1
|
Magne F, Ruiz-Ruiz S, Pérez-Brocal V, Ponce CA, Bustamante R, Martin VS, Gutierrez M, Gatti G, Vargas SL, Moya A. Pneumocystis jirovecii is a potential pivotal ecological driver contributing to shifts in microbial equilibrium during the early-life lower airway microbiome assembly. Commun Biol 2025; 8:609. [PMID: 40229539 PMCID: PMC11997204 DOI: 10.1038/s42003-025-07810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Early life gut microbiota is being increasingly recognized as a major contributor to short and/or long-term human health and diseases. However, little is known about these early-life events in the human microbiome of the lower respiratory tract. This study aims to investigate fungal and bacterial colonization in the lower airways over the first year of life by analyzing lung tissue from autopsied infants. The fungal and bacterial communities of lung tissue samples from 53 autopsied infants were characterized by Next-Generation Sequencing (NGS), based on universal PCR amplification of the ITS region and the 16S rRNA gene, respectively. Our study highlights a high degree of inter-individual variability in both fungal and bacterial communities inhabiting the infant lung. The lower respiratory tract microbiota is mainly composed of transient microorganisms that likely travel from the upper respiratory tract and do not establish permanent residence. However, it could also contain some genera identified as long-term inhabitants of the lung, which could potentially play a role in lung physiology or disease. At 3-4 months of age, important dynamic changes to the microbial community were observed, which might correspond to a transitional time period in the maturation of the lung microbiome. This timeframe represents a susceptibility period for the colonization of pathogens such as Pneumocystis. The asymptomatic colonization of Pneumocystis was associated with changes in the fungal and bacterial communities. These findings suggest that the period of 2-4 months of age is a "critical window" early in life. Pneumocystis jirovecii could be a potential pivotal ecological driver contributing to shifts in microbial equilibrium during the early-life lower airway microbiome assembly, and to the future health of children.
Collapse
Affiliation(s)
- Fabien Magne
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Independencia 1027, Santiago, 8380453, Chile.
| | - Susana Ruiz-Ruiz
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO-Public Health), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Carolina A Ponce
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Independencia 1027, Santiago, 8380453, Chile
| | - Rebeca Bustamante
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Independencia 1027, Santiago, 8380453, Chile
| | - Viviana San Martin
- Medico Legal Institute of Chile, Av. La Paz 1012, Independencia, Santiago, 8380454, Santiago, Chile
| | - Mireya Gutierrez
- Medico Legal Institute of Chile, Av. La Paz 1012, Independencia, Santiago, 8380454, Santiago, Chile
| | - Gianna Gatti
- Medico Legal Institute of Chile, Av. La Paz 1012, Independencia, Santiago, 8380454, Santiago, Chile
| | - Sergio L Vargas
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), University of Chile School of Medicine, Independencia 1027, Santiago, 8380453, Chile.
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO-Public Health), Valencia, Spain.
- CIBER in Epidemiology and Public Health (CIBEResp), Madrid, Spain.
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain.
| |
Collapse
|
2
|
Lindstedt S, Wang Q, Niroomand A, Stenlo M, Hyllen S, Pierre L, Olm F, Bechet NB. High resolution fluorescence imaging of the alveolar scaffold as a novel tool to assess lung injury. Sci Rep 2024; 14:6662. [PMID: 38509285 PMCID: PMC10954697 DOI: 10.1038/s41598-024-57313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
Acute lung injury (ALI) represents an aetiologically diverse form of pulmonary damage. Part of the assessment and diagnosis of ALI depends on skilled observer-based scoring of brightfield microscopy tissue sections. Although this readout is sufficient to determine gross alterations in tissue structure, its categorical scores lack the sensitivity to describe more subtle changes in lung morphology. To generate a more sensitive readout of alveolar perturbation we carried out high resolution immunofluorescence imaging on 200 μm lung vibratome sections from baseline and acutely injured porcine lung tissue, stained with a tomato lectin, Lycopersicon Esculentum Dylight-488. With the ability to resolve individual alveoli along with their inner and outer wall we generated continuous readouts of alveolar wall thickness and circularity. From 212 alveoli traced from 10 baseline lung samples we established normal distributions for alveolar wall thickness (27.37; 95% CI [26.48:28.26]) and circularity (0.8609; 95% CI [0.8482:0.8667]) in healthy tissue. Compared to acutely injured lung tissue baseline tissue exhibited a significantly lower wall thickness (26.86 ± 0.4998 vs 50.55 ± 4.468; p = 0.0003) and higher degree of circularityϕ≤ (0.8783 ± 0.01965 vs 0.4133 ± 0.04366; p < 0.0001). These two components were subsequently combined into a single more sensitive variable, termed the morphological quotient (MQ), which exhibited a significant negative correlation (R2 = 0.9919, p < 0.0001) with the gold standard of observer-based scoring. Through the utilisation of advanced light imaging we show it is possible to generate sensitive continuous datasets describing fundamental morphological changes that arise in acute lung injury. These data represent valuable new analytical tools that can be used to precisely benchmark changes in alveolar morphology both in disease/injury as well as in response to treatment/therapy.
Collapse
Affiliation(s)
- Sandra Lindstedt
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
- Lund Stem Cell Centre, Lund University, Lund, Sweden.
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| | - Qi Wang
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllen
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Nicholas B Bechet
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
- Lund Stem Cell Centre, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Hao Y, Wang T, Hou Y, Wang X, Yin Y, Liu Y, Han N, Ma Y, Li Z, Wei Y, Feng W, Jia Z, Qi H. Therapeutic potential of Lianhua Qingke in airway mucus hypersecretion of acute exacerbation of chronic obstructive pulmonary disease. Chin Med 2023; 18:145. [PMID: 37924136 PMCID: PMC10623880 DOI: 10.1186/s13020-023-00851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 μg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.
Collapse
Affiliation(s)
- Yuanjie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Xiaoqi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Yujie Yin
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yan Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yaru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuan, 050090, Hebei, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Zhenhua Jia
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, 050091, Hebei, China.
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050035, Hebei, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| |
Collapse
|
4
|
Kottom TJ, Carmona EM, Limper AH. Lung Epithelial Cell Line Immune Responses to Pneumocystis. J Fungi (Basel) 2023; 9:729. [PMID: 37504718 PMCID: PMC10381464 DOI: 10.3390/jof9070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Pneumocystis sp. are fungal pathogens and members of the Ascomycota phylum. Immunocompetent individuals can readily eliminate the fungus, whereas immunocompromised individuals can develop Pneumocystis jirovecii pneumonia (PJP). Currently, over 500,000 cases occur worldwide, and the organism is listed on the recently released WHO fungal priority pathogens list. Overall, the number of PJP cases over the last few decades in developed countries with the use of highly effective antiretroviral therapy has decreased, but the cases of non-HIV individuals using immunosuppressive therapies have significantly increased. Even with relatively effective current anti-Pneumocystis therapies, the mortality rate remains 30-60% in non-HIV patients and 10-20% during initial episodes of PJP in HIV/AIDS patients. Although the role of alveolar macrophages is well studied and established, there is also well-established and emerging evidence regarding the role of epithelial cells in the immune response to fungi. This mini review provides a brief overview summarizing the innate immune response of the lung epithelium and various continuously cultured mammalian cell lines to Pneumocystis.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN 55905, USA; (E.M.C.); (A.H.L.)
| | | | | |
Collapse
|
5
|
Zhang YH, Wang T, Li YF, Deng YN, He XL, Wang LJ. N-acetylcysteine improves autism-like behavior by recovering autophagic deficiency and decreasing Notch-1/Hes-1 pathway activity. Exp Biol Med (Maywood) 2023; 248:966-978. [PMID: 37377100 PMCID: PMC10525405 DOI: 10.1177/15353702231179924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/16/2023] [Indexed: 06/29/2023] Open
Abstract
N-acetylcysteine (NAC) has been reported to improve social interaction behavior, irritability, self-injury, and anxiety-like behavior in autism. However, the molecular mechanism underlying the therapeutic roles of NAC in autism remains unknown. This study mainly aimed to investigate the therapeutic effect of NAC on valproic acid (VPA)-induced autism model and the underlying mechanisms. Our results showed that NAC ameliorated the deficits in sociability and the anxiety- and repetitive-like behaviors displayed by VPA-exposed rats. In addition, VPA exposure induced autophagic deficiency and enhanced Notch-1/Hes-1 pathway activity based on lowered Beclin-1 and LC3B levels, while increased expression of p62, Notch-1, and Hes-1 expression at the protein level. However, NAC recovered VPA-induced autophagic deficiency and reduced Notch-1/Hes-1 pathway activity in a VPA-exposed autism rat model and SH-SY5Y neural cells. The present results demonstrated that NAC improves autism-like behavioral abnormalities by inactivating Notch-1/Hes-1 signaling pathway and recovering autophagic deficiency. Taken together, this study helps to elucidate a novel molecular mechanism that underlies the therapeutic actions of NAC in autism and suggests its potential to ameliorate behavioral abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ying-Hua Zhang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ting Wang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Fang Li
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Nan Deng
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue-Ling He
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li-Jun Wang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
6
|
Rojas DA, Ponce CA, Bustos A, Cortés V, Olivares D, Vargas SL. Pneumocystis Exacerbates Inflammation and Mucus Hypersecretion in a Murine, Elastase-Induced-COPD Model. J Fungi (Basel) 2023; 9:jof9040452. [PMID: 37108906 PMCID: PMC10142929 DOI: 10.3390/jof9040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation and mucus hypersecretion are frequent pathology features of chronic respiratory diseases such as asthma and COPD. Selected bacteria, viruses and fungi may synergize as co-factors in aggravating disease by activating pathways that are able to induce airway pathology. Pneumocystis infection induces inflammation and mucus hypersecretion in immune competent and compromised humans and animals. This fungus is a frequent colonizer in patients with COPD. Therefore, it becomes essential to identify whether it has a role in aggravating COPD severity. This work used an elastase-induced COPD model to evaluate the role of Pneumocystis in the exacerbation of pathology, including COPD-like lung lesions, inflammation and mucus hypersecretion. Animals infected with Pneumocystis developed increased histology features of COPD, inflammatory cuffs around airways and lung vasculature plus mucus hypersecretion. Pneumocystis induced a synergic increment in levels of inflammation markers (Cxcl2, IL6, IL8 and IL10) and mucins (Muc5ac/Muc5b). Levels of STAT6-dependent transcription factors Gata3, FoxA3 and Spdef were also synergically increased in Pneumocystis infected animals and elastase-induced COPD, while the levels of the mucous cell-hyperplasia transcription factor FoxA2 were decreased compared to the other groups. Results document that Pneumocystis is a co-factor for disease severity in this elastase-induced-COPD model and highlight the relevance of STAT6 pathway in Pneumocystis pathogenesis.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Adriel Bustos
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Vicente Cortés
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Daniela Olivares
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| |
Collapse
|
7
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
8
|
Fan L, Lu Y, Wang Y, Zhang X, Wu Y, Sun H, Zhang J. Respiratory MUC5B disproportion is involved in severe community-acquired pneumonia. BMC Pulm Med 2022; 22:90. [PMID: 35292003 PMCID: PMC8922065 DOI: 10.1186/s12890-022-01870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucus production is a process involved in the pathogenesis of Community-acquired pneumonia (CAP). The study is to determine Mucin 5B (MUC5B) protein concentration and its proportion in the bronchoalveolar lavage fluid (BALF) of CAP patients and evaluate its value to help assess disease severity. METHODS A total of 118 patients were enrolled in this cross-sectional study, including 45 with severe CAP (SCAP) and 73 with non-severe CAP (NSCAP). MUC5B concentration in BALF were determined by immunoblotting analysis. Total protein concentration of BALF was detected by Pierce BCA kit. Cytokines IL6, IL10, IFNγ, IL13, and IL17 in BALF were measured using commercial enzyme-linked immunosorbent assay (ELISA). Spearman's correlation analysis was applied to evaluate the relationships between MUC5B concentration or MUC5B/total protein ratio and the CURB-65 score, as well as cytokines. Logistic regression analysis was used to identify the independent factors associated with severe CAP. Receiver operating characteristic (ROC) curve was used to evaluate the assessment value of MUC5B/total protein ratio and other indexes for CAP severity. RESULTS MUC5B concentration in the BALF of NSCAP group was higher than that in SCAP group [NSCAP 13.56 µg/ml (IQR 5.92-25.79) vs. SCAP 8.20 µg/ml (IQR 4.97-14.03), p = 0.011]. The total protein concentration in the BALF of NSCAP group was lower than that in SCAP group [NSCAP 0.38 mg/ml (IQR 0.15-1.10) vs. SCAP 0.68 mg/ml (IQR 0.46-1.69), p = 0.002]. The MUC5B/total protein ratio was remarkably higher in NSCAP group than that in SCAP groups [NSCAP 3.66% (IQR 1.50-5.56%) vs. SCAP 1.38% (IQR 0.73-1.76%), p < 0.001]. MUC5B/total protein ratio was negatively correlated with total protein concentration (rs = - 0.576, p < 0.001), IL6 (rs = - 0.312, p = 0.001), IL10 (rs = - 0.228, p = 0.013), IL13 (rs = - 0.183, p = 0.048), IL17 (rs = - 0.282, p = 0.002) and CURB-65 score (rs = - 0.239, p = 0.009). Logistic regression identified that MUC5B/total protein ratio, IL6 level and CURB-65 score as independent variables related to CAP severity. ROC curve demonstrated best assessment value of MUC5B/total protein ratio for SCAP (AUC 0.803, p < 0.001), with a sensitivity of 88.9% and a specificity of 64.4%. CONCLUSIONS Respiratory MUC5B disproportion is related to CAP severity. MUC5B/total protein ratio may serve as an assessment marker and a potential therapeutic target for severe CAP.
Collapse
Affiliation(s)
- Lu Fan
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, People's Republic of China.,Department of Emergency, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 Nantong West Rd, Yangzhou, 225001, People's Republic of China
| | - Yi Lu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, People's Republic of China.,Department of Respiratory Medicine, Qixia Branch of Jiangsu Province Hospital, 28 Yaojia Rd, Nanjing, 210033, People's Republic of China
| | - Yan Wang
- Intensive Care Unit, Nanjing Chest Hospital, 215 Guangzhou Rd, Nanjing, 210029, People's Republic of China
| | - Xiaomin Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, People's Republic of China
| | - Yuxuan Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, People's Republic of China
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, People's Republic of China.
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
9
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Liu Y, Davis AS, Ma L, Bishop L, Cissé OH, Kutty G, Kovacs JA. MUC1 mediates Pneumocystis murina binding to airway epithelial cells. Cell Microbiol 2020; 22:e13182. [PMID: 32017380 DOI: 10.1111/cmi.13182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that Pneumocystis binds to pneumocytes, but the proteins responsible for binding have not been well defined. Mucins are the major glycoproteins present in mucus, which serves as the first line of defence during airway infection. MUC1 is the best characterised membrane-tethered mucin and is expressed on the surface of most airway epithelial cells. Although by electron microscopy Pneumocystis primarily binds to type I pneumocytes, it can also bind to type II pneumocytes. We hypothesized that Pneumocystis organisms can bind to MUC1 expressed by type II pneumocytes. Overexpression of MUC1 in human embryonic kidney HEK293 cells increased Pneumocystis binding, while knockdown of MUC1 expression by siRNA in A549 cells, a human adenocarcinoma-derived alveolar type II epithelial cell line, decreased Pneumocystis binding. Immunofluorescence labelling indicated that MUC1 and Pneumocystis were co-localised in infected mouse lung tissue. Incubation of A549 cells with Pneumocystis led to phosphorylation of ERK1/2 that increased with knockdown of MUC1 expression by siRNA. Pneumocystis caused increased IL-6 and IL-8 secretion by A549 cells, and knockdown of MUC1 further increased their secretion in A549 cells. Taken together, these results suggest that binding of Pneumocystis to MUC1 expressed by airway epithelial cells may facilitate establishment of productive infection.
Collapse
Affiliation(s)
- Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Hou WL, Chang M, Liu XF, Hu LS, Hua SC. Proteomic and ultrastructural analysis of Clara cell and type II alveolar epithelial cell-type lung cancer cells. Transl Cancer Res 2020; 9:565-576. [PMID: 35117401 PMCID: PMC8798965 DOI: 10.21037/tcr.2019.12.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Currently, the identification of Clara cell and type II alveolar epithelial cell-type cancer cells requires electron microscopy, which is a time-consuming and expensive process involving a complicated tissue sampling procedure. The aim of this study was to identify unique biomarkers for Clara cell and type II alveolar epithelial cell-type lung cancer cells, respectively, with proteomic profiling. METHODS Six human lung adenocarcinoma cell lines (A549, NCI-H358, NCI-H1650, HCC827, NCI-H1395, and NCI-H1975) were investigated for their ultrastructural characteristics. The differentially expressed proteins (DEPs) were screened between NCI-H358 cells (Clara cell type) and A549 cells (type II alveolar epithelial cell type) using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS/MS), and then they were validated by western blot. The protein expression levels of endoplasmic reticulum oxidoreductin 1-α (ERO1L), Clara cell 10-kD protein (CC10), and surfactant protein C (SP-C) were also determined in the six cell lines assayed. RESULTS NCI-H358 cells featured Clara cell differentiation; A549, NCI-H1975, and HCC827 cells had characteristics of type II alveolar epithelial cells; and NCI-H1395 and NCI-H1650 cells had no differentiation characteristics of any lung adenocarcinoma cell type. Five DEPs including ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), cytokeratin 19 (CK19), cytokeratin 8 (CK8), ERO1L, and peroxiredoxin 2 (PRDX2) between NCI-H358 and A549 cells were identified for further validation; however, none of them showed suitability as an effective biomarker. Similarly, CC10 and SP-C were not appropriate biomarkers. CONCLUSIONS Cytological subtypes of NCI-H1975 and HCC827 cells were identified, but no promising biomarker was discovered in the present study.
Collapse
Affiliation(s)
- Wen-Li Hou
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun 130021, China
| | - Ming Chang
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao-Feng Liu
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun 130021, China
| | - Lin-Sen Hu
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun 130021, China
| | - Shu-Cheng Hua
- Department of Respiration, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|