1
|
Hubert A, Tabuteau H, Farasin J, Loncar A, Dufresne A, Méheust Y, Le Borgne T. Fluid flow drives phenotypic heterogeneity in bacterial growth and adhesion on surfaces. Nat Commun 2024; 15:6161. [PMID: 39039040 PMCID: PMC11263347 DOI: 10.1038/s41467-024-49997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Bacteria often thrive in surface-attached communities, where they can form biofilms affording them multiple advantages. In this sessile form, fluid flow is a key component of their environments, renewing nutrients and transporting metabolic products and signaling molecules. It also controls colonization patterns and growth rates on surfaces, through bacteria transport, attachment and detachment. However, the current understanding of bacterial growth on surfaces neglects the possibility that bacteria may modulate their division behavior as a response to flow. Here, we employed single-cell imaging in microfluidic experiments to demonstrate that attached Escherichia coli cells can enter a growth arrest state while simultaneously enhancing their adhesion underflow. Despite utilizing clonal populations, we observed a non-uniform response characterized by bistable dynamics, with co-existing subpopulations of non-dividing and actively dividing bacteria. As the proportion of non-dividing bacteria increased with the applied flow rate, it resulted in a reduction in the average growth rate of bacterial populations on flow-exposed surfaces. Dividing bacteria exhibited asymmetric attachment, whereas non-dividing counterparts adhered to the surface via both cell poles. Hence, this phenotypic diversity allows bacterial colonies to combine enhanced attachment with sustained growth, although at a reduced rate, which may be a significant advantage in fluctuating flow conditions.
Collapse
Affiliation(s)
- Antoine Hubert
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Hervé Tabuteau
- Institut de Physique de Rennes, UMR 6251 University of Rennes and CNRS, Rennes, France.
| | - Julien Farasin
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Aleksandar Loncar
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Alexis Dufresne
- ECOBIO, UMR 6553 University of Rennes and CNRS, Rennes, France
| | - Yves Méheust
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Tanguy Le Borgne
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France.
| |
Collapse
|
2
|
Niu WA, Smith MN, Santore MM. Depletion attractions drive bacterial capture on both non-fouling and adhesive surfaces, enhancing cell orientation. SOFT MATTER 2022; 18:9205-9215. [PMID: 36426747 PMCID: PMC9837788 DOI: 10.1039/d2sm01248k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Depletion attractions, occurring between surfaces immersed in a polymer solution, drive bacteria adhesion to a variety of surfaces. The latter include the surfaces of non-fouling coatings such as hydrated polyethylene glycol (PEG) layers but also, as demonstrated in this work, surfaces that are bacteria-adhesive, such as that of glass. Employing a flagella free E. coli strain, we demonstrate that cell adhesion on glass is enhanced by dissolved polyethylene oxide (PEO), exhibiting a faster rate and greater numbers of captured cells compared with the slower capture of the same cells on glass from a buffer solution. After removal of depletant, any cell retention appears to be governed by the substrate, with cells immediately released from non-fouling PEG surfaces but retained on glass. A distinguishing feature of cells captured by depletion on PEG surfaces is their orientation parallel to the surface and very strong alignment with flow. This suggests that, in the moments of capture, cells are able to rotate as they adhere. By contrast on glass, captured cells are substantially more upright and less aligned by flow. On glass the free polymer exerts forces that slightly tip cells towards the surface. Free polymer also holds cells still on adhesive and non-fouling surfaces alike but, upon removal of free PEO, cells retained on glass tend to be held by one end and exhibit a Brownian type rotational rocking.
Collapse
Affiliation(s)
- Wuqi Amy Niu
- Department of Polymer Science and Engineering University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | - Morgan N Smith
- Department of Polymer Science and Engineering University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | - Maria M Santore
- Department of Polymer Science and Engineering University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Random encounters and amoeba locomotion drive the predation of Listeria monocytogenes by Acanthamoeba castellanii. Proc Natl Acad Sci U S A 2022; 119:e2122659119. [PMID: 35914149 PMCID: PMC9371647 DOI: 10.1073/pnas.2122659119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Predatory protozoa play an essential role in shaping microbial populations. Among these protozoa, Acanthamoeba are ubiquitous in the soil and aqueous environments inhabited by Listeria monocytogenes. Observations of predator-prey interactions between these two microorganisms revealed a predation strategy in which Acanthamoeba castellanii assemble L. monocytogenes in aggregates, termed backpacks, on their posterior. The rapid formation and specific location of backpacks led to the assumption that A. castellanii may recruit L. monocytogenes by releasing an attractant. However, this hypothesis has not been validated, and the mechanisms driving this process remained unknown. Here, we combined video microscopy, microfluidics, single-cell image analyses, and theoretical modeling to characterize predator-prey interactions of A. castellanii and L. monocytogenes and determined whether bacterial chemotaxis contributes to the backpack formation. Our results indicate that L. monocytogenes captures are not driven by chemotaxis. Instead, random encounters of bacteria with amoebae initialize bacterial capture and aggregation. This is supported by the strong correlation between experimentally derived capture rates and theoretical encounter models at the single-cell level. Observations of the spatial rearrangement of L. monocytogenes trapped by A. castellanii revealed that bacterial aggregation into backpacks is mainly driven by amoeboid locomotion. Overall, we show that two nonspecific, independent mechanisms, namely random encounters enhanced by bacterial motility and predator surface-bound locomotion, drive backpack formation, resulting in a bacterial aggregate on the amoeba ready for phagocytosis. Due to the prevalence of these two processes in the environment, we expect this strategy to be widespread among amoebae, contributing to their effectiveness as predators.
Collapse
|
4
|
Palma V, Gutiérrez MS, Vargas O, Parthasarathy R, Navarrete P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial–Host Interactions. Microorganisms 2022; 10:microorganisms10030563. [PMID: 35336138 PMCID: PMC8953368 DOI: 10.3390/microorganisms10030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial–host interactions, including the use of the zebrafish model.
Collapse
Affiliation(s)
- Victoria Palma
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
| | - Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
- Correspondence:
| |
Collapse
|
5
|
Cavitt TB, Carlisle JG, Dodds AR, Faulkner RA, Garfield TC, Ghebranious VN, Hendley PR, Henry EB, Holt CJ, Lowe JR, Lowry JA, Oskin DS, Patel PR, Smith D, Wei W. Thermodynamic Surface Analyses to Inform Biofilm Resistance. iScience 2020; 23:101702. [PMID: 33205020 PMCID: PMC7649285 DOI: 10.1016/j.isci.2020.101702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/01/2022] Open
Abstract
Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited.
Collapse
Affiliation(s)
- T. Brian Cavitt
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jasmine G. Carlisle
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Alexandra R. Dodds
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Rebecca A. Faulkner
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Tyson C. Garfield
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Verena N. Ghebranious
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Phillip R. Hendley
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Emily B. Henry
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Charles J. Holt
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jordan R. Lowe
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jacob A. Lowry
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - D. Spencer Oskin
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Pooja R. Patel
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Devin Smith
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Wenting Wei
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| |
Collapse
|