1
|
MacIntyre CR. Thinking globally for pandemic early warning systems. Nat Med 2025; 31:731-732. [PMID: 39939525 DOI: 10.1038/s41591-024-03460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Affiliation(s)
- C Raina MacIntyre
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Juneau CE, Pueyo T, Bell M, Gee G, Collazzo P, Potvin L. Lessons from past pandemics: a systematic review of evidence-based, cost-effective interventions to suppress COVID-19. Syst Rev 2022; 11:90. [PMID: 35550674 PMCID: PMC9096744 DOI: 10.1186/s13643-022-01958-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In an unparalleled global response, during the COVID-19 pandemic, 90 countries asked 3.9 billion people to stay home. Yet other countries avoided lockdowns and focused on other strategies, like contact tracing. How effective and cost-effective are these strategies? We aimed to provide a comprehensive summary of the evidence on past pandemic controls, with a focus on cost-effectiveness. METHODS Following PRISMA guidelines, MEDLINE (1946 to April week 2, 2020) and EMBASE (1974 to April 17, 2020) were searched using a range of terms related to pandemic control. Articles reporting on the effectiveness or cost-effectiveness of at least one intervention were included. RESULTS We found 1653 papers; 62 were included. The effectiveness of hand-washing and face masks was supported by randomized trials. These measures were highly cost-effective. For other interventions, only observational and modelling studies were found. They suggested that (1) the most cost-effective interventions are swift contact tracing and case isolation, surveillance networks, protective equipment for healthcare workers, and early vaccination (when available); (2) home quarantines and stockpiling antivirals are less cost-effective; (3) social distancing measures like workplace and school closures are effective but costly, making them the least cost-effective options; (4) combinations are more cost-effective than single interventions; and (5) interventions are more cost-effective when adopted early. For 2009 H1N1 influenza, contact tracing was estimated to be 4363 times more cost-effective than school closure ($2260 vs. $9,860,000 per death prevented). CONCLUSIONS AND CONTRIBUTIONS For COVID-19, a cautious interpretation suggests that (1) workplace and school closures are effective but costly, especially when adopted late, and (2) scaling up as early as possible a combination of interventions that includes hand-washing, face masks, ample protective equipment for healthcare workers, and swift contact tracing and case isolation is likely to be the most cost-effective strategy.
Collapse
Affiliation(s)
- Carl-Etienne Juneau
- Direction Régionale de Santé Publique, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | | | - Matt Bell
- COVID-19 Work Group, Washington, D.C., USA
| | | | - Pablo Collazzo
- Danube University, Dr. Karl Dorrek Straße 30, 3500, Krems, Austria.
| | - Louise Potvin
- École de Santé Publique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
3
|
Clark LTS, Sanchez S, Phelan C, Sokol-Hessner L, Bruce K, DeSanto-Madeya S. COVID-19 inpatient cohorting team: Successes and lessons learned. Nurs Manag (Harrow) 2021; 52:38-45. [PMID: 33908921 DOI: 10.1097/01.numa.0000737624.29748.4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lauren T S Clark
- At Beth Israel Deaconess Medical Center in Boston, Mass., Lauren T.S. Clark is a cardiac surgery clinical nurse and lead quality improvement management system fellow, Sandra Sanchez is the office of bed management and transfer center nursing director, Cynthia Phelan is an associate chief nurse, Lauge Sokol-Hessner is the patient safety medical director, Kendra Bruce is a cardiac medicine unit-based educator, and Susan DeSanto-Madeya is a nurse scientist and an associate professor at the University of Rhode Island College of Nursing in Kingston, R.I
| | | | | | | | | | | |
Collapse
|
4
|
MacIntyre CR, Costantino V, Trent M. Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia. Vaccine 2021; 40:2506-2513. [PMID: 33958223 PMCID: PMC8064825 DOI: 10.1016/j.vaccine.2021.04.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Several vaccines for SARS-CoV-2 are expected to be available in Australia in 2021. Initial supply is limited and will require a judicious vaccination strategy until supply is unrestricted. If vaccines have efficacy as post-exposure prophylaxis (PEP) in contacts, this provides more policy options. We used a deterministic mathematical model of epidemic response with limited supply (age-targeted or ring vaccination) and mass vaccination for the State of New South Wales (NSW) in Australia. For targeted vaccination, the effectiveness of vaccinating health workers, young people and older adults was compared. For mass vaccination, we tested varying vaccine efficacy (VE) and distribution capacities. With a limited vaccine stockpile enough for 1 million people in NSW, if there is efficacy as PEP, the most efficient way to control COVID-19 will be ring vaccination, however at least 90% of contacts per case needs to be traced and vaccinated. Health worker vaccination is required for health system resilience. Age based strategies with restricted doses make minimal impact on the epidemic, but vaccinating older people prevents more deaths. Herd immunity can only be achieved with mass vaccination. With 90% VE against all infection, herd immunity can be achieved by vaccinating 66% of the population. A vaccine with less than 70% VE cannot achieve herd immunity and will result in ongoing risk of outbreaks. For mass vaccination, distributing at least 60,000 doses per day is required to achieve control. Slower rates of vaccination will result in the population living with COVID-19 longer, and higher cases and deaths.
Collapse
Affiliation(s)
- C Raina MacIntyre
- Biosecurity Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia.
| | - Valentina Costantino
- Biosecurity Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia.
| | - Mallory Trent
- Biosecurity Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
5
|
Costantino V, Raina MacIntyre C. The Impact of Universal Mask Use on SARS-COV-2 in Victoria, Australia on the Epidemic Trajectory of COVID-19. Front Public Health 2021; 9:625499. [PMID: 33968879 PMCID: PMC8096905 DOI: 10.3389/fpubh.2021.625499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Objective(s): To estimate the impact of universal community face mask use in Victoria, Australia along with other routine disease control measures in place. Methods: A mathematical modeling study using an age structured deterministic model for Victoria, was simulated for 123 days between 1 June 2020 and 1 October 2020, incorporating lockdown, contact tracing, and case findings with and without mask use in varied scenarios. The model tested the impact of differing scenarios of the universal use of face masks in Victoria, by timing, varying mask effectiveness, and uptake. Results: A six-week lockdown with standard control measures, but no masks, would have resulted in a large resurgence by September, following the lifting of restrictions. Mask use can substantially reduce the epidemic size, with a greater impact if at least 50% of people wear a mask which has an effectiveness of at least 40%. Early mask use averts more cases than mask usage that is only implemented closer to the peak. No mask use, with a 6-week lockdown, results in 67,636 cases and 120 deaths by 1 October 2020 if no further lockdowns are used. If mask use at 70% uptake commences on 23 July 2020, this is reduced to 7,961 cases and 42 deaths. We estimated community mask effectiveness to be 11%. Conclusion(s): Lockdown and standard control measures may not have controlled the epidemic in Victoria. Mask use can substantially improve epidemic control if its uptake is higher than 50% and if moderately effective masks are used. Early mask use should be considered in other states if community transmission is present, as this has a greater effect than later mask wearing mandates.
Collapse
Affiliation(s)
- Valentina Costantino
- The Biosecurity Program, The Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Chandini Raina MacIntyre
- The Biosecurity Program, The Kirby Institute, University of New South Wales, Kensington, NSW, Australia
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
- College of Public Affairs and Community Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Costantino V, Kunasekaran M, MacIntyre CR. Modelling of optimal vaccination strategies in response to a bioterrorism associated smallpox outbreak. Hum Vaccin Immunother 2021; 17:738-746. [PMID: 33734944 PMCID: PMC7993194 DOI: 10.1080/21645515.2020.1800324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The reemergence of smallpox as a bioterrorism attack is now an increasing and legitimate concern. Advances in synthetic biology have now made it possible for the virus to be synthesized in a laboratory, with methods publicly available. Smallpox introduction into a susceptible population, with increased immunosuppression and an aging population, raises questions of how vaccination should be used in an epidemic situation when supply may be limited. We constructed three modified susceptible-latent-infectious-recovered (SEIR) models to simulate targeted, ring and mass vaccination in response to a smallpox outbreak in Sydney, Australia. We used age-specific distributions of susceptibility, infectivity, contact rates, and tested outputs under different assumptions. The number of doses needed of second- and third-generation vaccines are estimated, along with the total number of deaths at the end of the epidemic. We found a faster response is the key and ring vaccination of traced contacts is the most effective strategy and requires a smaller number of doses. However if public health authorities are unable to trace a high proportion of contacts, mass vaccination with at least 125,000 doses delivered per day is required. This study informs a better preparedness and response planning for vaccination in a case of a smallpox outbreak in a setting such as Sydney.
Collapse
Affiliation(s)
- Valentina Costantino
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Mohana Kunasekaran
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Chandini Raina MacIntyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, Australia.,College of Public Service and Community Solutions, Arizona State University, Arizona, USA
| |
Collapse
|
7
|
Choi IJ, Cha HR, Hwang SJ, Baek SK, Lee JM, Choi SO. Live Vaccinia Virus-Coated Microneedle Array Patches for Smallpox Vaccination and Stockpiling. Pharmaceutics 2021; 13:209. [PMID: 33546332 PMCID: PMC7913550 DOI: 10.3390/pharmaceutics13020209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/01/2022] Open
Abstract
Although smallpox has been eradicated globally, the potential use of the smallpox virus in bioterrorism indicates the importance of stockpiling smallpox vaccines. Considering the advantages of microneedle-based vaccination over conventional needle injections, in this study, we examined the feasibility of microneedle-based smallpox vaccination as an alternative approach for stockpiling smallpox vaccines. We prepared polylactic acid (PLA) microneedle array patches by micromolding and loaded a second-generation smallpox vaccine on the microneedle tips via dip coating. We evaluated the effect of excipients and drying conditions on vaccine stability in vitro and examined immune responses in female BALB/c mice by measuring neutralizing antibodies and interferon (IFN)-γ-secreting cells. Approximately 40% of the virus titer was reduced during the vaccine-coating process, with or without excipients. At -20 °C, the smallpox vaccine coated on the microneedles was stable up to 6 months. Compared to natural evaporation, vacuum drying was more efficient in improving the smallpox vaccine stability. Microneedle-based vaccination of the mice elicited neutralizing antibodies beginning 3 weeks after immunization; the levels were maintained for 12 weeks. It significantly increased IFN-γ-secreting cells 12 weeks after priming, indicating the induction of cellular immune responses. The smallpox-vaccine-coated microneedles could serve as an alternative delivery system for vaccination and stockpiling.
Collapse
Affiliation(s)
- In-Jeong Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Korea; (I.-J.C.); (S.-K.B.)
| | - Hye-Ran Cha
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-R.C.); (S.J.H.)
| | - Su Jin Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-R.C.); (S.J.H.)
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Korea; (I.-J.C.); (S.-K.B.)
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-R.C.); (S.J.H.)
| | - Seong-O Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Korea; (I.-J.C.); (S.-K.B.)
| |
Collapse
|
8
|
Mohanty B, Costantino V, Narain J, Chughtai AA, Das A, MacIntyre CR. Modelling the impact of a smallpox attack in India and influence of disease control measures. BMJ Open 2020; 10:e038480. [PMID: 33318109 PMCID: PMC7737064 DOI: 10.1136/bmjopen-2020-038480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To estimate the impact of a smallpox attack in Mumbai, India, examine the impact of case isolation and ring vaccination for epidemic containment and test the health system capacity under different scenarios with available interventions. SETTING The research is based on Mumbai, India population. INTERVENTIONS We tested 50%, 70%, 90% of case isolation and contacts traced and vaccinated (ring vaccination) in the susceptible, exposed, infected, recovered model and varied the start of intervention between 20, 30 and 40 days after the initial attack. PRIMARY AND SECONDARY OUTCOME MEASURES We estimated and incorporated in the model the effect of past vaccination protection, age-specific immunosuppression and contact rates and Mumbai population age structure in modelling disease morbidity and transmission. RESULTS The estimated duration of an outbreak ranged from 127 days to 8 years under different scenarios, and the number of vaccine doses needed for ring vaccination ranged from 16 813 to 8 722 400 in the best-case and worst-case scenarios, respectively. In the worst-case scenario, the available hospital beds in Mumbai would be exceeded. The impact of a smallpox epidemic may be severe in Mumbai, especially compared with high-income settings, but can be reduced with early diagnosis and rapid response, high rates of case finding and isolation and ring vaccination. CONCLUSIONS This study tells us that if smallpox re-emergence occurs, it may have significant health and economic impact, the extent of which will depend on the availability and delivery of interventions such as a vaccine or antiviral agent, and the capacity of case isolation and treatment. Further research on health systems requirements and capacity across the diverse states and territories of India could improve the preparedness and management strategies in the event of re-emergent smallpox or other serious emerging infections.
Collapse
Affiliation(s)
- Biswajit Mohanty
- School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Valentina Costantino
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jai Narain
- School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Abrar Ahmad Chughtai
- School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Arpita Das
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
MacIntyre CR, Costantino V, Heslop DJ. The potential impact of a recent measles epidemic on COVID-19 in Samoa. BMC Infect Dis 2020; 20:735. [PMID: 33028283 PMCID: PMC7539273 DOI: 10.1186/s12879-020-05469-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The pandemic of COVID-19 has occurred close on the heels of a global resurgence of measles. In 2019, an unprecedented epidemic of measles affected Samoa, requiring a state of emergency to be declared. Measles causes an immune amnesia which can persist for over 2 years after acute infection and increases the risk of a range of other infections. METHODS We modelled the potential impact of measles-induced immune amnesia on a COVID-19 epidemic in Samoa using data on measles incidence in 2018-2019, population data and a hypothetical COVID-19 epidemic. RESULTS The young population structure and contact matrix in Samoa results in the most transmission occurring in young people < 20 years old. The highest rate of death is the 60+ years old, but a smaller peak in death may occur in younger people, with more than 15% of total deaths in the age group under 20 years old. Measles induced immune amnesia could increase the total number of cases by 8% and deaths by more than 2%. CONCLUSIONS Samoa, which had large measles epidemics in 2019-2020 should focus on rapidly achieving high rates of measles vaccination and enhanced surveillance for COVID-19, as the impact may be more severe due to measles-induced immune paresis. This applies to other severely measles-affected countries in the Pacific, Europe and elsewhere.
Collapse
Affiliation(s)
- Chandini Raina MacIntyre
- The Biosecurity Program, The Kirby Institute, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Valentina Costantino
- The Biosecurity Program, The Kirby Institute, UNSW Medicine, The University of New South Wales, Sydney, Australia.
| | - David J Heslop
- School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Costantino V, Heslop DJ, MacIntyre CR. The effectiveness of full and partial travel bans against COVID-19 spread in Australia for travellers from China during and after the epidemic peak in China. J Travel Med 2020; 27:5842100. [PMID: 32453411 PMCID: PMC7313810 DOI: 10.1093/jtm/taaa081] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Australia implemented a travel ban on China on 1 February 2020, while COVID-19 was largely localized to China. We modelled three scenarios to test the impact of travel bans on epidemic control. Scenario one was no ban; scenario two and three were the current ban followed by a full or partial lifting (allow over 100 000 university students to enter Australia, but not tourists) from the 8th of March 2020. METHODS We used disease incidence data from China and air travel passenger movements between China and Australia during and after the epidemic peak in China, derived from incoming passenger arrival cards. We used the estimated incidence of disease in China, using data on expected proportion of under-ascertainment of cases and an age-specific deterministic model to model the epidemic in each scenario. RESULTS The modelled epidemic with the full ban fitted the observed incidence of cases well, predicting 57 cases on March 6th in Australia, compared to 66 observed on this date; however, we did not account for imported cases from other countries. The modelled impact without a travel ban results in more than 2000 cases and about 400 deaths, if the epidemic remained localized to China and no importations from other countries occurred. The full travel ban reduced cases by about 86%, while the impact of a partial lifting of the ban is minimal and may be a policy option. CONCLUSIONS Travel restrictions were highly effective for containing the COVID-19 epidemic in Australia during the epidemic peak in China and averted a much larger epidemic at a time when COVID-19 was largely localized to China. This research demonstrates the effectiveness of travel bans applied to countries with high disease incidence. This research can inform decisions on placing or lifting travel bans as a control measure for the COVID-19 epidemic.
Collapse
Affiliation(s)
- Valentina Costantino
- The Biosecurity Program, The Kirby Institute, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - David J Heslop
- The School of Public Health and Community Medicine, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - C Raina MacIntyre
- The Biosecurity Program, The Kirby Institute, UNSW Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Abstract
INTRODUCTION Smallpox, caused by variola virus, was eradicated in 1980, but remains a category A bioterrorism agent. A decade ago, smallpox ranked second after anthrax in a multifactorial risk priority scoring analysis of category A bioterrorism agents. However, advances in genetic engineering and synthetic biology, including published methods for synthesizing an Orthopoxvirus, require the assumptions of this scoring for smallpox and other category A agents to be reviewed. MATERIALS AND METHODS The risk priority framework was reviewed and revised to account for the capability for creation of synthetic or engineered smallpox and other category A agents. RESULTS The absolute score for all agents increased because of gene editing and synthetic biology capability, which was not present when the framework was developed more than a decade ago, although new treatments revised scores downward for smallpox, Ebola, and botulism. In the original framework, smallpox scored 0 for global availability, given the high security around known seed stocks of variola in two laboratories in the United States and Russia. Now, smallpox can be created using synthetic biology, raising the score for this criterion to 2. Other agents too, such as Ebola, score higher for availability, based on synthetic biology capability. When advances in synthetic biology and genetic engineering are considered, smallpox and anthrax are now equally ranked the highest category A bioterrorism agents for planning and preparedness. CONCLUSIONS Revision of a risk priority framework for category A bioterrorism agents shows that smallpox should be elevated in priority for preparedness planning, and that gene editing and synthetic biology raises the overall risk for all agents. The ranking of categories A, B, and C agents should also be revisited, as there is an endless possibility of engineered threats that may be more severe than any agent on the category A list.
Collapse
Affiliation(s)
- C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, UNSW Medicine, University of New South Wales, Sydney 2052, Australia.,College of Health Solutions and College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ 85287
| |
Collapse
|
12
|
Costantino V, Trent MJ, Sullivan JS, Kunasekaran MP, Gray R, MacIntyre R. Serological Immunity to Smallpox in New South Wales, Australia. Viruses 2020; 12:v12050554. [PMID: 32443405 PMCID: PMC7291091 DOI: 10.3390/v12050554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022] Open
Abstract
The re-emergence of smallpox is an increasing and legitimate concern due to advances in synthetic biology. Vaccination programs against smallpox using the vaccinia virus vaccine ceased with the eradication of smallpox and, unlike many other countries, Australia did not use mass vaccinations. However, vaccinated migrants contribute to population immunity. Testing for vaccinia antibodies is not routinely performed in Australia, and few opportunities exist to estimate the level of residual population immunity against smallpox. Serological data on population immunity in Australia could inform management plans against a smallpox outbreak. Vaccinia antibodies were measured in 2003 in regular plasmapheresis donors at the Australian Red Cross Blood Service from New South Wales (NSW). The data were analysed to estimate the proportion of Australians in NSW with detectable serological immunity to vaccinia. The primary object of this study was to measure neutralising antibody titres against vaccinia virus. Titre levels in donor samples were determined by plaque reduction assay. To estimate current levels of immunity to smallpox infection, the decline in geometric mean titres (GMT) over time was projected using two values for the antibody levels estimated on the basis of different times since vaccination. The results of this study suggest that there is minimal residual immunity to the vaccinia virus in the Australian population. Although humoral immunity is protective against orthopoxvirus infections, cell-mediated immunity and immunological memory likely also play roles, which are not quantified by antibody levels. These data provide an immunological snapshot of the NSW population, which could inform emergency preparedness planning and outbreak control, especially concerning the stockpiling of vaccinia vaccine.
Collapse
Affiliation(s)
- Valentina Costantino
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (M.J.T.); (M.P.K.); (R.M.)
- Correspondence:
| | - Mallory J. Trent
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (M.J.T.); (M.P.K.); (R.M.)
| | - John S. Sullivan
- Central Clinical School, University of Sydney, Sydney, NSW 2052, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohana P. Kunasekaran
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (M.J.T.); (M.P.K.); (R.M.)
| | - Richard Gray
- Surveillance Evaluation and Research Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Raina MacIntyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (M.J.T.); (M.P.K.); (R.M.)
| |
Collapse
|
13
|
MacIntyre CR, Das A, Chen X, Silva CD, Doolan C. Evidence of Long-Distance Aerial Convection of Variola Virus and Implications for Disease Control. Viruses 2019; 12:E33. [PMID: 31892158 PMCID: PMC7019718 DOI: 10.3390/v12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
Two distinct phenomena of airborne transmission of variola virus (smallpox) were described in the pre-eradication era-direct respiratory transmission, and a unique phenomenon of transmission over greater distances, referred to as "aerial convection". We conducted an analysis of data obtained from a systematic review following the PRISMA criteria, on the long-distance transmission of smallpox. Of 8179 studies screened, 22 studies of 17 outbreaks were identified-12 had conclusive evidence of aerial convection and five had partially conclusive evidence. Aerial convection was first documented in 1881 in England, when smallpox incidence had waned substantially following mass vaccination, making unusual transmissions noticeable. National policy at the time stipulated spatial separation of smallpox hospitals from other buildings and communities. The evidence supports the transmission of smallpox through aerial convection at distances ranging from 0.5 to 1 mile, and one instance of 15 km related to bioweapons testing. Other explanations are also possible, such as missed chains of transmission, fomites or secondary aerosolization from contaminated material such as bedding. The window of observation of aerial convection was within the 100 years prior to eradication. Aerial convection appears unique to the variola virus and is not considered in current hospital infection control protocols. Understanding potential aerial convection of variola should be an important consideration in planning for smallpox treatment facilities and protecting potential contacts and surrounding communities.
Collapse
Affiliation(s)
- Chandini Raina MacIntyre
- Biosecurity Program, The Kirby Institute, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (C.R.M.); (A.D.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Arpita Das
- Biosecurity Program, The Kirby Institute, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (C.R.M.); (A.D.)
| | - Xin Chen
- Biosecurity Program, The Kirby Institute, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (C.R.M.); (A.D.)
| | - Charitha De Silva
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.D.S.); (C.D.)
| | - Con Doolan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.D.S.); (C.D.)
| |
Collapse
|