1
|
Lee M, Lee M, Song Y, Kim S, Park N. Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy. Molecules 2024; 29:4737. [PMID: 39407665 PMCID: PMC11477775 DOI: 10.3390/molecules29194737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
2
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
3
|
Geukes Foppen MH, Rohaan MW, Borgers JSW, Philips D, Vyth-Dreese F, Beijnen JH, Nuijen B, van den Berg JH, Haanen JBAG. Intradermal Naked DNA Vaccination by DNA Tattooing for Mounting Tumor-Specific Immunity in Stage IV Melanoma Patients: A Phase I Clinical Trial. Oncol Res Treat 2024; 47:351-359. [PMID: 38583422 PMCID: PMC11323828 DOI: 10.1159/000537896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/15/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Naked DNA vaccination could be a powerful and safe strategy to mount antigen-specific cellular immunity. We designed a phase I clinical trial to investigate the toxicity of naked DNA vaccines encoding CD8+ T-cell epitope from tumor-associated antigen MART-1 in patients with advanced melanoma. METHODS This dose escalating phase Ia clinical trial investigates the toxicity and immunological response upon naked DNA vaccines encoding a CD8+ T-cell epitope from the tumor-associated antigen MART-1, genetically linked to the gene encoding domain 1 of subunit-tetanus toxin fragment C in patients with advanced melanoma (inoperable stage IIIC-IV, AJCC 7th edition). The vaccine was administrated via intradermal application using a permanent make-up or tattoo device. Safety was monitored according to CTCAE v.3.0 and skin biopsies and blood samples were obtained for immunologic monitoring. RESULTS Nine pretreated, HLA-A*0201-positive patients with advanced melanoma expressing MART-1 and MHC class I, with a good performance status, and adequate organ function, were included. With a median follow-up of 5.9 months, DNA vaccination was safe, without treatment-related deaths. Common treatment-emergent adverse events of any grade were dermatologic reactions at the vaccination site (100%) and pain (56%). One patient experienced grade 4 toxicity, most likely related to tumor progression. One patient (11%) achieved stable disease, lasting 353 days. Immune analysis showed no increase in vaccine-induced T cell response in peripheral blood of 5 patients, but did show a MART-1 specific CD8+ T cell response at the tattoo administration site. The maximum dose administered was 2 mg due to lack of clinical activity. CONCLUSION We showed that the developed DNA vaccine, applied using a novel intradermal application strategy, can be administered safely. Further research with improved vaccine formats is required to show possible clinical benefit of DNA vaccination.
Collapse
Affiliation(s)
| | - Maartje W Rohaan
- Netherlands Cancer Institute, Division of Medical Oncology, Amsterdam, The Netherlands,
| | - Jessica S W Borgers
- Netherlands Cancer Institute, Division of Medical Oncology, Amsterdam, The Netherlands
| | - Daisy Philips
- Netherlands Cancer Institute, Division of Molecular Oncology and Immunology, Amsterdam, The Netherlands
| | - Florry Vyth-Dreese
- Netherlands Cancer Institute, Division of Molecular Oncology and Immunology, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, Amsterdam, The Netherlands
| | - Joost H van den Berg
- Netherlands Cancer Institute, Division of Molecular Oncology and Immunology, Amsterdam, The Netherlands
| | - John B A G Haanen
- Netherlands Cancer Institute, Division of Medical Oncology, Amsterdam, The Netherlands
- Netherlands Cancer Institute, Division of Molecular Oncology and Immunology, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Bashraheel SS, Goda SK. Novel SPEA Superantigen Peptide Agonists and Peptide Agonist-TGFαL3 Conjugate. In Vitro Study of Their Growth-Inhibitory Effects for Targeted Cancer Immunotherapy. Int J Mol Sci 2023; 24:10507. [PMID: 37445686 DOI: 10.3390/ijms241310507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial superantigens (SAgs) are effective T-cell stimulatory molecules that lead to massive cytokine production. Superantigens crosslink between MHC class II molecules on the Antigen Presenting Cells (APC) and TCR on T-cells. This enables them to activate up to 20% of resting T cells, whilst conventional antigen presentation results in the activation of 0.001-0.0001% of the T cell population. These biological properties of superantigens make them attractive for use in immunotherapy. Previous studies have established the effectiveness of superantigens as therapeutic agents. This, however, was achieved with severe side effects due to the high lethality of the native toxins. Our study aims to produce superantigen-based peptides with minimum or no lethality for safer cancer treatment. In previous work, we designed and synthesized twenty overlapping SPEA-based peptides and successfully mapped regions in SPEA superantigen, causing a vasodilatory response. We screened 20 overlapping SPEA-based peptides designed and synthesized to cover the whole SPEA molecule for T-cell activation and tumor-killing ability. In addition, we designed and synthesized tumor-targeted superantigen-based peptides by fusion of TGFαL3 either from the N' or C' terminal of selected SPEA-based peptides with an eight-amino acid flexible linker in between. Our study identified parts of SPEA capable of stimulating human T-cells and producing different cytokines. We also demonstrated that the SPEA-based peptide conjugate binds specifically to cancer cells and can kill this cancer. Peptides induce T-cell activation, and tumor killing might pave the way for safer tumor-targeted superantigens (TTS). We proposed the combination of our new superantigen-based peptide conjugates with other immunotherapy techniques for effective and safer cancer treatment.
Collapse
Affiliation(s)
| | - Sayed K Goda
- College of Science and Technology, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
5
|
Liu X, Yang Y, Zheng X, Liu M, Wang G. Enhancedanti-tumor efficacy through a combination of intramuscularly expressed DNA vaccine and plasmid-encoded PD-1 antibody. Front Immunol 2023; 14:1169850. [PMID: 37138873 PMCID: PMC10150030 DOI: 10.3389/fimmu.2023.1169850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Immune check inhibitors (ICIs) have moderate response rates (~20%-30%) in some malignancies clinically, and, when used in combination with other immunotherapeutic strategies such as DNA tumor vaccines, there is evidence to suggest that they could optimize the efficacy of cancer treatment. In this study, we validated that intramuscular injection of plasmid DNA (pDNA) encoding OVA combined with pDNA encoding α-PD-1 (abbreviated as α-PD-1 in the following treatment groups) may enhance therapeutic efficacy by means of in situ gene delivery and enhanced muscle-specific potent promoter. Mice treated with pDNA-OVA or pDNA-α-PD-1 alone showed weak tumor inhibition in the MC38-OVA-bearing model. In comparison, the combined treatment of pDNA-OVA and pDNA-α-PD-1 resulted in superior tumor growth inhibition and a significantly improved survival rate of over 60% on day 45. In the B16-F10-OVA metastasis model, the addition of the DNA vaccine enhanced resistance to tumor metastasis and increased the populations of CD8+ T cells in blood and spleen. In conclusion, the current research shows that a combination of pDNA-encoded PD-1 antibody and DNA vaccine expressed in vivo is an efficient, safe, and economical strategy for tumor therapy.
Collapse
Affiliation(s)
- Xun Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xiufeng Zheng
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Gang Wang, ; Ming Liu,
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Gang Wang, ; Ming Liu,
| |
Collapse
|
6
|
Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines (Basel) 2022; 10:vaccines10111942. [PMID: 36423037 PMCID: PMC9692484 DOI: 10.3390/vaccines10111942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Electroporation is the process of instantaneously increasing the permeability of a cell membrane under a pulsed electric field. Depending on the parameters of the electric pulses and the target cell electrophysiological characteristics, electroporation can be either reversible or irreversible. Reversible electroporation facilitates the delivery of functional genetic materials or drugs to target cells, inducing cell death by apoptosis, mitotic catastrophe, or pseudoapoptosis; irreversible electroporation is an ablative technology which directly ablates a large amount of tissue without causing harmful thermal effects; electrotherapy using an electric field can induce cell apoptosis without any aggressive invasion. Reversible and irreversible electroporation can also activate systemic antitumor immune response and enhance the efficacy of immunotherapy. In this review, we discuss recent progress related to electroporation, and summarize its latest applications. Further, we discuss the synergistic effects of electroporation-related therapies and immunotherapy. We also propose perspectives for further investigating electroporation and immunotherapy in cancer treatment.
Collapse
|
7
|
Gao W, Pan J, Pan J. Antitumor Activities of Interleukin-12 in Melanoma. Cancers (Basel) 2022; 14:cancers14225592. [PMID: 36428682 PMCID: PMC9688694 DOI: 10.3390/cancers14225592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most common and serious malignant tumor among skin cancers. Although more and more studies have revolutionized the systematic treatment of advanced melanoma in recent years, access to innovative drugs for melanoma is still greatly restricted in many countries. IL-12 produced mainly by antigen-presenting cells regulates the immune response and affects the differentiation of T cells in the process of antigen presentation. However, the dose-limited toxicity of IL-12 limits its clinical application. The present review summarizes the basic biological functions and toxicity of IL-12 in the treatment of melanoma and discusses the clinical application of IL-12, especially the combination of IL-12 with immune checkpoint inhibitors, cytokines and other therapeutic drugs. We also summarize several promising technological approaches such as carriers that have been developed to improve the pharmacokinetics, efficacy and safety of IL-12 or IL-12 encoding plasmid application.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jun Pan
- Institute of Cancer, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianping Pan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China
- Correspondence: ; Tel.: +86-0571-88285702
| |
Collapse
|
8
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
9
|
Kang J, Lee HJ, Lee J, Hong J, Hong Kim Y, Disis ML, Gim JA, Park KH. Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model. J Immunother Cancer 2022; 10:jitc-2022-004702. [PMID: 36109084 PMCID: PMC9478831 DOI: 10.1136/jitc-2022-004702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background Heat shock protein 90 (HSP90) is a protein chaperone for most of the important signal transduction pathways in human epidermal growth factor receptor 2-positive (HER2+) breast cancer, including human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor and Akt. The aim of our study is to identify peptide-based vaccines and to develop an effective immunotherapeutics for the treatment of HER2+ breast cancer. Methods HSP90-derived major histocompatibility complex (MHC) class II epitopes were selected using in silico algorithms and validated by enzyme-linked immunospot (ELISPOT). In vivo antitumor efficacy was evaluated in MMTVneu-transgenic mice. HSP90 peptide-specific systemic T-cell responses were assessed using interferon gamma ELISPOT assay, and immune microenvironment in tumors was evaluated using multiplex immunohistochemistry and TCRβ sequencing. Results First, candidate HSP90-derived MHC class II epitopes with high binding affinities across multiple human HLA class II genotypes were identified using in silico algorithms. Among the top 10 peptides, p485 and p527 were selected as promising Th1 immunity-inducing epitopes with low potential for Th2 immunity induction. The selected MHC class II HSP90 peptides induced strong antigen-specific T cell responses, which was induced by cross-priming of CD8+ T cells in vivo. The HSP90 peptide vaccines were effective in the established tumor model, and their efficacy was further enhanced when combined with stimulator of interferon genes (STING) agonist and/or anticytotoxic T lymphocyte-associated antigen-4 antibody in MMTVneu-transgenic mice. Increased tumor rejection was associated with increased systemic HSP90-specific T-cell responses, increased T-cell recruitment in tumor microenvironment, intermolecular epitope spreading, and increased rearrangement of TCRβ by STING agonist. Conclusions In conclusion, we have provided the first preclinical evidence of the action mechanism of HSP90 peptide vaccines with a distinct potential for improving breast cancer treatment.
Collapse
Affiliation(s)
- Jinho Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hye-Jin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jimin Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jinhwa Hong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Mary L Disis
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeong-An Gim
- Center for Research Support, Korea University College of Medicine, Seoul, South Korea
| | - Kyong Hwa Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Hernandez R, Malek TR. Fueling Cancer Vaccines to Improve T Cell-Mediated Antitumor Immunity. Front Oncol 2022; 12:878377. [PMID: 35651800 PMCID: PMC9150178 DOI: 10.3389/fonc.2022.878377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer vaccines offer the potential to enhance T cell-mediated antitumor immunity by expanding and increasing the function of tumor-specific T cells and shaping the recall response against recurring tumors. While the use of cancer vaccines is not a new immunotherapeutic approach, the cancer vaccine field continues to evolve as new antigen types emerge and vaccine formulations and delivery strategies are developed. As monotherapies, cancer vaccines have not been very efficacious in part due to pre-existing peripheral- and tumor-mediated tolerance mechanisms that limit T cell function. Over the years, various agents including Toll-like receptor agonists, cytokines, and checkpoint inhibitors have been employed as vaccine adjuvants and immune modulators to increase antigen-mediated activation, expansion, memory formation, and T effector cell function. A renewed interest in this approach has emerged as better neoepitope discovery tools are being developed and our understanding of what constitutes an effective cancer vaccine is improved. In the coming years, cancer vaccines will likely be vital to enhance the response to current immunotherapies. In this review, we discuss the various types of therapeutic cancer vaccines, including types of antigens and approaches used to enhance cancer vaccine responses such as TLR agonists, recombinant interleukin-2 and interleukin-2 derivatives, and checkpoint inhibitors.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
12
|
da Luz JCDS, Antunes F, Clavijo-Salomon MA, Signori E, Tessarollo NG, Strauss BE. Clinical Applications and Immunological Aspects of Electroporation-Based Therapies. Vaccines (Basel) 2021; 9:727. [PMID: 34358144 PMCID: PMC8310106 DOI: 10.3390/vaccines9070727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology.
Collapse
Affiliation(s)
- Jean Carlos dos Santos da Luz
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Fernanda Antunes
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | | | - Emanuela Signori
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Nayara Gusmão Tessarollo
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Bryan E. Strauss
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| |
Collapse
|
13
|
Hong H, Wang X, Song X, Fawal GE, Wang K, Jiang D, Pei Y, Wang Z, Wang H. Transdermal delivery of interleukin-12 gene targeting dendritic cells enhances the anti-tumour effect of programmed cell death protein 1 monoclonal antibody. BIOMATERIALS TRANSLATIONAL 2021; 2:151-164. [PMID: 35836967 PMCID: PMC9255785 DOI: 10.12336/biomatertransl.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023]
Abstract
Recent studies have suggested that the anti-tumour effect of the programmed cell death protein 1 monoclonal antibody (aPD-1) depends on the expression of interleukin-12 (IL-12) by dendritic cells (DCs). Since DCs are abundant in skin tissues, transdermal delivery of IL-12 targeting DCs may significantly improve the anti-tumour effect of aPD-1. In this study, a novel mannosylated chitosan (MC)-modified ethosome (Eth-MC) was obtained through electrostatic adsorption. The Eth-MC loaded with plasmid containing the IL-12 gene (pIL-12@Eth-MC) stimulated DCs to express mature-related molecular markers such as CD86, CD80, and major histocompatibility complex-II in a targeted manner. The pIL-12@Eth-MC was then mixed with polyvinyl pyrrolidone solution to make microspheres using the electrospray technique, and sprayed onto the surface of electrospun silk fibroin-polyvinyl alcohol nanofibres to obtain a PVP-pIL-12@Eth-MC/silk fibroin-polyvinyl alcohol composite nanofibrous patch (termed a transcutaneous immunization (TCI) patch). The TCI patch showed a good performance on transdermal drug release. Animal experiments on melanoma-bearing mice showed that topical application of the TCI patches promoted the expression of IL-12 and inhibited the growth of tumour. Furthermore, combined application of the TCI patch and aPD-1 showed a stronger anti-tumour effect than aPD-1 monotherapy. The combination therapy significantly promoted the expression of IL-12, interferon-γ and tumour necrosis factor-α, the infiltration of CD4+ and CD8+ T cells into tumour tissues, and thus promoted the apoptosis of tumour cells. The present study provides a convenient and non-invasive strategy for improving the efficacy of immune checkpoint inhibitor therapy. This study was approved by the Institutional Animal Care and Use Committee at Donghua University (approval No. DHUEC-NSFC-2020-11) on March 31, 2020.
Collapse
Affiliation(s)
- Huoyan Hong
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaoyun Wang
- Department of Obstetrics & Gynaecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xinran Song
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Gomaa El Fawal
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China,Department of Polymer Materials Research, Advanced Technology and New Materials Research Institute, Scientific Research and Technological Applications City (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Kaili Wang
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Di Jiang
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yifei Pei
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhe Wang
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Hongsheng Wang
- Shanghai Engineering Research Centre of Nano-Biomaterials and Regenerative Medicine, Key Laboratory of Science & Technology of Eco-Textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China,Corresponding author: Hongsheng Wang,
| |
Collapse
|
14
|
Zahm CD, Moseman JE, Delmastro LE, G Mcneel D. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncoimmunology 2021; 10:1912892. [PMID: 33996265 PMCID: PMC8078506 DOI: 10.1080/2162402x.2021.1912892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Concurrent blockade of different checkpoint receptors, notably PD-1 and CTLA-4, elicits greater anti-tumor activity for some tumor types, and the combination of different checkpoint receptor inhibitors is an active area of clinical research. We have previously demonstrated that anti-tumor vaccination, by activating CD8 + T cells, increases the expression of PD-1, CTLA-4, LAG-3 and other inhibitory receptors, and the anti-tumor efficacy of vaccination can be increased with checkpoint blockade. In the current study, we sought to determine whether anti-tumor vaccination might be further improved with combined checkpoint blockade. Using an OVA-expressing mouse tumor model, we found that CD8 + T cells activated in the presence of professional antigen presenting cells (APC) expressed multiple checkpoint receptors; however, T cells activated without APCs expressed LAG-3 alone, suggesting that LAG-3 might be a preferred target in combination with vaccination. Using three different murine tumor models, and peptide or DNA vaccines targeting three tumor antigens, we assessed the effects of vaccines with blockade of PD-1 and/or LAG-3 on tumor growth. We report that, in each model, the anti-tumor efficacy of vaccination was increased with PD-1 and/or LAG-3 blockade. However, combined PD-1 and LAG-3 blockade elicited the greatest anti-tumor effect when combined with vaccination in a MycCaP prostate cancer model in which PD-1 blockade alone with vaccination targeting a “self” tumor antigen had less efficacy. These results suggest anti-tumor vaccination might best be combined with concurrent blockade of both PD-1 and LAG-3, and potentially other checkpoint receptors whose expression is increased on CD8 + T cells following vaccine-mediated activation.
Collapse
Affiliation(s)
- Christopher D Zahm
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Jena E Moseman
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Lauren E Delmastro
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Douglas G Mcneel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
15
|
Chyuan IT, Chu CL, Hsu PN. Targeting the Tumor Microenvironment for Improving Therapeutic Effectiveness in Cancer Immunotherapy: Focusing on Immune Checkpoint Inhibitors and Combination Therapies. Cancers (Basel) 2021; 13:cancers13061188. [PMID: 33801815 PMCID: PMC7998672 DOI: 10.3390/cancers13061188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoints play critical roles in the regulation of T-cell effector function, and the effectiveness of their inhibitors in cancer therapy has been established. Immune checkpoint inhibitors (ICIs) constitute a paradigm shift in cancer therapy in general and cancer immunotherapy in particular. Immunotherapy has been indicated to reinvigorate antitumor T-cell activity and dynamically modulate anticancer immune responses. However, despite the promising results in the use of immunotherapy in some cancers, numerous patients do not respond to ICIs without the existence of a clear predictive biomarker. Overall, immunotherapy involves a certain degree of uncertainty and complexity. Research on the exploration of cellular and molecular factors within the tumor microenvironment (TME) aims to identify possible mechanisms of immunotherapy resistance, as well as to develop novel combination strategies involving the specific targeting of the TME for cancer immunotherapy. The combination of this approach with other types of treatment, including immune checkpoint blockade therapy involving multiple agents, most of the responses and effects in cancer therapy could be significantly enhanced, but the appropriate combinations have yet to be established. Moreover, the in-depth exploration of complexity within the TME allows for the exploration of pathways of immune dysfunction. It may also aid in the identification of new therapeutic targets. This paper reviews recent advances in the improvement of therapeutic efficacy on the immune context of the TME and highlights its contribution to cancer immunotherapy.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88635); Fax: +886-2-23217921
| |
Collapse
|
16
|
Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chin Med J (Engl) 2020; 133:2444-2455. [PMID: 32969861 PMCID: PMC7575183 DOI: 10.1097/cm9.0000000000001124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the research of immune checkpoint inhibitors has made a great breakthrough in lung cancer treatment. Currently, a variety of immune checkpoint inhibitors have been applied into clinical practice, including antibodies targeting the programmed cell death-1, programmed cell death-ligand 1, and cytotoxic T-lymphocyte antigen 4, and so on. However, not all patients can benefit from the treatment. Abnormal antigen presentation, functional gene mutation, tumor microenvironment, and other factors can lead to primary or secondary resistance. In this paper, we reviewed the molecular mechanism of immune checkpoint inhibitor resistance and various combination strategies to overcome resistance, in order to expand the beneficial population and enable precision medicine.
Collapse
|
17
|
Gamat-Huber M, Jeon D, Johnson LE, Moseman JE, Muralidhar A, Potluri HK, Rastogi I, Wargowski E, Zahm CD, McNeel DG. Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers (Basel) 2020; 12:cancers12102831. [PMID: 33008010 PMCID: PMC7601088 DOI: 10.3390/cancers12102831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The only vaccine approved by FDA as a treatment for cancer is sipuleucel-T, a therapy for patients with metastatic castration-resistant prostate cancer (mCRPC). Most investigators studying anti-tumor vaccines believe they will be most effective as parts of combination therapies, rather than used alone. Unfortunately, the cost and complexity of sipuleucel-T makes it difficult to feasibly be used in combination with many other agents. In this review article we discuss the use of DNA vaccines as a simpler vaccine approach that has demonstrated efficacy in several animal species. We discuss the use of DNA vaccines in combination with traditional treatments for mCRPC, and other immune-modulating treatments, in preclinical and early clinical trials for patients with mCRPC. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is a challenging disease to treat, with poor outcomes for patients. One antitumor vaccine, sipuleucel-T, has been approved as a treatment for mCRPC. DNA vaccines are another form of immunotherapy under investigation. DNA immunizations elicit antigen-specific T cells that cause tumor cell lysis, which should translate to meaningful clinical responses. They are easily amenable to design alterations, scalable for large-scale manufacturing, and thermo-stable for easy transport and distribution. Hence, they offer advantages over other vaccine formulations. However, clinical trials with DNA vaccines as a monotherapy have shown only modest clinical effects against tumors. Standard therapies for CRPC including androgen-targeted therapies, radiation therapy and chemotherapy all have immunomodulatory effects, which combined with immunotherapies such as DNA vaccines, could potentially improve treatment. In addition, many investigational drugs are being developed which can augment antitumor immunity, and together with DNA vaccines can further enhance antitumor responses in preclinical models. We reviewed the literature available prior to July 2020 exploring the use of DNA vaccines in the treatment of prostate cancer. We also examined various approved and experimental therapies that could be combined with DNA vaccines to potentially improve their antitumor efficacy as treatments for mCRPC.
Collapse
|
18
|
Habibi N, Christau S, Ochyl LJ, Fan Z, Hassani Najafabadi A, Kuehnhammer M, Zhang M, Helgeson M, Klitzing R, Moon JJ, Lahann J. Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nahal Habibi
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Stephanie Christau
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Lukasz J. Ochyl
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Zixing Fan
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Alireza Hassani Najafabadi
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | | | - Mengwen Zhang
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Matthew Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Regine Klitzing
- Department of Physics Technische Universitaet Darmstadt Darmstadt 64289 Germany
| | - James J. Moon
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Joerg Lahann
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
19
|
Mei Z, Huang J, Qiao B, Lam AKY. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci 2020; 12:16. [PMID: 32461587 PMCID: PMC7253444 DOI: 10.1038/s41368-020-0084-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
With the understanding of the complex interaction between the tumour microenvironment and immunotherapy, there is increasing interest in the role of immune regulators in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of T cells and immune checkpoint molecules is important for the immune response to cancers. Immune checkpoint molecules include cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), T-cell immunoglobulin mucin protein 3 (TIM-3), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and immunoreceptor tyrosine-based inhibitory motif (TIGIT), glucocorticoid-induced tumour necrosis factor receptor (GITR) and V-domain Ig suppressor of T cell activation (VISTA). Many clinical trials using checkpoint inhibitors, as both monotherapies and combination therapies, have been initiated targeting these immune checkpoint molecules. This review summarizes the functional mechanism and use of various immune checkpoint molecules in HNSCC, including monotherapies and combination therapies, and provides better treatment options for patients with HNSCC.
Collapse
Affiliation(s)
- Zi Mei
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwen Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Alfred King-Yin Lam
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Cancer Molecular Pathology and Griffith Medical School, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
20
|
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125:110009. [PMID: 32106381 DOI: 10.1016/j.biopha.2020.110009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted to include papers from 2010 to June 2019. RESULTS Recent developments in strategies of targeted cancer therapy were reported. Specifically, on the two types of targeted therapy; first, immune-based therapy such as the use of immune checkpoint inhibitors (ICIs), immune cytokines, tumor-targeted superantigens (TTS) and ligand targeted therapeutics (LTTs). The second strategy deals with enzyme/small molecules-based therapies, such as the use of a proteolysis targeting chimera (PROTAC), antibody-drug conjugates (ADC) and antibody-directed enzyme prodrug therapy (ADEPT). The precise targeting of the drug to the gene or protein under attack was also investigated, in other words, how precision medicine can be used to tailor treatments. CONCLUSION The conventional therapeutic paradigm for cancer and other diseases has focused on a single type of intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy as well as combination therapies.
Collapse
Affiliation(s)
- Sara S Bashraheel
- Protein Engineering Unit, Life and Science Research Department, Anti-Doping Lab-Qatar (ADLQ), Doha, Qatar; Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Alexander Domling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sayed K Goda
- Cairo University, Faculty of Science, Chemistry Department, Giza, Egypt.
| |
Collapse
|
21
|
Kon E, Benhar I. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success. Drug Resist Updat 2019; 45:13-29. [DOI: 10.1016/j.drup.2019.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
|