1
|
Mikołaj KW, Christensen AN, Taksøe-Vester CA, Feragen A, Petersen OB, Lin M, Nielsen M, Svendsen MBS, Tolsgaard MG. Predicting abnormal fetal growth using deep learning. NPJ Digit Med 2025; 8:318. [PMID: 40437236 PMCID: PMC12119859 DOI: 10.1038/s41746-025-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 05/03/2025] [Indexed: 06/01/2025] Open
Abstract
Ultrasound assessment of fetal size and growth is the mainstay of monitoring fetal well-being during pregnancy, as being small for gestational age (SGA) or large for gestational age (LGA) poses significant risks for both the fetus and the mother. This study aimed to enhance the prediction accuracy of abnormal fetal growth. We developed a deep learning model, trained on a dataset of 433,096 ultrasound images derived from 94,538 examinations conducted on 65,752 patients. The deep learning model performed significantly better in detecting both SGA (58% vs 70%) and LGA compared with the current clinical standard, the Hadlock formula (41% vs 55%), p < 0.001. Additionally, the model estimates were significantly less biased across all demographic and technical variables compared to the Hadlock formula. Incorporating key anatomical features such as cortical structures, liver texture, and skin thickness was likely to be responsible for the improved prediction accuracy observed.
Collapse
Affiliation(s)
- Kamil Wojciech Mikołaj
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anders Nymark Christensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Caroline Amalie Taksøe-Vester
- Copenhagen Academy for Medical Education and Simulation (CAMES), Copenhagen, Denmark
- Center for Fetal Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aasa Feragen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Olav Bjørn Petersen
- Center for Fetal Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Manxi Lin
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Grønnebæk Tolsgaard
- Copenhagen Academy for Medical Education and Simulation (CAMES), Copenhagen, Denmark.
- Center for Fetal Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wang X, Wang C, Yang W, Yao Q, Zuo L. Assessment of the development of the central nervous system in fetuses with fetal growth restriction. Arch Gynecol Obstet 2024; 310:2963-2971. [PMID: 39514124 DOI: 10.1007/s00404-024-07804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To evaluate the development of the central nervous system in fetuses with fetal Growth Restriction. METHODS A total of 146 pregnant women who underwent prenatal ultrasonography in Cangzhou People's Hospital from January 2022 to May 2024 were selected, all with singleton pregnancies. Among them, 73 fetuses were in the fetal growth restriction group, with ages ranging from 20 to 33 + 6 weeks. The indicators for evaluating the cerebral sulci included the depth and angle of the parietooccipital sulci, the width and depth of the sylvian fissure, the width of the uncovered insula, uncover insular ratio, the depth of the calcarine sulci, and the head circumference. The hemodynamic indicators comprised the ratio of the umbilical artery resistance index, the umbilical artery pulse index, the middle cerebral artery resistance index, the middle cerebral artery pulse index, and the cerebral placental blood flow pulse index. The above parameters were analyzed statistically. RESULTS In this study, the depth of the parietooccipital sulci, the depth of the calcarine sulci, and the width of the sylvian fissure were smaller in the fetal growth restriction group than those in the control group, and the angle of the parietooccipital sulci and the width of the uncovered insula were larger than those in the control group (all P < 0.05). The fetal middle cerebral artery resistance index, middle cerebral artery pulsation index and cerebroplacental pulsation ratio in the FGR group were lower than those in the control group (all P < 0.05). CONCLUSIONS The development of the cerebral cortex in FGR fetuses is slower than that in normal fetuses, and the alteration of fetal hemodynamics might be one of the reasons for the delayed development of the cerebral cortex in FGR fetuses.
Collapse
Affiliation(s)
| | - Chunli Wang
- Department of Ultrasound, Obstetrics and Gynecology Children's Hospital Area, Cangzhou People's Hospital, Cangzhou, 061000, China.
| | - Wenming Yang
- Department of Ultrasound, Obstetrics and Gynecology Children's Hospital Area, Cangzhou People's Hospital, Cangzhou, 061000, China
| | - Qing Yao
- Chengde Medical University, Chengde, China
| | - Linhui Zuo
- Department of Ultrasound, Obstetrics and Gynecology Children's Hospital Area, Cangzhou People's Hospital, Cangzhou, 061000, China
| |
Collapse
|
3
|
Vargas-Rodríguez C, Chimenea A, Antiñolo G, García-Díaz L. Insights into neurosonographic indicators for prenatal diagnosis of fetal neurological anomalies and cortical development: A systematic review of the literature. Early Hum Dev 2024; 197:106109. [PMID: 39208705 DOI: 10.1016/j.earlhumdev.2024.106109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Congenital defects of the central nervous system are the second cause of disability in childhood, representing up to 20 % of structural malformations diagnosed prenatally. The accurate prenatal diagnosis of fetal neurological anomalies and the assessment of cortical development are critical for early intervention and improved long-term outcomes. Neurosonography plays a vital role in this process, providing detailed insights into the structural and functional development of the fetal brain. This systematic review aims to synthesize current knowledge on neurosonographic indicators for prenatal diagnosis, with a special focus on cortical development and its impact in cases of fetal growth defects. MATERIAL AND METHODS We conducted a comprehensive search for primary literature in PubMed database were searched for English and Spanish-language, peer-reviewed literature published in the last 15 years. Additional articles were identified by scrutinizing others search platforms (Cochrane Library, UpToDate). Inclusion criteria were single pregnancy and no known feto-maternal pathologies at the beginning of the study. RESULTS Of the 361 published abstracts identified, 35 met criteria for inclusion. The review highlighted the importance of detailed neurosonographic assessments, including the evaluation of cerebral fissures such as the Sylvian fissure, parieto-occipital fissure, and calcarine fissure. Targeted ultrasound techniques were found to provide comprehensive insights comparable to fetal magnetic resonance imaging. We underscored the significant impact of intrauterine growth restriction on cortical development, with early intervention being crucial. Genetic and congenital infection screenings were emphasized as essential components of prenatal assessment. CONCLUSION The assessment of fetal brain maturation patterns according to gestational age allows us to rule out a delay in cortical development. The heterogeneity of methods and evaluable parameters in fetal neurodevelopment makes it necessary to standardize the evaluation of the main structures of interest both for screening and for the diagnosis of cortical development anomalies, even with the aim of trying to improve upgrade prognostic advice.
Collapse
Affiliation(s)
- Carmen Vargas-Rodríguez
- Department of Materno-Fetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - Angel Chimenea
- Department of Materno-Fetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, Seville, Spain; Fetal, IVF and Reproduction Simulation Training Centre (FIRST), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Materno-Fetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, Seville, Spain; Fetal, IVF and Reproduction Simulation Training Centre (FIRST), Seville, Spain; Department of Surgery, University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Lutgardo García-Díaz
- Department of Materno-Fetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, Seville, Spain; Department of Surgery, University of Seville, Seville, Spain
| |
Collapse
|
4
|
Putra M, Peek E, Hobbins JC. Fetal insular measurements in pregnancy with estimated fetal weight <10th centile and childhood neurodevelopmental outcomes. Am J Obstet Gynecol 2024; 230:85.e1-85.e15. [PMID: 37442246 DOI: 10.1016/j.ajog.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND A growing body of evidence suggests that fetal growth restriction is associated with changes in brain structures as a result of chronic hypoxia. However, less is known about the effects of growth restriction on the fetal insula, particularly in less severely affected late-onset growth-restricted fetuses. OBJECTIVE This study aimed to (1) compare sonographic insular measurements between fetal-growth restricted, small-for-gestational-age, and appropriate-for-gestational-age control fetuses; and (2) evaluate the association of sonographic insular measurements with perinatal and neurodevelopmental outcomes in fetuses categorized as fetal-growth restricted or small-for-gestational-age. STUDY DESIGN This was a cohort study of singleton nonanomalous pregnancies with an estimated fetal weight <10th centile. Using data from the last examination before delivery, fetal insular depth, Sylvian fissure depth, hypoechoic insular zone thickness, circumference, and area were measured. All measurements were adjusted for by head circumference. Neurodevelopmental outcomes were evaluated at 2 to 3 years of age using the Bayley-III scales. Kruskal-Wallis H tests were performed to compare insular measurements between groups. Paired t tests were used to compare insular measurements between appropriate-for-gestational-age fetuses and gestational age-matched growth-restricted fetuses. Insular measurements for patients with and without an adverse perinatal outcome were compared using independent-samples t-tests. Spearman correlations were performed to evaluate the relationship of insular measurements to the percentile scores for each of the 5 Bayley-III subscales and to a summative percentile of these subscales. RESULTS A total of 89 pregnancies were included in the study; 68 of these pregnancies had an estimated fetal weight <10th percentile (fetal-growth restricted: n=39; small-for-gestational-age: n=29). The appropriate-for-gestational-age cohort consisted of 21 pregnancies. The gestational age at measurement was similar between fetal-growth restricted and small-for-gestational-age groups, but lower in the appropriate-for-gestational-age group. Differences between groups were noted in normalized insular depth, Sylvian fissure depth, and hypoechoic insular zone (P<.01). Normalized insular depth and hypoechoic insular zone circumference were larger in the growth-restricted cohort (P<.01). Normalized Sylvian fissure depth was smaller in the growth-restricted cohort (P<.01). There were no significant differences in insular measurements between pregnancies with and without an adverse perinatal outcome. Bayley-III results were available in 32 of the growth-restricted cases. Of all insular measurements, hypoechoic insular zone circumference was inversely correlated with the adaptive behavior Bayley-III score. CONCLUSION In our cohort, fetuses with estimated fetal weight <10th percentile had smaller Sylvian fissure depths and larger insular depths and hypoechoic insular zone circumferences than normally grown controls. A larger hypoechoic insular zone circumference was substantially correlated with worse neurodevelopmental outcomes in early childhood. We speculate that enlargement of this region may be an indication of accelerated neuronal maturation in growth-restricted fetuses with mild hypoxia.
Collapse
Affiliation(s)
- Manesha Putra
- University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Emma Peek
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John C Hobbins
- University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Gembicki M, Welp A, Scharf JL, Dracopoulos C, Weichert J. A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry-Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+ TM and SonoCNS TM. J Clin Med 2023; 12:5334. [PMID: 37629375 PMCID: PMC10455237 DOI: 10.3390/jcm12165334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Objective: We aimed to evaluate the accuracy and efficacy of AI-assisted biometric measurements of the fetal central nervous system (CNS) by comparing two semiautomatic postprocessing tools. We further aimed to discuss the additional value of semiautomatically generated sagittal and coronal planes of the CNS. (2) Methods: Three-dimensional (3D) volumes were analyzed with two semiautomatic software tools, 5DCNS+™ and SonoCNS™. The application of 5DCNS+™ results in nine planes (axial, coronal and sagittal) displayed in a single template; SonoCNS™ depicts three axial cutting sections. The tools were compared regarding automatic biometric measurement accuracy. (3) Results: A total of 129 fetuses were included for final analysis. Our data indicate that, in terms of the biometric quantification of head circumference (HC), biparietal diameter (BPD), transcerebellar diameter (TCD) and cisterna magna (CM), the accuracy of SonoCNS™ was higher with respect to the manual measurement of an experienced examiner compared to 5DCNS+™, whereas it was the other way around regarding the diameter of the posterior horn of the lateral ventricle (Vp). The inclusion of four orthogonal coronal views in 5DCNS+™ gives valuable information regarding spatial arrangements, particularly of midline structures. (4) Conclusions: Both tools were able to ease assessment of the intracranial anatomy, highlighting the additional value of automated algorithms in clinical use. SonoCNS™ showed a superior accuracy of plane reconstruction and biometry, but volume reconstruction using 5DCNS+™ provided more detailed information, which is needed for an entire neurosonogram as suggested by international guidelines.
Collapse
|
6
|
Stein A, Sody E, Bruns N, Felderhoff-Müser U. Development of an Ultrasound Scoring System to Describe Brain Maturation in Preterm Infants. AJNR Am J Neuroradiol 2023; 44:846-852. [PMID: 37321856 PMCID: PMC10337624 DOI: 10.3174/ajnr.a7909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral maturation in preterm infants predominantly occurs postnatally, necessitating the development of objective bedside markers to monitor this process. This study aimed to develop a straightforward objective Ultrasound Score of Brain Development to assess cortical development in preterm infants. MATERIALS AND METHODS A total of 344 serial ultrasound examinations from 94 preterm infants born at ≤ 32 weeks of gestation were analyzed to identify brain structures suitable for a scoring system. RESULTS Among 11 candidate structures, 3 cerebral landmarks were selected due to their correlation with gestational age: the interopercular opening (P < .001), the height of the insular cortex (P < .001), and the depth of the cingulate sulcus (P < .001). These structures can be easily visualized in a single midcoronal view in the plane through the third ventricle and the foramina of Monro. A score point from 0 to 2 was assigned to each measurement, culminating in a total score ranging from 0 to 6. The Ultrasound Score of Brain Development correlated significantly with gestational age (P < .001). CONCLUSIONS The proposed Ultrasound Score of Brain Development has the potential for application as an objective indicator of brain maturation in correlation with gestational age, circumventing the need to rely on individual growth trajectories and percentiles for each specific structure.
Collapse
Affiliation(s)
- A Stein
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - E Sody
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - N Bruns
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - U Felderhoff-Müser
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Andescavage N, Bullen T, Liggett M, Barnett SD, Kapse A, Kapse K, Ahmadzia H, Vezina G, Quistorff J, Lopez C, duPlessis A, Limperopoulos C. Impaired in vivo feto-placental development is associated with neonatal neurobehavioral outcomes. Pediatr Res 2023; 93:1276-1284. [PMID: 36335267 PMCID: PMC10147575 DOI: 10.1038/s41390-022-02340-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fetal growth restriction (FGR) is a risk factor for neurodevelopmental problems, yet remains poorly understood. We sought to examine the relationship between intrauterine development and neonatal neurobehavior in pregnancies diagnosed with antenatal FGR. METHODS We recruited women with singleton pregnancies diagnosed with FGR and measured placental and fetal brain volumes using MRI. NICU Network Neurobehavioral Scale (NNNS) assessments were performed at term equivalent age. Associations between intrauterine volumes and neurobehavioral outcomes were assessed using generalized estimating equation models. RESULTS We enrolled 44 women diagnosed with FGR who underwent fetal MRI and 28 infants underwent NNNS assessments. Placental volumes were associated with increased self-regulation and decreased excitability; total brain, brainstem, cortical and subcortical gray matter (SCGM) volumes were positively associated with higher self-regulation; SCGM also was positively associated with higher quality of movement; increasing cerebellar volumes were positively associated with attention, decreased lethargy, non-optimal reflexes and need for special handling; brainstem volumes also were associated with decreased lethargy and non-optimal reflexes; cerebral and cortical white matter volumes were positively associated with hypotonicity. CONCLUSION Disrupted intrauterine growth in pregnancies complicated by antenatally diagnosed FGR is associated with altered neonatal neurobehavior. Further work to determine long-term neurodevelopmental impacts is warranted. IMPACT Fetal growth restriction is a risk factor for adverse neurodevelopment, but remains difficult to accurately identify. Intrauterine brain volumes are associated with infant neurobehavior. The antenatal diagnosis of fetal growth restriction is a risk factor for abnormal infant neurobehavior.
Collapse
Affiliation(s)
- Nickie Andescavage
- Division of Neonatology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Prenatal Pediatric Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Theresa Bullen
- School of Medicine, George Washington University, Washington, DC, USA
| | - Melissa Liggett
- Division of Psychology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Scott D Barnett
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Anushree Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Homa Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Gilbert Vezina
- Division of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Department of Radiology, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Jessica Quistorff
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Lopez
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Adre duPlessis
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Prenatal Pediatric Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Department of Pediatrics, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
- Department of Radiology, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA.
- Department of Pediatrics, George Washington University, 2300 Eye St. NW, Washington, DC, 20037, USA.
| |
Collapse
|
8
|
Boutet ML, Eixarch E, Ahumada‐Droguett P, Nakaki A, Crovetto F, Cívico MS, Borrás A, Manau D, Gratacós E, Crispi F, Casals G. Fetal neurosonography and infant neurobehavior following conception by assisted reproductive technology with fresh or frozen embryo transfer. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:646-656. [PMID: 35468238 PMCID: PMC9828610 DOI: 10.1002/uog.24920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 05/13/2023]
Abstract
OBJECTIVE We aimed to explore fetal cortical brain development by neurosonography in fetuses conceived by assisted reproductive technology (ART), including frozen and fresh embryo transfer (ET), compared with those conceived spontaneously (SC), and to investigate its association with infant neurobehavior at 12 months of age. METHODS This was a prospective cohort study of 210 singleton pregnancies, including 70 SC pregnancies, 70 conceived by in-vitro fertilization (IVF) following frozen ET and 70 conceived by IVF after fresh ET. Fetal neurosonography was performed at 32 ± 2 gestational weeks to assess cortical development. Sulci depths were measured offline and normalized by biparietal diameter (BPD). Ages and Stages Questionnaires (ASQ) were completed postnatally, at 12 ± 1 months of corrected age. Neurosonographic findings were adjusted by regression analysis for maternal age, ethnicity, parity, fetal sex and fetal-weight centile and gestational age at scan, and ASQ scores were adjusted for maternal age, ethnicity, parity, educational level and employment status, gestational age at birth, breastfeeding, infant sex and infant age at the ASQ evaluation. RESULTS Overall, in comparison to the SC fetuses, fetuses conceived by ART showed statistically significant differences in cortical development, with reduced parieto-occipital sulci depth adjusted for BPD (mean ± SD: fresh ET, 12.5 ± 2.5 vs frozen ET, 13.4 ± 2.6 vs SC, 13.4 ± 2.6, P < 0.001), cingulate sulci depth adjusted for BPD (median (interquartile range (IQR)): fresh ET, 5.8 (4.2-7.4) vs frozen ET, 5.8 (4.1-7.5) vs SC, 6.5 (4.8-7.8), P = 0.001) and calcarine sulci depth adjusted for BPD (median (IQR): fresh ET, 13.5 (10.1-16.1) vs frozen ET, 14.5 (12.1-15.8) vs SC, 16.4 (14.3-17.9), P < 0.001), together with lower Sylvian fissure grading score. Changes in cortical development were more pronounced in the fresh ET than in the frozen ET group. ART infants showed lower ASQ scores as compared to SC infants, particularly in the fresh ET group (mean ± SD global ASQ Z-score: fresh ET, -0.3 ± 0.4 vs frozen ET, -0.2 ± 0.4 vs SC, 0 ± 0.4, P < 0.001). CONCLUSIONS Fetuses conceived by ART show a distinctive pattern of cortical development and suboptimal infant neurodevelopment, with more pronounced changes in those conceived following fresh ET. These findings support the existence of in-utero brain reorganization associated with ART and warrant follow-up studies to assess its long-term persistence. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M. L. Boutet
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - E. Eixarch
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centre for Biomedical Research on Rare Diseases (CIBER‐ER)MadridSpain
| | - P. Ahumada‐Droguett
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - A. Nakaki
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - F. Crovetto
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centre for Biomedical Research on Rare Diseases (CIBER‐ER)MadridSpain
| | - M. S. Cívico
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Assisted Reproduction UnitHospital Clínic de Barcelona, Universitat de BarcelonaBarcelonaSpain
| | - A. Borrás
- Assisted Reproduction UnitHospital Clínic de Barcelona, Universitat de BarcelonaBarcelonaSpain
| | - D. Manau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Assisted Reproduction UnitHospital Clínic de Barcelona, Universitat de BarcelonaBarcelonaSpain
| | - E. Gratacós
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centre for Biomedical Research on Rare Diseases (CIBER‐ER)MadridSpain
| | - F. Crispi
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centre for Biomedical Research on Rare Diseases (CIBER‐ER)MadridSpain
| | - G. Casals
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Assisted Reproduction UnitHospital Clínic de Barcelona, Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
9
|
First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort. Nutrients 2022; 14:nu14061129. [PMID: 35334786 PMCID: PMC8953595 DOI: 10.3390/nu14061129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Homocysteine is a marker for derangements in one-carbon metabolism. Elevated homocysteine may represent a causal link between poor maternal nutrition and impaired embryonic and fetal development. We sought to investigate associations between reference range maternal homocysteine and embryonic and fetal growth. We enrolled 1060 singleton pregnancies (555 natural and 505 in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) pregnancies) from November 2010 to December 2020. Embryonic and fetal body and head growth was assessed throughout pregnancy using three-dimensional ultrasound scans and virtual reality techniques. Homocysteine was negatively associated with first trimester embryonic growth in the included population (crown-rump length B −0.023 mm, 95% CI −0.038,−0.007, p = 0.004, embryonic volume B −0.011 cm3, 95% CI −0.018,−0.004, p = 0.003). After stratification for conception mode, this association remained in IVF/ICSI pregnancies with frozen embryo transfer (crown-rump length B −0.051 mm, 95% CI −0.081,−0.023, p < 0.001, embryonic volume B −0.024 cm3, 95% CI −0.039,−0.009, p = 0.001), but not in IVF/ICSI pregnancies with fresh embryo transfer and natural pregnancies. Homocysteine was not associated with longitudinal measurements of head growth in first trimester, nor with second and third trimester fetal growth. Homocysteine in the highest quartile (7.3−14.9 µmol/L) as opposed to the lowest (2.5−5.2 µmol/L) was associated with reduced birth weight in natural pregnancies only (B −51.98 g, 95% CI −88.13,−15.84, p = 0.005). In conclusion, high maternal homocysteine within the reference range is negatively associated with first trimester embryonic growth and birth weight, and the effects of homocysteine are dependent on conception mode.
Collapse
|
10
|
Silva PIP, Perez M. Prenatal Ultrasound Diagnosis of Biometric changes in the Brain of Growth Restricted Fetuses. A Systematic Review of Literature. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:545-559. [PMID: 34461665 PMCID: PMC10302626 DOI: 10.1055/s-0041-1730290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Fetal growth restriction (FGR) occurs when the fetus does not reach its intrauterine potential for growth and development as a result of compromise in placental function. It is a condition that affects 5 to 10% of pregnancies and is the second most common cause of perinatal morbidity and mortality. Children born with FGR are at risk of impaired neurological and cognitive development and cardiovascular or endocrine diseases in adulthood. The purpose of the present revision is to perform a literature search for evidence on the detection and assessment by ultrasound of brain injury linked to FGR during fetal life. Using a systematic approach and quantitative evaluation as study methodology, we reviewed ultrasound studies of the fetal brain structure of growth-restricted fetuses with objective quality measures. A total of eight studies were identified. High quality studies were identified for measurement of brain volumes; corpus callosum; brain fissure depth measurements, and cavum septi pellucidi width measurement. A low-quality study was available for transverse cerebellar diameter measurement in FGR. Further prospective randomized studies are needed to understand the changes that occur in the brain of fetuses with restricted growth, as well as their correlation with the changes in cognitive development observed.
Collapse
|
11
|
Welling MS, Husen SC, Go ATJI, Groenenberg IAL, Willemsen SP, Bijma HH, Steegers-Theunissen RPM. Growth trajectories of the human fetal brain in healthy and complicated pregnancies and associations with neurodevelopmental outcome in the early life course. Early Hum Dev 2020; 151:105224. [PMID: 33091852 DOI: 10.1016/j.earlhumdev.2020.105224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND There is a need for non-invasive prenatal markers of the brain to assess fetuses at risk for poor postnatal neurodevelopmental outcome. Periconceptional maternal conditions and pregnancy complications impact prenatal brain development. AIMS To investigate associations between growth trajectories of fetal brain structures and neurodevelopmental outcome in children in the early life course. STUDY DESIGN Periconceptional prospective observational cohort. SUBJECTS Singleton pregnancies were included in the Rotterdam periconception cohort. Two- and three-dimensional ultrasound scans at 22, 26 and 32 weeks gestational age were analysed. OUTCOME MEASURES Head circumference (HC), cerebellum, corpus callosum (CC), Sylvian fissure, insula and parieto-occipital fissure (POF) were measured. Neurodevelopment was evaluated using the Age-and-Stages-questionnaire-3 (ASQ-3) and the Child-Behaviour-Checklist (CBCL) at 2 years of age. Linear mixed models, used to estimate the prenatal brain growth trajectories, and linear regression models, used to evaluate the associations between prenatal brain structures and neurodevelopmental outcomes, were applied in the total study population, and in subgroups: fetal growth restriction (FGR), preterm birth (PTB), fetal congenital heart disease (CHD), and uncomplicated controls. RESULTS Consent for participation was received from parents on behalf of their child 138/203 (68%). ASQ-3 was completed in 128/203 children (63%) and CBCL in 93/203 children (46%). Significant smaller subject-specific growth trajectories (growth rate of CC, HC, left insula, left POF and right POF and the baseline size of CC, HC, left POF and right POF) were found in the FGR subgroup, compared to the other subgroups (all p-values <0.05). In the total group (n = 138), the growth rate of the left insula was associated with poorer ASQ-3 score (β = -869.51; p < 0.05). Healthy controls (n = 106) showed a comparable association (β = -1209.87; p < 0.01). FGR (n = 10) showed a larger baseline size of the right Sylvian fissure in association with poorer CBCL-score (β = 4.13; p < 0.01). In CHD (n = 12) the baseline size of the left Sylvian fissure and its growth rate were associated with respectively poorer and better CBCL-scores (β = 3.11; p < 0.01); (β = -171.99; p < 0.01). In PTB (n = 10) no associations were found. CONCLUSIONS This explorative study suggests associations between ultrasound measurements of fetal brain growth and neurodevelopmental outcome at 2 years of age. In future, this non-invasive technique may improve early identification of fetuses at risk for neurodevelopmental outcome and follow-up postnatal clinical care.
Collapse
Affiliation(s)
- Mila S Welling
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands
| | - Sofie C Husen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands
| | - Attie T J I Go
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands
| | - Irene A L Groenenberg
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands; Department of Biostatistics, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands
| | - Hilmar H Bijma
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands; Department of Pediatrics, Division of Neonatology, Sophia Children's Hospital, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Welp A, Gembicki M, Rody A, Weichert J. Validation of a semiautomated volumetric approach for fetal neurosonography using 5DCNS+ in clinical data from > 1100 consecutive pregnancies. Childs Nerv Syst 2020; 36:2989-2995. [PMID: 32350601 PMCID: PMC7649164 DOI: 10.1007/s00381-020-04607-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the validity of a semiautomated volumetric approach (5DCNS+) for the detailed assessment of the fetal brain in a clinical setting. METHODS Stored 3D volumes of > 1100 consecutive 2nd and 3rd trimester pregnancies (range 15-36 gestational weeks) were analyzed using a workflow-based volumetric approach 5DCNS+, enabling semiautomated reconstruction of diagnostic planes of the fetal central nervous system (CNS). All 3D data sets were examined for plane accuracy, the need for manual adjustment, and fetal-maternal characteristics affecting successful plane reconstruction. We also examined the potential of these standardized views to give additional information on proper gyration and sulci formation with advancing gestation. RESULTS Based on our data, we were able to show that gestational age with an OR of 1.085 (95% CI 1.041-1.132) and maternal BMI with an OR of 1.022 (95% CI 1.041-1.054) only had a slight impact on the number of manual adjustments needed to reconstruct the complete volume, while maternal age and fetal position during acquisition (p = 0.260) did not have a significant effect. For the vast majority (958/1019; 94%) of volumes, using 5DCNS+ resulted in proper reconstruction of all nine diagnostic planes. In less than 1% (89/9171 planes) of volumes, the program failed to give sufficient information. 5DCNS+ was able to show the onset and changing appearance of CNS folding in a detailed and timely manner (lateral/parietooccipital sulcus formation seen in < 65% at 16-17 gestational weeks vs. 94.6% at 19 weeks). CONCLUSIONS The 5DCNS+ method provides a reliable algorithm to produce detailed, 3D volume-based assessments of fetal CNS integrity through a standardized reconstruction of the orthogonal diagnostic planes. The method further gives valid and reproducible information regarding ongoing cortical development retrieved from these volume sets that might aid in earlier in utero recognition of subtle structural CNS anomalies.
Collapse
Affiliation(s)
- Amrei Welp
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Michael Gembicki
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Achim Rody
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Jan Weichert
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| |
Collapse
|