1
|
Zhang J, Wang H, Wang Q, Mo J, Fu L, Peng S. EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. Mamm Genome 2025; 36:93-105. [PMID: 39414652 DOI: 10.1007/s00335-024-10078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease that ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may eventually progress to cirrhosis and hepatocellular carcinoma (HCC). The underlying mechanism of MASLD remains incompletely understood. This study aimed to identify key gene implicated in MASLD pathogenesis and validate its correlation with disease severity through an integration of bioinformatics and experimental approaches. Liver transcriptome data from MASLD patients were obtained from the Gene Expression Omnibus (GEO) database. A diet-induced MASLD mouse model was developed, and liver RNA-sequencing was performed. Liver specimens and clinical data from patients were collected for further analysis. A total of 120 differentially expressed genes (DEGs) were shared between datasets GSE89632 and GSE213621, with functional enrichment in inflammatory, metabolic, and cell cycle-related pathways. Protein-protein interaction (PPI) network analysis identified three modules associated with MASLD, with the cell cycle-related module being the most notable. EEF1A2 was identified as a novel hub gene and revealed to be elevated with MASLD progression through dataset analysis. EEF1A2 was confirmed to be highly expressed in the livers of both MASLD mouse models and patients. Moreover, the increased expression of EEF1A2 in MASH was positively correlated with higher serum alanine aminotransferase (ALT), alanine aminotransferase (AST), total cholesterol (TC), and body mass index (BMI). In conclusion, EEF1A2 is a novel hub gene significantly associated with MASLD severity and is a promising biomarker and therapeutic target for MASLD.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Mo
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Nguyen HP, An K, Ito Y, Kharbikar BN, Sheng R, Paredes B, Murray E, Pham K, Bruck M, Zhou X, Biellak C, Ushiki A, Nobuhara M, Fong SL, Bernards DA, Lynce F, Dillon DA, Magbanua MJM, Huppert LA, Hammerlindl H, Klein JA, Valdiviez L, Fiehn O, Esserman L, Desai TA, Yee SW, Rosenbluth JM, Ahituv N. Implantation of engineered adipocytes suppresses tumor progression in cancer models. Nat Biotechnol 2025:10.1038/s41587-024-02551-2. [PMID: 39905264 DOI: 10.1038/s41587-024-02551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
Tumors exhibit an increased ability to obtain and metabolize nutrients. Here, we implant engineered adipocytes that outcompete tumors for nutrients and show that they can substantially reduce cancer progression, a technology termed adipose manipulation transplantation (AMT). Adipocytes engineered to use increased amounts of glucose and fatty acids by upregulating UCP1 were placed alongside cancer cells or xenografts, leading to significant cancer suppression. Transplanting modulated adipose organoids in pancreatic or breast cancer genetic mouse models suppressed their growth and decreased angiogenesis and hypoxia. Co-culturing patient-derived engineered adipocytes with tumor organoids from dissected human breast cancers significantly suppressed cancer progression and proliferation. In addition, cancer growth was impaired by inducing engineered adipose organoids to outcompete tumors using tetracycline or placing them in an integrated cell-scaffold delivery platform and implanting them next to the tumor. Finally, we show that upregulating UPP1 in adipose organoids can outcompete a uridine-dependent pancreatic ductal adenocarcinoma for uridine and suppress its growth, demonstrating the potential customization of AMT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Kelly An
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Ito
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Breanna Paredes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly Pham
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Bruck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Biellak
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Daniel A Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark Jesus M Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jace Anton Klein
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Luis Valdiviez
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Oliver Fiehn
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- School of Engineering, Brown University, Providence, RI, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer M Rosenbluth
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Ma H, Suo L, Zhao J, Ma R, Wang Q, Liu J, Qiao J, Wu J, An J, Liu Y, Xing Y, Wang H, Su Z. Prognostic biomarkers based on GUF1, EFTUD2 and GSPT1 targets affecting migration of gastric cancer cells. Transl Cancer Res 2024; 13:4827-4845. [PMID: 39430826 PMCID: PMC11483415 DOI: 10.21037/tcr-24-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 10/22/2024]
Abstract
Background Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a protein coding gene which is involved in tumor development and progression in several types of human cancer, but little is known about the function of eEF1A2 proteins in gastric cancer (GC). This study aimed to investigate the effects of GUF1, EFTUD2 and GSPT1 on the migration of GC cells. Methods The Oncomine and The Cancer Genome Atlas (TCGA) databases were used to evaluate the expression of GUF1, EFTUD2, GSPT1 and GSPT2 in GC and the association of eEF1A2 family with individual clinical characteristics. Kaplan-Meier (K-M) Plotter hinted the prognostic value of GUF1, EFTUD2, GSPT1 and GSPT2. GSE62254 and GSE66222 datasets were used to validate the expression of GUF1, EFTUD2, GSPT1. AGS cell line and GES line were also used for validating the function of GUF1, EFTUD2, GSPT1. RNA interference (RNAi) of GUF1, EFTUD2 and GSPT1 had been used to query those genes expression pattern and dissect the proliferation and migration in GC cell lines. Results GUF1, EFTUD2 and GSPT1 were significantly up-regulated in GC cell lines. High expression of GUF1, EFTUD2 and GSPT1 was correlated with cell proliferation and migration induced in GC cells. GUF1, EFTUD2 and GSPT1 may be potential novel oncogenes that helps to maintain the survival of GC cells. Conclusions This study identified that high levels of GUF1, EFTUD2 and GSPT1 expression are predictive biomarkers for a poor prognosis in GC.
Collapse
Affiliation(s)
- Haixiu Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Lina Suo
- Qinghai University Medical College, Xining, China
| | - Jing Zhao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Ronghua Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Qi Wang
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Jun Liu
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Jinwan Qiao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Juan Wu
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, China
| | - Juan An
- Qinghai University Medical College, Xining, China
| | - Yan Liu
- Qinghai University Medical College, Xining, China
| | - Yonghua Xing
- Qinghai University Medical College, Xining, China
| | - Haiyan Wang
- Qinghai University Medical College, Xining, China
| | - Zhanhai Su
- Qinghai University Medical College, Xining, China
| |
Collapse
|
4
|
Zheng SM, Feng YC, Zhu Q, Li RQ, Yan QQ, Teng L, Yue YM, Han MM, Ye K, Zhang SN, Qi TF, Tang CX, Zhao XH, Zhang YY, Xu L, Xu R, Xing J, Baker M, Liu T, Thorne RF, Jin L, Preiss T, Zhang XD, Cang S, Gao JN. MILIP Binding to tRNAs Promotes Protein Synthesis to Drive Triple-Negative Breast Cancer. Cancer Res 2024; 84:1460-1474. [PMID: 38593213 PMCID: PMC11063688 DOI: 10.1158/0008-5472.can-23-3046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.
Collapse
Affiliation(s)
- Si Min Zheng
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Yu Chen Feng
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Qin Zhu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| | - Ruo Qi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| | - Qian Qian Yan
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Liu Teng
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Man Man Han
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Sheng Nan Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Teng Fei Qi
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Cai Xia Tang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Liang Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Ran Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Jun Xing
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| | - Mark Baker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, New South Wales, Australia
| | - Rick F. Thorne
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, P.R. China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Shundong Cang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, P.R. China
| | - Jin Nan Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, P.R. China
| |
Collapse
|
5
|
Patel SA, Hassan MK, Dixit M. Oncogenic activation of EEF1A2 expression: a journey from a putative to an established oncogene. Cell Mol Biol Lett 2024; 29:6. [PMID: 38172654 PMCID: PMC10765684 DOI: 10.1186/s11658-023-00519-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Protein synthesis via translation is a central process involving several essential proteins called translation factors. Although traditionally described as cellular "housekeepers," multiple studies have now supported that protein initiation and elongation factors regulate cell growth, apoptosis, and tumorigenesis. One such translation factor is eukaryotic elongation factor 1 alpha 2 (EEF1A2), a member of the eukaryotic elongation factor family, which has a canonical role in the delivery of aminoacyl-tRNA to the A-site of the ribosome in a guanosine 5'-triphosphate (GTP)-dependent manner. EEF1A2 differs from its closely related isoform, EEF1A1, in tissue distribution. While EEF1A1 is present ubiquitously, EEF1A2 replaces it in specialized tissues. The reason why certain specialized tissues need to essentially switch EEF1A1 expression altogether with EEF1A2 remains to be answered. Abnormal "switch on" of the EEF1A2 gene in normal tissues is witnessed and is seen as a cause of oncogenic transformation in a wide variety of solid tumors. This review presents the journey of finding increased expression of EEF1A2 in multiple cancers, establishing molecular mechanism, and exploring it as a target for cancer therapy. More precisely, we have compiled studies in seven types of cancers that have reported EEF1A2 overexpression. We have discussed the effect of aberrant EEF1A2 expression on the oncogenic properties of cells, signaling pathways, and interacting partners of EEF1A2. More importantly, in the last part, we have discussed the unique potential of EEF1A2 as a therapeutic target. This review article gives an up-to-date account of EEF1A2 as an oncogene and can draw the attention of the scientific community, attracting more research.
Collapse
Affiliation(s)
- Saket Awadhesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Md Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, P.O. Jatni, Khurda, Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Mehta V, Suman P, Chander H. High levels of unfolded protein response component CHAC1 associates with cancer progression signatures in malignant breast cancer tissues. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2351-2365. [PMID: 35930144 DOI: 10.1007/s12094-022-02889-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The aberrant mRNA expression of a UPR component Cation transport regulator homolog 1 (CHAC1) has been reported to be associated with poor survival in breast and ovarian cancer patients, however, the expression of CHAC1 at protein levels in malignant breast tissues is underreported. The following study aimed at analyzing CHAC1 protein expression in malignant breast cancer tissues. METHODS Evaluation of CHAC1 expression in invasive ductal carcinomas (IDCs) with known ER, PR, and HER2 status was carried out using immunohistochemistry (IHC) with CHAC1 specific antibody. The Human breast cancer tissue microarray (TMA, cat# BR1503f, US Biomax, Inc., Rockville, MD) was used to determine CHAC1 expression. The analysis of CHAC1 IHC was done to determine its expression in terms of molecular subtypes of breast cancer, lymph node status, and proliferation index using Qu-Path software. Survival analysis was studied with a Kaplan-Meier plotter. RESULTS Immunohistochemical analysis of CHAC1 in breast cancer tissues showed significant up-regulation of CHAC1 as compared to the adjacent normal and benign tissues. Interestingly, CHAC1 immunostaining revealed high expression in tumor tissues with high proliferation and positive lymph node metastasis suggesting that CHAC1 might have an important role to play in breast cancer progression. Furthermore, high CHAC1 expression is associated with poor overall survival (OS) in large breast cancer patient cohorts. CONCLUSION As a higher expression of CHAC1 was observed in tissue cores with high Ki67 index and positive lymph node metastasis it may be concluded that enhanced CHAC1 expression correlates with proliferation and metastasis. The further analysis of breast cancer patients' survival data through KM plot indicated that high CHAC1 expression is associated with a bad prognosis hinting that CHAC1 may have a possible prognostic significance in breast cancer.
Collapse
Affiliation(s)
- Vikrant Mehta
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhat Suman
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Harish Chander
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India. .,Biotherapeutics Division, National Institute of Biologicals, Noida, 201309, India.
| |
Collapse
|
7
|
Bi Y, Wu ZH, Cao F. Prognostic value and immune relevancy of a combined autophagy-, apoptosis- and necrosis-related gene signature in glioblastoma. BMC Cancer 2022; 22:233. [PMID: 35241019 PMCID: PMC8892733 DOI: 10.1186/s12885-022-09328-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prognostic implications in GBM patients. Methods Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognostic signature. Kaplan–Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external validation. Finally, we investigated the differences in the immune microenvironment between different prognostic groups and predicted potential compounds targeting each group. Results A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of PDCD1LG2, CD86, CD48 and IDO1. Conclusion Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide patients’ selection for preferential use of immunotherapy in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09328-3.
Collapse
Affiliation(s)
- Ying Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Nelke A, García-López S, Martínez-Serrano A, Pereira MP. Multifactoriality of Parkinson's Disease as Explored Through Human Neural Stem Cells and Their Transplantation in Middle-Aged Parkinsonian Mice. Front Pharmacol 2022; 12:773925. [PMID: 35126116 PMCID: PMC8807563 DOI: 10.3389/fphar.2021.773925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative disorder for which there is currently no cure. Cell replacement therapy is a potential treatment for PD; however, this therapy has more clinically beneficial outcomes in younger patients with less advanced PD. In this study, hVM1 clone 32 cells, a line of human neural stem cells, were characterized and subsequently transplanted in middle-aged Parkinsonian mice in order to examine cell replacement therapy as a treatment for PD. In vitro analyses revealed that these cells express standard dopamine-centered markers as well as others associated with mitochondrial and peroxisome function, as well as glucose and lipid metabolism. Four months after the transplantation of the hVM1 clone 32 cells, striatal expression of tyrosine hydroxylase was minimally reduced in all Parkinsonian mice but that of dopamine transporter was decreased to a greater extent in buffer compared to cell-treated mice. Behavioral tests showed marked differences between experimental groups, and cell transplant improved hyperactivity and gait alterations, while in the striatum, astroglial populations were increased in all groups due to age and a higher amount of microglia were found in Parkinsonian mice. In the motor cortex, nonphosphorylated neurofilament heavy was increased in all Parkinsonian mice. Overall, these findings demonstrate that hVM1 clone 32 cell transplant prevented motor and non-motor impairments and that PD is a complex disorder with many influencing factors, thus reinforcing the idea of novel targets for PD treatment that tend to be focused on dopamine and nigrostriatal damage.
Collapse
Affiliation(s)
- Anna Nelke
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia García-López
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Martínez-Serrano
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta P. Pereira
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Türkez H, Arslan ME, Sönmez E, Tatar A, Geyikoğlu F, Açikyildiz M, Mardinoğlu A. Safety Assessments of Nickel Boride Nanoparticles on the Human Pulmonary Alveolar Cells by Using Cell Viability and Gene Expression Analyses. Biol Trace Elem Res 2021; 199:2602-2611. [PMID: 32909113 DOI: 10.1007/s12011-020-02374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Nickel boride is generally used in the steel industry as a melting accelerator due to its feature of creating a protective and stable attribute at high temperatures. It is also used to improve the hardenability of the steel with boron addition in the production. Thus, safety studies and biocompatibility analysis of nickel boride should be performed comprehensively to understand the limitations of use in various areas. In the present study, nickel boride nanoparticles (Ni2B NPs) were synthesized by a single-step method and molecule characterizations were performed via the use of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. Cytotoxicity properties of Ni2B NPs were identified on human pulmonary alveolar epithelial cells (HPAEpiC) by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays. Illumina human ht-12 v4.0 whole-genome microarray analysis was conducted to investigate NiB2 NPs effects on gene expression regulations of HPAEpiC cells. The database for annotation, visualization, and integrated discovery (DAVID) analysis was performed to reveal the relationship between Ni2B NP application and cellular pathway alterations. According to cytotoxicity analysis, the IC50 value for Ni2B NP application was found as 81.99 mg/L concentration. Microarray analysis of Ni2B NP application was shown for the first time that 693 gene expression changes (FC ≥ 2) occurred significantly over 40.000 gene probes and Ni2B NPs were observed to affect microtubule regulation, centrosome organization, and phosphoprotein synthesis.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum, Turkey
| | - Metin Açikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
10
|
Mills A, Gago F. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Int J Mol Sci 2021; 22:6973. [PMID: 34203525 PMCID: PMC8268798 DOI: 10.3390/ijms22136973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.
Collapse
Affiliation(s)
| | - Federico Gago
- Department of Biomedical Sciences & “Unidad Asociada IQM-CSIC”, School of Medicine and Health Sciences, University of Alcalá, E-28805 Alcalá de Henares, Spain;
| |
Collapse
|
11
|
Correlation between Androgen Receptor Expression and Immunohistochemistry Type as Prognostic Factors in a Cohort of Breast Cancer Patients: Result from a Single-Center, Cross Sectional Study. Healthcare (Basel) 2021; 9:healthcare9030277. [PMID: 33802610 PMCID: PMC7998173 DOI: 10.3390/healthcare9030277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: We investigated the correlation between the androgen receptor (AR) and immunohistochemistry (IHC) as a prognostic factor in breast cancer (BC). AR is expressed in 60–80% of BC. Methods: We evaluated the prognostic values of AR expression among 143 patients with BC for 36 months. The protocol was amended to measure androgen, estrogen and progesterone receptor expression by IHC and the percentage of hormone positive nuclei was quantified. We determined and quantified the Her2/neu status using IHC and in situ hybridization. The methodology consisted in using a Kaplan–Meier analysis and restricted mean survival time up to 36 months. The principal endpoints of the study were overall survival (OS) and progression free survival (PFS). Results: 57% of patients (n = 82) from our group had AR+ (≥ 1%). Patients with AR+ had better OS, 35.50 vs. 33.40 months, with p = 0.027. Moreover, PFS was prolonged for patients AR+, 32.60 vs. 30.50 months, with p = 0.38. Triple negative breast cancer (TNBC) patients had lower OS and no difference was observed for PFS. Conclusions: Both OS and PFS were favorably influenced by the presence of AR. TNBC had worse outcomes compared with patients with hormonal or/and Her 2/neu positive disease in terms of OS.
Collapse
|
12
|
Yang J, Tang J, Li J, Cen Y, Chen J, Dai G. Effect of activation of the Akt/mTOR signaling pathway by EEF1A2 on the biological behavior of osteosarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:158. [PMID: 33569460 PMCID: PMC7867884 DOI: 10.21037/atm-20-7974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Osteosarcoma (OS) is a common bone cancer in children and adolescents which causes a large number of cancer-related deaths. Eukaryotic Translation Elongation Factor 1 Alpha 2 (EEF1A2) has been revealed to have carcinogenic properties and promote tumor progression in many cancers. We want to investigate the biological function and mechanism of EEF1A2 in OS. Methods The expression of EEF1A2 in OS was investigated using the Gene Expression Omnibus (GEO) database and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological function of EEF1A2 in OS was studied using cell counting kit-8 (CCK8) assay, 5-ethynyl-2’-deoxyuridine (EdU) assay, Transwell assay, and OS of xenograft nude mice model. Real-time fluorescence quantitative PCR was used to detect the expression level of EEF1A2 mRNA in OS tissues and cell lines. Western blot was used to detect the phosphorylation level of Akt and mTOR Results There was high expression of EEF1A2 in OS, which was closely related to the Enneking stage and tumor size of OS. In vitro, EEF1A2 promoted the proliferation, migration, and invasion of OS cells; in vivo, EEF1A2 promoted the growth of OS tumors. The mechanism study showed that EEF1A2 can promote protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, thereby activating the Akt/mTOR signaling pathway in OS. Conclusion There is high expression of EEF1A2 in OS, which can promote the proliferation, migration, and invasion of OS cells in vitro and the growth of OS tumors in vivo via activation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jianing Yang
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jun Tang
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Dermatology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying Cen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gengwu Dai
- Department of Dermatology, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
13
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
14
|
Hassan MK, Kumar D, Patel SA, Dixit M. EEF1A2 triggers stronger ERK mediated metastatic program in ER negative breast cancer cells than in ER positive cells. Life Sci 2020; 262:118553. [PMID: 33035587 DOI: 10.1016/j.lfs.2020.118553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
AIMS Ever since EEF1A2's identification as a putative oncogene in breast cancer, it has stimulated curiosity due to its contrasting role in predicting the prognostic values in breast cancer patients. Contradicting reports suggest it to be playing a pro-survival as well as a negative role in the survival of patients. This prompted us to find the association of this protein with molecular subtypes in breast cancer and its effect on EMT in representative cell lines. MAIN METHODS Data-mining was carried out to ascertain the correlation of EEF1A2 with molecular subtypes in breast cancer patients. Scratch wound healing and transwell invasion assays were carried out to assess its role in migration and invasion. Western blot, qRT-PCR, and ELISA were carried out to determine key signalling pathways, cytokines, and EMT factors responsible for the observed phenotype. KEY FINDINGS EEF1A2 was associated with ER receptor positivity in breast cancer and was involved in its transcriptional regulation. It induced a robust metastatic program in MDA-MB-231 (a triple-negative cell line), and induced significant changes in its invasive and migratory properties via activation of the ERK pathway. This was not the case in MCF7 which is an ER-positive cell line. SIGNIFICANCE We highlight the specific tendency of EEF1A2 to enhance invasive properties of cell lines in particular molecular subtype only. This sheds light on its selective role in regulating oncogenic processes in breast cancer and could explain its contradicting association with good survival, despite being an oncogene in a certain cohort of breast cancer patients.
Collapse
Affiliation(s)
- Md Khurshidul Hassan
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO-Bhimpur-Padanpur, Jatni, Khurda 752050, Odisha, India
| | - Dinesh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO-Bhimpur-Padanpur, Jatni, Khurda 752050, Odisha, India
| | - Saket Awadhesbhai Patel
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO-Bhimpur-Padanpur, Jatni, Khurda 752050, Odisha, India
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, PO-Bhimpur-Padanpur, Jatni, Khurda 752050, Odisha, India.
| |
Collapse
|
15
|
Arslan AA, Tuminello S, Yang L, Zhang Y, Durmus N, Snuderl M, Heguy A, Zeleniuch-Jacquotte A, Shao Y, Reibman J. Genome-Wide DNA Methylation Profiles in Community Members Exposed to the World Trade Center Disaster. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155493. [PMID: 32751422 PMCID: PMC7432006 DOI: 10.3390/ijerph17155493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
The primary goal of this pilot study was to assess feasibility of studies among local community members to address the hypothesis that complex exposures to the World Trade Center (WTC) dust and fumes resulted in long-term epigenetic changes. We enrolled 18 WTC-exposed cancer-free women from the WTC Environmental Health Center (WTC EHC) who agreed to donate blood samples during their standard clinical visits. As a reference WTC unexposed group, we randomly selected 24 age-matched cancer-free women from an existing prospective cohort who donated blood samples before 11 September 2001. The global DNA methylation analyses were performed using Illumina Infinium MethylationEpic arrays. Statistical analyses were performed using R Bioconductor package. Functional genomic analyses were done by mapping the top 5000 differentially expressed CpG sites to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database. Among cancer-free subjects, we observed substantial methylation differences between WTC-exposed and unexposed women. The top 15 differentially methylated gene probes included BCAS2, OSGIN1, BMI1, EEF1A2, SPTBN5, CHD8, CDCA7L, AIDA, DDN, SNORD45C, ZFAND6, ARHGEF7, UBXN8, USF1, and USP12. Several cancer-related pathways were enriched in the WTC-exposed subjects, including endocytosis, mitogen-activated protein kinase (MAPK), viral carcinogenesis, as well as Ras-associated protein-1 (Rap1) and mammalian target of rapamycin (mTOR) signaling. The study provides preliminary data on substantial differences in DNA methylation between WTC-exposed and unexposed populations that require validation in further studies.
Collapse
Affiliation(s)
- Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Correspondence:
| | - Stephanie Tuminello
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Lei Yang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Yian Zhang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Nedim Durmus
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
| | - Adriana Heguy
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
- NYU Langone’s Genome Technology Center, New York, NY 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| |
Collapse
|
16
|
Expression pattern of EEF1A2 in brain tumors: Histological analysis and functional role as a promoter of EMT. Life Sci 2020; 246:117399. [PMID: 32032648 DOI: 10.1016/j.lfs.2020.117399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
AIMS Glioblastomas are highly aggressive brain tumors with a very poor survival rate. EEF1A2, the proto-oncogenic isoform of the EEF1A translation factor family, has been found to be overexpressed and promoting tumorigenesis in multiple cancers. Interestingly, recent studies reported reduced expression of this protein in brain tumors, drawing our attention to find the functional role and mechanism of this protein in brain tumor progression. MAIN METHODS Using representative cell line as models, the role of EEF1A2 in cell proliferation, migration and invasion were assessed using MTS assay, scratch wound-healing assay, transwell migration and invasion assay, respectively. Activation of key signaling pathways was assessed using western blots and real-time PCR. Finally, using immunohistochemistry we checked the protein levels of EEF1A2 in CNS tumors. KEY FINDINGS EEF1A2 was found to increase the proliferative, migratory and invasive properties of cell lines of both glial and neuronal origin. PI3K activation directly correlated with EEF1A2 levels. Protein levels of key EMT markers viz. Twist, Snail, and Slug were increased upon ectopic EEF1A2 expression. Furthermore, EEF1A2 was found to affect the expression levels of key inflammatory cytokines, growth factors and matrix metalloproteases. IHC analysis showed that EEF1A2 is upregulated in tumor tissues compared to normal tissue. SIGNIFICANCE EEF1A2 acts as an oncogene in both neuronal and glial cells and triggers an EMT program via PI3K pathway. However, it shows enhanced expression in neuronal cells of the brain than the glial cells, which could explain the previously reported anomaly.
Collapse
|
17
|
Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, Zhan Y, Liu Y, Mou T, Lan X, Wang Y, Li G, Wang J, Deng H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14:387-406. [PMID: 31876369 PMCID: PMC6998659 DOI: 10.1002/1878-0261.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16-eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c-Myc signaling. Our study unveiled that the SNX16/eEF1A2/c-Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongsheng Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuan Fang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mingdao Lin
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaochuang Feng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhenkang Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yizhi Zhan
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuechen Liu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tingyu Mou
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaoliang Lan
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanan Wang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guoxin Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiping Wang
- Division of Surgical OncologyDepartment of SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Haijun Deng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
18
|
Sieg M, Richter G, Schaefer AS, Kruppa J. Detection of suspicious interactions of spiking covariates in methylation data. BMC Bioinformatics 2020; 21:36. [PMID: 32000657 PMCID: PMC6993406 DOI: 10.1186/s12859-020-3364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In methylation analyses like epigenome-wide association studies, a high amount of biomarkers is tested for an association between the measured continuous outcome and different covariates. In the case of a continuous covariate like smoking pack years (SPY), a measure of lifetime exposure to tobacco toxins, a spike at zero can occur. Hence, all non-smokers are generating a peak at zero, while the smoking patients are distributed over the other SPY values. Additionally, the spike might also occur on the right side of the covariate distribution, if a category "heavy smoker" is designed. Here, we will focus on methylation data with a spike at the left or the right of the distribution of a continuous covariate. After the methylation data is generated, analysis is usually performed by preprocessing, quality control, and determination of differentially methylated sites, often performed in pipeline fashion. Hence, the data is processed in a string of methods, which are available in one software package. The pipelines can distinguish between categorical covariates, i.e. for group comparisons or continuous covariates, i.e. for linear regression. The differential methylation analysis is often done internally by a linear regression without checking its inherent assumptions. A spike in the continuous covariate is ignored and can cause biased results. RESULTS We have reanalysed five data sets, four freely available from ArrayExpress, including methylation data and smoking habits reported by smoking pack years. Therefore, we generated an algorithm to check for the occurrences of suspicious interactions between the values associated with the spike position and the non-spike positions of the covariate. Our algorithm helps to decide if a suspicious interaction can be found and further investigations should be carried out. This is mostly important, because the information on the differentially methylated sites will be used for post-hoc analyses like pathway analyses. CONCLUSIONS We help to check for the validation of the linear regression assumptions in a methylation analysis pipeline. These assumptions should also be considered for machine learning approaches. In addition, we are able to detect outliers in the continuous covariate. Therefore, more statistical robust results should be produced in methylation analysis using our algorithm as a preprocessing step.
Collapse
Affiliation(s)
- Miriam Sieg
- Charité - University Medicine, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin, 10117 Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
| | - Gesa Richter
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine, Charitéplatz 1, Berlin, 10117 Germany
| | - Arne S. Schaefer
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine, Charitéplatz 1, Berlin, 10117 Germany
| | - Jochen Kruppa
- Charité - University Medicine, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin, 10117 Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
| |
Collapse
|
19
|
Giudici F, Petracci E, Nanni O, Bottin C, Pinamonti M, Zanconati F, Scaggiante B. Correction: Elevated levels of eEF1A2 protein expression in triple negative breast cancer relate with poor prognosis. PLoS One 2019; 14:e0227068. [PMID: 31856204 PMCID: PMC6922362 DOI: 10.1371/journal.pone.0227068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0218030.].
Collapse
|