfunction caused by oxidative stress.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Han Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Liyun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
21
|
White HM. ADSA Foundation Scholar Award: Influencing hepatic metabolism: Can nutrient partitioning be modulated to optimize metabolic health in the transition dairy cow? J Dairy Sci 2020; 103:6741-6750. [PMID: 32505406 DOI: 10.3168/jds.2019-18119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Hepatic de novo production of glucose and oxidation of fatty acids are critical in supporting milk production during the transition to lactation period. During this period of metabolic challenge, there is an increase in fatty acids taken up by the liver. Although the primary fate for these fatty acids is complete oxidation, alternative fates include incomplete oxidation via ketogenesis, storage within the liver as triglycerides (TG), and secretion of TG within very low density lipoproteins. Influencing the relative capacity of these pathways, and thus shifting nutrient partitioning, may allow for improved hepatic efficiency and metabolic health. Hepatic nutrient partitioning reflects complex regulation of key metabolic pathways by factors such as fatty acids and other substrates. Relative flux of fatty acid through oxidation or re-esterification to TG leads to the onset of metabolic disorders that are associated with negative production outcomes, such as hyperketonemia and fatty liver. Although recent work has focused on understanding how stored TG are lipolyzed for subsequent oxidation, the mechanism and regulation of this remains unclear. The source of mobilized fatty acids is similarly important, both in terms of amount and profile of fatty acids mobilized. There is likely a complex, coordinated whole-body response, given that fatty acids mobilized from adipose tissue affect hepatic regulation. Fatty acids mobilized from adipose tissue have regulatory effects on genes such as pyruvate carboxylase; however, in vivo work suggests there may also be other influences resulting in differential regulation between cows that subsequently develop sub-clinical ketosis and those that do not. Optimizing nutrient partitioning between critical metabolic pathways may allow for nutritional opportunities to reduce incidence of metabolic challenges and improve feed efficiency. Although further research is needed to continue refining our understanding of the intricate balance regulating hepatic metabolism, shifting nutrient partitioning may be key in supporting both efficiency and metabolic health.
Collapse
Affiliation(s)
- H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706.
| |
Collapse
|
22
|
McFadden JW, Girard CL, Tao S, Zhou Z, Bernard JK, Duplessis M, White HM. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow. J Dairy Sci 2020; 103:5668-5683. [PMID: 32278559 DOI: 10.3168/jds.2019-17319] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
The present review focuses on methyl donor metabolism and nutrition in the periparturient and lactating dairy cow. Methyl donors are involved in one-carbon metabolism, which includes the folate and Met cycles. These cycles work in unison to support lipid, nucleotide, and protein synthesis, as well as methylation reactions and the maintenance of redox status. A key feature of one-carbon metabolism is the multi-step conversion of tetrahydrofolate to 5-methyltetrahyrofolate. Homocysteine and 5-methyltetrahyrofolate are utilized by vitamin B12-dependent Met synthase to couple the folate and Met cycles and generate Met. Methionine may also be remethylated from choline-derived betaine under the action of betaine hydroxymethyltransferase. Regardless, Met is converted within the Met cycle to S-adenosylmethionine, which is universally utilized in methyl-group transfer reactions including the synthesis of phosphatidylcholine. Homocysteine may also enter the transsulfuration pathway to generate glutathione or taurine for scavenging of reactive oxygen metabolites. In the transition cow, a high demand exists for compounds with a labile methyl group. Limited methyl group supply may contribute to inadequate hepatic phosphatidylcholine synthesis and hepatic triglyceride export, systemic oxidative stress, and compromised milk production. To minimize the perils associated with methyl donor deficiency, the peripartum cow relies on de novo methylneogenesis from tetrahydrofolate. In addition, dietary supplementation of rumen-protected folic acid, vitamin B12, Met, choline, and betaine are potential nutritional approaches to target one-carbon pools and improve methyl donor balance in transition cows. Such strategies have merit considering research demonstrating their ability to improve milk production efficiency, milk protein synthesis, hepatic health, and immune response. This review aims to summarize the current understanding of folic acid, vitamin B12, Met, choline, and betaine utilization in the dairy cow. Methyl donor co-supplementation, fatty acid feeding strategies that may optimize methyl donor supplementation efficacy, and potential epigenetic mechanisms are also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - C L Girard
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - Z Zhou
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - M Duplessis
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706
| |
Collapse
|