1
|
Gao ZG, Haddad M, Jacobson KA. A 2B adenosine receptor signaling and regulation. Purinergic Signal 2025; 21:201-220. [PMID: 38833181 PMCID: PMC12061833 DOI: 10.1007/s11302-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Yang Y, Xu G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:872918. [PMID: 35663316 PMCID: PMC9161673 DOI: 10.3389/fendo.2022.872918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the existing stages of diabetic kidney disease (DKD), the first stage of DKD is called the preclinical stage, characterized by glomerular hyperfiltration, an abnormally elevated glomerular filtration rate. Glomerular hyperfiltration is an independent risk factor for accelerated deterioration of renal function and progression of nephropathy, which is associated with a high risk for metabolic and cardiovascular disease. It is imperative to understand hyperfiltration and identify potential treatments to delay DKD progress. This paper summarizes the current mechanisms of hyperfiltration in early DKD. We pay close attention to the effect of glucose reabsorption mediated by sodium-glucose cotransporters and renal growth on hyperfiltration in DKD patients, as well as the mechanisms of nitric oxide and adenosine actions on renal afferent arterioles via tubuloglomerular feedback. Furthermore, we also focus on the contribution of the atrial natriuretic peptide, cyclooxygenase, renin-angiotensin-aldosterone system, and endothelin on hyperfiltration. Proposing potential treatments based on these mechanisms may offer new therapeutic opportunities to reduce the renal burden in this population.
Collapse
|
3
|
Riff R, Naamani O, Mazar J, Haviv YS, Chaimovitz C, Douvdevani A. A 1 and A 2A adenosine receptors play a protective role to reduce prevalence of autoimmunity following tissue damage. Clin Exp Immunol 2021; 205:278-287. [PMID: 33894002 PMCID: PMC8374218 DOI: 10.1111/cei.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a potent modulator that has a tremendous effect on the immune system. Adenosine affects T cell activity, and is necessary in maintaining the T helper/regulatory T cell (Treg ) ratio. Adenosine signalling is also involved in activating neutrophils and the formation of neutrophil extracellular traps (NETs), which has been linked to autoimmune disorders. Therefore, adenosine, through its receptors, is extremely important in maintaining homeostasis and involved in the development of autoimmune diseases. In this study, we aim to evaluate the role of adenosine A1 and A2A receptors in involvement of autoimmune diseases. We studied adenosine regulation by NETosis in vitro, and used two murine models of autoimmune diseases: type I diabetes mellitus (T1DM) induced by low-dose streptozotocin and pristane-induced systemic lupus erythematosus (SLE). We have found that A1 R enhances and A2A R suppresses NETosis. In addition, in both models, A1 R-knock-out (KO) mice were predisposed to the development of autoimmunity. In the SLE model in wild-type (WT) mice we observed a decline of A1 R mRNA levels 6 h after pristane injection that was parallel to lymphocyte reduction. Following pristane, 43% of A1 R-KO mice suffered from lupus-like disease while WT mice remained without any sign of disease at 36 weeks. In WT mice, at 10 days A2A R mRNA levels were significantly higher compared to A1R-KO mice. Similar to SLE, in the T1DM model the presence of A1 R and A2A R was protective. Our data suggest that, in autoimmune diseases, the acute elimination of lymphocytes and reduction of DNA release due to NETosis depends upon A1 R desensitization and long-term suppression of A2A R.
Collapse
MESH Headings
- Adenosine/metabolism
- Animals
- Autoimmunity/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Extracellular Traps/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Activation/immunology
- Neutrophils/immunology
- RNA, Messenger/genetics
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Signal Transduction/immunology
- Streptozocin
- Terpenes
Collapse
Affiliation(s)
- Reut Riff
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Present address:
Weizmann Institute of ScienceWolfson Building 158, 234 Herzl StreetFehovot7610001Israel
| | - Oshri Naamani
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Department of ScienceHemdat HadaromCollege of EducationNetivotIsrael
| | - Julia Mazar
- Laboratory of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yosef S. Haviv
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| | - Cidio Chaimovitz
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| | - Amos Douvdevani
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| |
Collapse
|
4
|
"Adenosine an old player with new possibilities in kidney diseases": Preclinical evidences and clinical perspectives. Life Sci 2020; 265:118834. [PMID: 33249096 DOI: 10.1016/j.lfs.2020.118834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
Abstract
Renal injury might originate from multiple factors like ischemia reperfusion (I/R), drug toxicity, cystic fibrosis, radio contrast agent etc. The four adenosine receptor subtypes have been identified and found to show diverse physiological and pathological roles in kidney diseases. The activation of A1 adenosine receptor (A1) protects against acute kidney injury by improving renal hemodynamic alterations, decreasing tubular necrosis and its inhibition might facilitate removal of toxin or drug metabolite in chronic kidney disease models. Furthermore, recent findings revealed that A2A receptor subtype activation regulates macrophage phenotype in experimental models of nephritis. Interestingly the emerging role of adenosine kinase inhibitors in kidney diseases has been discussed which act by increasing adenosine availability at target sites and thereby promote A2A receptor stimulation. In addition, the least explored adenosine receptor subtype A3 inhibition was observed to exert anti- oxidant, immunosuppressive and anti-fibrotic effects, but more studies are required to confirm its benefits in other renal injury models. The clinical studies targeting A1 receptor in patients with pre-existing kidney disease have yielded disappointing results, perhaps owing to the origin of unexpected neurological complications during the course of trial. Importantly, conducting well designed clinical trials and testing adenosine modulators with lesser brain penetrability could clear the way for clinical approval of these agents for patients with renal functional impairments.
Collapse
|
5
|
Patinha D, Abreu C, Carvalho C, Cunha OM, Mota M, Afonso J, Sousa T, Albino-Teixeira A, Diniz C, Morato M. Adenosine A 2A and A 3 Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy. Biomedicines 2020; 8:biomedicines8110529. [PMID: 33238361 PMCID: PMC7700226 DOI: 10.3390/biomedicines8110529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) and hypertension are prime causes for end-stage renal disease (ESRD) that often coexist in patients, but are seldom studied in combination. Kidney adenosine levels are markedly increased in diabetes, and the expression and function of renal adenosine receptors are altered in experimental diabetes. The aim of this work is to explore the impact of endogenous and exogenous adenosine on the expression/distribution profile of its receptors along the nephron of hypertensive rats with experimentally-induced diabetes. Using spontaneously hypertensive (SHR) rats rendered diabetic with streptozotocin (STZ), we show that treatment of SHR-STZ rats with an agonist of adenosine receptors increases A2A immunoreactivity in superficial glomeruli (SG), proximal tubule (PCT), and distal tubule (DCT). Differently, treatment of SHR-STZ rats with a xanthinic antagonist of adenosine receptors decreases adenosine A3 immunoreactivity in SG, PCT, DCT, and collecting duct. There is no difference in the immunoreactivity against the adenosine A1 and A2B receptors between the experimental groups. The agonist of adenosine receptors ameliorates renal fibrosis, probably via A2A receptors, while the antagonist exacerbates it, most likely due to tonic activation of A3 receptors. The reduction in adenosine A3 immunoreactivity might be due to receptor downregulation in response to prolonged activation. Altogether, these results suggest an opposite regulation exerted by endogenous and exogenous adenosine upon the expression of its A2A and A3 receptors along the nephron of hypertensive diabetic rats, which has a functional impact and should be taken into account when considering novel therapeutic targets for hypertensive-diabetic nephropathy.
Collapse
Affiliation(s)
- Daniela Patinha
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- The Institute of Biomedical and Clinical Science, Medical School, University of Exeter, EX4 4QJ Exeter, UK
| | - Carla Abreu
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Carla Carvalho
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Olga Mariana Cunha
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Mariana Mota
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Joana Afonso
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - António Albino-Teixeira
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - Carmen Diniz
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
- Correspondence:
| | - Manuela Morato
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| |
Collapse
|
6
|
Bolda Mariano LN, Boeing T, Cechinel-Filho V, Niero R, Mota da Silva L, de Souza P. The acute diuretic effects with low-doses of natural prenylated xanthones in rats. Eur J Pharmacol 2020; 884:173432. [PMID: 32745607 DOI: 10.1016/j.ejphar.2020.173432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
The diuretic effect of 3-demethyl-2-geranyl-4-prenylbellidypholine xanthone (DGP) and 1,5,8-trihydroxy-4',5'-dimethyl-2H-pyrano(2,3:3,2)-4-(3-methylbut-2-enyl) xanthone (TDP), two natural prenylated xanthones, was investigated in female normotensive (NTR) and spontaneously hypertensive rats (SHR). The rats received a single treatment with DGP, TDP, hydrochlorothiazide (HCTZ), or vehicle (VEH) after an oral load of physiological saline. The effects of DGP and TDP in combination with diuretics of clinical use, as well as with L-NAME, atropine and indomethacin were also explored. The urinary parameters were measured at the end of the 8-h experiment. When orally given to rats, DGP was able to increase the urine volume, at doses of 0.03-0.3 mg/kg, associated with a K+-sparing effect. TDP, in turn, at doses of 0.03-0.3 mg/kg, induced diuresis and saluresis (i.e. augmented urinary levels of Na+ and Cl-) in NTR, while decreased the urinary content of Ca2+ in both NTR and SHR. The combination with HCTZ, but not with furosemide or amiloride, significantly enhanced DGP and TDP induced diuresis, which was accompanied by an increase of the electrolytes content in the urine. Instead, amiloride in combination with DGP or TDP enhanced urinary Na+ and Cl- and decreased K+ elimination. Furthermore, the effect of DGP and TDP were heightened after pretreatment with L-NAME. While atropine was able to prevent DGP-induced diuresis, the pretreatment with indomethacin precluded TDP-induced diuresis. Besides, TDP exerted protective effects against urinary calcium oxalate crystals formation. Taken together, our data revealed the diuretic effect of two xanthones in rats and their possible underlying mode of action.
Collapse
Affiliation(s)
- Luísa Nathália Bolda Mariano
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil.
| |
Collapse
|
7
|
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res 2020; 117:1284-1294. [PMID: 32991685 DOI: 10.1093/cvr/cvaa275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside that plays a major role in the physiology and physiopathology of the coronary artery system, mainly by activating its A2A receptors (A2AR). Adenosine is released by myocardial, endothelial, and immune cells during hypoxia, ischaemia, or inflammation, each condition being present in coronary artery disease (CAD). While activation of A2AR improves coronary blood circulation and leads to anti-inflammatory effects, down-regulation of A2AR has many deleterious effects during CAD. A decrease in the level and/or activity of A2AR leads to: (i) lack of vasodilation, which decreases blood flow, leading to a decrease in myocardial oxygenation and tissue hypoxia; (ii) an increase in the immune response, favouring inflammation; and (iii) platelet aggregation, which therefore participates, in part, in the formation of a fibrin-platelet thrombus after the rupture or erosion of the plaque, leading to the occurrence of acute coronary syndrome. Inflammation contributes to the development of atherosclerosis, leading to myocardial ischaemia, which in turn leads to tissue hypoxia. Therefore, a vicious circle is created that maintains and aggravates CAD. In some cases, studying the adenosinergic profile can help assess the severity of CAD. In fact, inducible ischaemia in CAD patients, as assessed by exercise stress test or fractional flow reserve, is associated with the presence of a reserve of A2AR called spare receptors. The purpose of this review is to present emerging experimental evidence supporting the existence of this adaptive adenosinergic response to ischaemia or inflammation in CAD. We believe that we have achieved a breakthrough in the understanding and modelling of spare A2AR, based upon a new concept allowing for a new and non-invasive CAD management.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Department of Cardiology, North Hospital, Chemin des Bourrely, F-13015 Marseille, France
| | - Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Laboratory of Biochemistry, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| |
Collapse
|
8
|
Li J, Liu HQ, Li XB, Yu WJ, Wang T. Function of Adenosine 2A Receptor in High-Fat Diet-Induced Peripheral Neuropathy. J Diabetes Res 2020; 2020:7856503. [PMID: 32566683 PMCID: PMC7267854 DOI: 10.1155/2020/7856503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Peripheral diabetic neuropathy (DPN) is a complication observed in up to half of all patients with type 2 diabetes. DPN has also been shown to be associated with obesity. High-fat diet (HFD) affects glucose metabolism, and the impaired glucose tolerance can lead to type 2 diabetes. There is evidence to suggest a role of adenosine 2A receptors (A2ARs) and semaphorin 3A (Sema3a) signaling in DPN. The link between the expression of Sema3a and A2AR in DPN was hypothesized, but the underlying mechanisms remain poorly understood. In this study, we investigated the regulation of Sema3a by A2AR in the spinal cord and the functional implications thereof in DPN. We examined the expression of A2ARs and Sema3a, as well as Neuropilin 1 and Plexin A, the coreceptors of Sema3a, in the dorsal horn of the lumbar spinal cord of an animal model with HFD-induced diabetes. Our results demonstrate that HFD dysregulates the A2AR-mediated Sema3a expression, with functional implications for the type 2 diabetes-induced peripheral neuropathy. These observations could stimulate clinical studies to improve our understanding on the subject.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diet, High-Fat
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Fibers/metabolism
- Nerve Fibers/pathology
- Receptor, Adenosine A2A/physiology
- Semaphorin-3A/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xin-Bai Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tao Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|