1
|
Hou S, Ma D, Wu S, Hui Q, Hao Z. Morinda citrifolia L.: A Comprehensive Review on Phytochemistry, Pharmacological Effects, and Antioxidant Potential. Antioxidants (Basel) 2025; 14:295. [PMID: 40227265 PMCID: PMC11939675 DOI: 10.3390/antiox14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Morinda citrifolia L. (M. citrifolia), commonly referred to as noni, a Polynesian medicinal plant with over 2000 years of traditional use, has garnered global interest for its rich repertoire of antioxidant phytochemicals, including flavonoids (kaempferol, rutin), iridoids (aucubin, asperulosidic acid, deacetylasperulosidic acid, asperuloside), polysaccharides (nonioside A), and coumarins (scopoletin). This comprehensive review synthesizes recent advances (2018-2023) on noni's bioactive constituents, pharmacological properties, and molecular mechanisms, with a focus on its antioxidant potential. Systematic analyses reveal that noni-derived compounds exhibit potent free radical scavenging capacity (e.g., 2,2-Diphenyl-1-picrylhydrazyl/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (DPPH/ABTS) inhibition), upregulate endogenous antioxidant enzymes (Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPx)), and modulate key pathways such as Nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) and Nuclear Factor kappa-B (NF-κB). Notably, polysaccharides and iridoids demonstrate dual antioxidant and anti-inflammatory effects via gut microbiota regulation. This highlights the plant's potential for innovation in the medical and pharmaceutical fields. However, it is also recognized that further research is needed to clarify its mechanisms of action and ensure its safety for widespread application. We emphasize the need for mechanistic studies to bridge traditional knowledge with modern applications, particularly in developing antioxidant-rich nutraceuticals and sustainable livestock feed additives. This review underscores noni's role as a multi-target antioxidant agent and provides a roadmap for future research to optimize its health benefits.
Collapse
Affiliation(s)
- Silu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Danyang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaofeng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiaoyue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
2
|
Jiang Q, Charoensiddhi S, Xue X, Sun B, Liu Y, El-Seedi HR, Wang K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit Rev Food Sci Nutr 2022; 63:7197-7223. [PMID: 36397724 DOI: 10.1080/10408398.2022.2145456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.
Collapse
Affiliation(s)
- Qianer Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Biqi Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
A Systematic Review of the Influence of Bovine Colostrum Supplementation on Leaky Gut Syndrome in Athletes: Diagnostic Biomarkers and Future Directions. Nutrients 2022; 14:nu14122512. [PMID: 35745242 PMCID: PMC9227274 DOI: 10.3390/nu14122512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Bovine colostrum (BC) contains a myriad of bioactive molecules that are renowned for possessing unique medicinal benefits in children and adults, and BC supplements are considered safe and cost-effective options to manage/prevent the incidence of upper respiratory tract infections and gut-related problems in athletes. In this review, we will try to answer the question: How will BC supplementation ameliorate gut permeability problems among athletes? Methods: Literature searches were performed using PRISMA guidance to identify studies assessing the influence of BC supplements on gut permeability. Studies were selected using four databases: PubMed, Web of Science, Scopus, and EBSCO, and a total number of 60 articles were retrieved by using appropriate keywords. Results: Nine studies were selected that met the eligibility criteria for this review. The data analysis revealed that vigorous exercise profoundly increases intestinal permeability, and BC supplementation helps to reverse gut permeability in athletes. Conclusion: BC supplementation may be highly beneficial in improving gut permeability in athletes. However, well-designed, placebo-controlled, and randomized studies are needed to evaluate the long-term safety and efficacy and to determine the optimal dose schedules of BC supplementation in high-performance athletes.
Collapse
|
4
|
Cross AS, Opal SM, Palardy JE, Shridhar S, Baliban SM, Scott AJ, Chahin AB, Ernst RK. A pilot study of an anti-endotoxin Ig-enriched bovine colostrum to prevent experimental sepsis. Innate Immun 2021; 27:266-274. [PMID: 33858243 PMCID: PMC8054147 DOI: 10.1177/17534259211007538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/04/2022] Open
Abstract
Despite the dramatic increase in antimicrobial resistance, there is a dearth of antibiotics in development and few pharmaceutical companies working in the field. Further, any new antibiotics are likely to have a short shelf life. Ab-based interventions offer alternatives that are not likely to be circumvented by the widely prevalent antibiotic resistance genes. Bovine colostrum (BC)-the first milk after parturition, rich in nutrients and immune components-promotes gut integrity and modulates the gut microbiome. We developed a hyperimmune BC (HBC) enriched in Abs to a highly conserved LOS core region of Gram-negative bacteria by immunizing pregnant cows with a vaccine comprised of detoxified LOS from Escherichia coli O111 Rc (J5) mutant non-covalently complexed to group B meningococcal outer membrane protein (J5dLOS/OMP). This vaccine generated robust levels of anti-J5 LOS Ab in the colostrum. When given orally to neutropenic rats challenged orally with Pseudomonas aeruginosa, administration of HBC improved survival compared to non-immune rats, while both BC preparations improved survival compared to PBS controls. Elevated circulating endotoxin levels correlated with mortality. HBC and to a lesser extent non-immune BC reduced bacterial burden from the liver, lung, and spleen. We conclude that HBC and to a lesser extent BC may be effective supplements that improve outcome from lethal gut-derived disseminated infection and may reduce transmission of Gram-negative bacilli from the gastrointestinal tract.
Collapse
Affiliation(s)
- Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, USA
| | - Steven M Opal
- Division of Infectious Diseases, Rhode Island Hospital, USA
| | - John E Palardy
- Infectious Disease Division, Memorial Hospital of RI, USA
| | - Surekha Shridhar
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, USA
| | - Scott M Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, USA
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, USA
| |
Collapse
|
5
|
Triantafillidis JK, Tzouvala M, Triantafyllidi E. Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients 2020; 12:1048. [PMID: 32290232 PMCID: PMC7230540 DOI: 10.3390/nu12041048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Enteral nutrition seems to play a significant role in the treatment of both adults and children with active Crohn's disease, and to a lesser degree in the treatment of patients with active ulcerative colitis. The inclusion of some special factors in the enteral nutrition formulas might increase the rate of the efficacy. Actually, enteral nutrition enriched in Transforming Growth Factor-β reduced the activity index and maintained remission in patients with Crohn's disease. In addition, a number of experimental animal studies have shown that colostrum exerts a significantly positive result. Probiotics of a special type and a certain dosage could also reduce the inflammatory process in patients with active ulcerative colitis. Therefore, the addition of these factors in an enteral nutrition formula might increase its effectiveness. Although the use of these formulas is not supported by large clinical trials, it could be argued that their administration in selected cases as an exclusive diet or in combination with the drugs used in patients with inflammatory bowel disease could benefit the patient. In this review, the authors provide an update on the role of enteral nutrition, supplemented with Transforming Growth Factor-β, colostrum, and probiotics in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Maria Tzouvala
- Department of Gastroenterology “St Panteleimon” General Hospital, ZC 18454 Nicea, Greece;
| | | |
Collapse
|
6
|
Bifidobacterial Transfer from Mother to Child as Examined by an Animal Model. Microorganisms 2019; 7:microorganisms7090293. [PMID: 31461893 PMCID: PMC6780879 DOI: 10.3390/microorganisms7090293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Bifidobacteria commonly constitute the most abundant group of microorganisms in the healthy infant gut. Their intestinal establishment is believed to be maternally driven, and their acquisition has even been postulated to occur during pregnancy. In the current study, we evaluated bifidobacterial mother-to infant transmission events in a rat model by means of quantitative PCR (qPCR), as well as by Internally Transcribed Spacer (ITS) bifidobacterial profiling. The occurrence of strains supplied by mothers during pregnancy to their corresponding newborns was observed and identified by analysis immediately following C-section delivery. These findings provide intriguing support for the existence of an unknown route to facilitate bifidobacterial transfer during the very early stages of life.
Collapse
|