1
|
Deng P, Chen M, Si L. Temporal trends in inequalities of the burden of HIV/AIDS across 186 countries and territories. BMC Public Health 2023; 23:981. [PMID: 37237365 DOI: 10.1186/s12889-023-15873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The Global Burden of Disease, Injuries, and Risk Factors Study (GBD) has reported that HIV/AIDS continues to take a disproportionate toll on global health. However, the trends in global inequality of HIV/AIDS burden have remained ambiguous over the past two decades. The objectives of our study were to assess the socioeconomic inequalities, and temporal trends of HIV/AIDS across 186 countries and territories from 2000 to 2019. METHODS We extracted data from the GBD 2019, and conducted a cross-national time-series analysis. Age-standardized disability-adjusted life-year (DALY) rates were used to measure the global burden of HIV/AIDS. Gross national income (GNI) per capita was used to approximate the national socioeconomic status. Linear regression analysis was conducted to investigate the relationship between age-standardized DALY rates due to HIV/AIDS and GNI per capita. The concentration curve and concentration index (CI) were generated to evaluate the cross-national socioeconomic inequality of HIV/AIDS burden. A joinpoint regression analysis was used to quantify the changes in trends in socioeconomic inequality of HIV/AIDS burden from 2000 to 2019. RESULTS A decrease in age-standardized DALY rates for HIV/AIDS occurred in 132 (71%) of 186 countries/territories from 2000 to 2019, of which 52 (39%) countries/territories achieved a decrease in DALYs of more than 50%, and 27 (52%) of the 52 were from sub-Saharan Africa. The concentration curves of the age-standardized DALY rates of HIV/AIDS were above the equality line from 2000 to 2019. The CI rose from - 0.4625 (95% confidence interval - 0.6220 to -0.2629) in 2000 to -0.4122 (95% confidence interval - 0.6008 to -0.2235) in 2019. A four-phase trend of changes in the CIs of age-standardized DALY rates for HIV/AIDS was observed across 2000 to 2019, with an average increase of 0.6% (95% confidence interval 0.4 to 0.8, P < 0.001). CONCLUSIONS Globally, the burden of HIV/AIDS has decreased over the past two decades, accompanied by a trend of narrowing cross-country inequalities of HIV/AIDS burden. Moreover, the burden of HIV/AIDS continues to fall primarily in low-income countries.
Collapse
Affiliation(s)
- Penghong Deng
- School of Health Policy & Management, Nanjing Medical University, Jiangning District, 211166, Nanjing, China
| | - Mingsheng Chen
- School of Health Policy & Management, Nanjing Medical University, Jiangning District, 211166, Nanjing, China.
- Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Lei Si
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
2
|
Miranda MNS, Pingarilho M, Pimentel V, Torneri A, Seabra SG, Libin PJK, Abecasis AB. A Tale of Three Recent Pandemics: Influenza, HIV and SARS-CoV-2. Front Microbiol 2022; 13:889643. [PMID: 35722303 PMCID: PMC9201468 DOI: 10.3389/fmicb.2022.889643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics’ historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Andrea Torneri
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofia G Seabra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Pieter J K Libin
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| |
Collapse
|
3
|
Differential patterns of postmigration HIV-1 infection acquisition among Portuguese immigrants of different geographical origins. AIDS 2022; 36:997-1005. [PMID: 35220350 DOI: 10.1097/qad.0000000000003203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the dynamics of phylogenetic transmission clusters involving immigrants of Portuguese Speaking Countries living in Portugal. DESIGN/METHODS We included genomic sequences, sociodemographic and clinical data from 772 HIV migrants followed in Portugal between 2001 and 2017. To reconstruct HIV-1 transmission clusters, we applied phylogenetic inference from 16 454 patients: 772 migrants, 2973 Portuguese and 12 709 global controls linked to demographic and clinical data. Transmission clusters were defined using: clusters with SH greater than 90% (phylogenetic support), genetic distance less than 3.5% and clusters that included greater than 66% of patients from one specific geographic origin compared with the total of sequences within the cluster. Logistic regression was performed to assess factors associated with clustering. RESULTS Three hundred and six (39.6%) of migrants were included in transmission clusters. This proportion differed substantially by region of origin [Brazil 54% vs. Portuguese Speaking African Countries (PALOPs) 36%, P < 0.0001] and HIV-1 infecting subtype (B 52%, 43% subtype G and 32% CRF02_AG, P < 0.001). Belonging to a transmission cluster was independently associated with treatment-naive patients, CD4+ greater than 500, with recent calendar years of sampling, origin from PALOPs and with seroconversion. Among Brazilian migrants - mainly infected with subtype B - 40.6% were infected by Portuguese. Among migrants from PALOPs - mainly infected with subtypes G and CFR02_AG - the transmission occurred predominantly within the migrants' community (53 and 80%, respectively). CONCLUSION The acquisition of infection among immigrants living in Portugal differs according to the country of origin. These results can contribute to monitor the HIV epidemic and prevent new HIV infections among migrants.
Collapse
|
4
|
Pingarilho M, Pimentel V, Miranda MNS, Silva AR, Diniz A, Ascenção BB, Piñeiro C, Koch C, Rodrigues C, Caldas C, Morais C, Faria D, da Silva EG, Teófilo E, Monteiro F, Roxo F, Maltez F, Rodrigues F, Gaião G, Ramos H, Costa I, Germano I, Simões J, Oliveira J, Ferreira J, Poças J, da Cunha JS, Soares J, Henriques J, Mansinho K, Pedro L, Aleixo MJ, Gonçalves MJ, Manata MJ, Mouro M, Serrado M, Caixeiro M, Marques N, Costa O, Pacheco P, Proença P, Rodrigues P, Pinho R, Tavares R, de Abreu RC, Côrte-Real R, Serrão R, Castro RSE, Nunes S, Faria T, Baptista T, Martins MRO, Gomes P, Mendão L, Simões D, Abecasis A. HIV-1-Transmitted Drug Resistance and Transmission Clusters in Newly Diagnosed Patients in Portugal Between 2014 and 2019. Front Microbiol 2022; 13:823208. [PMID: 35558119 PMCID: PMC9090520 DOI: 10.3389/fmicb.2022.823208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To describe and analyze transmitted drug resistance (TDR) between 2014 and 2019 in newly infected patients with HIV-1 in Portugal and to characterize its transmission networks. Methods Clinical, socioepidemiological, and risk behavior data were collected from 820 newly diagnosed patients in Portugal between September 2014 and December 2019. The sequences obtained from drug resistance testing were used for subtyping, TDR determination, and transmission cluster (TC) analyses. Results In Portugal, the overall prevalence of TDR between 2014 and 2019 was 11.0%. TDR presented a decreasing trend from 16.7% in 2014 to 9.2% in 2016 (p for-trend = 0.114). Multivariate analysis indicated that TDR was significantly associated with transmission route (MSM presented a lower probability of presenting TDR when compared to heterosexual contact) and with subtype (subtype C presented significantly more TDR when compared to subtype B). TC analysis corroborated that the heterosexual risk group presented a higher proportion of TDR in TCs when compared to MSMs. Among subtype A1, TDR reached 16.6% in heterosexuals, followed by 14.2% in patients infected with subtype B and 9.4% in patients infected with subtype G. Conclusion Our molecular epidemiology approach indicates that the HIV-1 epidemic in Portugal is changing among risk group populations, with heterosexuals showing increasing levels of HIV-1 transmission and TDR. Prevention measures for this subpopulation should be reinforced.
Collapse
Affiliation(s)
- Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Ana Rita Silva
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - António Diniz
- Unidade de Imunodeficiência, Centro Hospitalar Universitário Lisboa Norte - HPV, Lisbon, Portugal
| | | | - Carmela Piñeiro
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Carmo Koch
- Centro de Biologia Molecular, Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Catarina Rodrigues
- Serviço de Medicina, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Cátia Caldas
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Célia Morais
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Domitília Faria
- Serviço de Medicina, Hospital de Portimão, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
| | | | - Eugénio Teófilo
- Serviço de Medicina, Hospital de Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Fátima Monteiro
- Centro de Biologia Molecular, Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Fausto Roxo
- Hospital de Dia de Doenças Infeciosas, Hospital Distrital de Santarém, Santarém, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infeciosas, Hospital de Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Fernando Rodrigues
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Guilhermina Gaião
- Serviço de Patologia Clínica, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Helena Ramos
- Serviço de Patologia Clínica, Centro Hospitalar do Porto, Porto, Portugal
| | - Inês Costa
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal
| | - Isabel Germano
- Serviço de Medicina, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Joana Simões
- Serviço de Medicina, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Joaquim Oliveira
- Serviço de Doenças, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José Ferreira
- Serviço de Medicina, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - José Poças
- Serviço de Infeciologia, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | | | - Jorge Soares
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Júlia Henriques
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal
| | - Kamal Mansinho
- Serviço de Doenças Infeciosas, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Liliana Pedro
- Serviço de Medicina, Hospital de Portimão, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
| | | | | | - Maria José Manata
- Serviço de Doenças Infeciosas, Hospital de Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Margarida Mouro
- Serviço de Infeciologia, Hospital de Aveiro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
| | - Margarida Serrado
- Unidade de Imunodeficiência, Centro Hospitalar Universitário Lisboa Norte - HPV, Lisbon, Portugal
| | - Micaela Caixeiro
- Serviço de Infeciologia, Hospital Professor Doutor Fernando da Fonseca, Amadora, Portugal
| | - Nuno Marques
- Serviço de Infeciologia, Hospital Garcia da Orta, Almada, Portugal
| | - Olga Costa
- Serviço de Patologia Clínica, Biologia Molecular, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Patrícia Pacheco
- Serviço de Infeciologia, Hospital Professor Doutor Fernando da Fonseca, Amadora, Portugal
| | - Paula Proença
- Serviço de Infeciologia, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Paulo Rodrigues
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - Raquel Pinho
- Serviço de Medicina, Hospital de Portimão, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
| | - Raquel Tavares
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - Ricardo Correia de Abreu
- Serviço de Infeciologia, Unidade de Local de Saúde de Matosinhos, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Rita Côrte-Real
- Serviço de Patologia Clínica, Biologia Molecular, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Rosário Serrão
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Sofia Nunes
- Serviço de Infeciologia, Hospital de Aveiro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
| | - Telo Faria
- Unidade Local de Saúde do Baixo Alentejo, Hospital José Joaquim Fernandes, Beja, Portugal
| | - Teresa Baptista
- Serviço de Doenças Infeciosas, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Maria Rosário O Martins
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Costa da Caparica, Portugal
| | - Luís Mendão
- Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal
| | - Daniel Simões
- Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal
| | - Ana Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
5
|
Gil H, Delgado E, Benito S, Georgalis L, Montero V, Sánchez M, Cañada-García JE, García-Bodas E, Díaz A, Thomson MM, The Members of the Spanish Group for the Study of New HIV Diagnoses. Transmission Clusters, Predominantly Associated With Men Who Have Sex With Men, Play a Main Role in the Propagation of HIV-1 in Northern Spain (2013–2018). Front Microbiol 2022; 13:782609. [PMID: 35432279 PMCID: PMC9009226 DOI: 10.3389/fmicb.2022.782609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses of HIV-1-infected individuals whose transmission is related group phylogenetically in transmission clusters (TCs). The study of the phylogenetic relations of these viruses and the factors associated with these individuals is essential to analyze the HIV-1 epidemic. In this study, we examine the role of TCs in the epidemiology of HIV-1 infection in Galicia and the Basque County, two regions of northern Spain. A total of 1,158 HIV-1-infected patients from both regions with new diagnoses (NDs) in 2013–2018 were included in the study. Partial HIV-1 pol sequences were analyzed phylogenetically by approximately maximum-likelihood with FastTree 2. In this analysis, 10,687 additional sequences from samples from HIV-1-infected individuals collected in Spain in 1999–2019 were also included to assign TC membership and to determine TCs’ sizes. TCs were defined as those which included viruses from ≥4 individuals, at least 50% of them Spaniards, and with ≥0.95 Shimodaira-Hasegawa-like node support in the phylogenetic tree. Factors associated to TCs were evaluated using odds ratios (OR) and their 95% CI. Fifty-one percent of NDs grouped in 162 TCs. Male patients (OR: 2.6; 95% CI: 1.5–4.7) and men having sex with men (MSM; OR: 2.1; 95% CI: 1.4–3.2) had higher odds of belonging to a TC compared to female and heterosexual patients, respectively. Individuals from Latin America (OR: 0.3; 95% CI: 0.2–0.4), North Africa (OR: 0.4; 95% CI: 0.2–1.0), and especially Sub-Saharan Africa (OR: 0.02; 95% CI: 0.003–0.2) were inversely associated to belonging to TCs compared to native Spaniards. Our results show that TCs are important components of the HIV-1 epidemics in the two Spanish regions studied, where transmission between MSM is predominant. The majority of migrants were infected with viruses not belonging to TCs that expand in Spain. Molecular epidemiology is essential to identify local peculiarities of HIV-1 propagation. The early detection of TCs and prevention of their expansion, implementing effective control measures, could reduce HIV-1 infections.
Collapse
Affiliation(s)
- Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Michael M. Thomson, ; Horacio Gil,
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Leonidas Georgalis
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E. Cañada-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Asunción Díaz
- HIV Surveillance and Behavioral Monitoring Unit, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Michael M. Thomson, ; Horacio Gil,
| | | |
Collapse
|
6
|
van Wijhe M, Fischer TK, Fonager J. Identification of risk factors associated with national transmission and late presentation of HIV-1, Denmark, 2009 to 2017. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2021; 26. [PMID: 34823639 PMCID: PMC8619873 DOI: 10.2807/1560-7917.es.2021.26.47.2002008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundDespite availability of pre-exposure prophylaxis (PrEP), the incidence of HIV-1 in Europe remained stable the past decade. Reduction of new HIV-1 infections requires more knowledge about the profiles of high-risk transmitters and late presenters (LP).AimWe aimed to investigate risk factors associated with HIV-1 transmission clusters and late presentation with HIV-1 in Denmark.MethodsBlood samples and epidemiological information were collected from newly diagnosed HIV-1 patients between 2009 and 2017. We genotyped pol genes and performed phylogenetic analyses to identify clusters. Risk factors for clustering and LP were investigated with partial proportional odds and logistic regression. Covariates included transmission mode, HIV-1 subtype, age, origin and cluster activity.ResultsWe included 1,040 individuals in the analysis, 59.6% identified with subtype B and 48.4% in a cluster. Risk factors for clustering included Danish origin (odds ratio (OR): 2.95; 95% confidence interval (CI): 2.21-3.96), non-LP (OR: 1.44; 95% CI: 1.12-1.86), and men who have sex with men (MSM). Increasing age and non-B subtype infection decreased risk (OR: 0.69; 95% CI: 0.50-0.94). Risk for late presentation was lower for active clusters (OR: 0.60; 95% CI: 0.44-0.82) and Danish origin (OR: 0.43; 95% CI: 0.27-0.67). Non-Danish MSM had a lower risk than non-Danish heterosexuals (OR: 0.34; 95% CI: 0.21-0.55).ConclusionHIV-1 transmission in Denmark is driven by early diagnosed, young, subtype B infected MSM. These may benefit most from PrEP. Non-Danish heterosexual HIV-1 patients could benefit from improved communication to achieve earlier diagnosis and treatment.
Collapse
Affiliation(s)
- Maarten van Wijhe
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Virus Research & Development Laboratory, Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Thea K Fischer
- Department of Research, University hospital of Nordsjælland, Hillerød, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research & Development Laboratory, Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
7
|
Govender RD, Hashim MJ, Khan MAB, Mustafa H, Khan G. Global Epidemiology of HIV/AIDS: A Resurgence in North America and Europe. J Epidemiol Glob Health 2021; 11:296-301. [PMID: 34270183 PMCID: PMC8435868 DOI: 10.2991/jegh.k.210621.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
Abstract
We aimed to assess global trends in Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) and evaluate progress toward eradication since the inception of the pandemic. Data were extracted from the Global Burden of Disease 2019 update and the UNAIDS Data 2019. The datasets included annual figures from 1990 to 2019 for HIV/AIDS in 204 countries and all world regions. We analyzed rates and trends for prevalence, incidence, mortality and disability adjusted life years. Analysis of age and gender distribution in different regions was used to assess demographic changes. Forecasting was used to estimate disease burden up to 2040. Although many countries have witnessed a decrease in the incidence, for Russia, Ukraine, Portugal, Brazil, Spain and the United States, the rates of new cases are rising since 2010. This trend is present even in age-standardized analysis, indicating a rise in excess of population growth. Over 0.5% of the world's population is infected. About 5000 new infections occur daily, of which 500 are children. Mortality rates are falling globally; currently at 11 deaths per 100,000 population, forecasted to decrease to 8.5 deaths by 2040. Prevalence continues to increase, with South Africa, Nigeria, Mozambique, India, Kenya and the United States having the highest burden. The total number as well as the rates of new HIV infections are rising every year in Europe, South America, North America and other regions over the last decade. Maternal-to-child transmission continues at high rates despite effective preventive regimens. There is an urgent need to develop programs to curb the rising incidence of HIV.
Collapse
Affiliation(s)
- Romona D. Govender
- Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Tawam Hospital Campus, Al Ain 17666, UAE
| | - Muhammad Jawad Hashim
- Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Tawam Hospital Campus, Al Ain 17666, UAE
| | - Moien AB Khan
- Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Tawam Hospital Campus, Al Ain 17666, UAE
| | - Halla Mustafa
- Department of Family Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Tawam Hospital Campus, Al Ain 17666, UAE
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Tawam Hospital Campus, Al Ain 17666, UAE
| |
Collapse
|
8
|
Hufsky F, Lamkiewicz K, Almeida A, Aouacheria A, Arighi C, Bateman A, Baumbach J, Beerenwinkel N, Brandt C, Cacciabue M, Chuguransky S, Drechsel O, Finn RD, Fritz A, Fuchs S, Hattab G, Hauschild AC, Heider D, Hoffmann M, Hölzer M, Hoops S, Kaderali L, Kalvari I, von Kleist M, Kmiecinski R, Kühnert D, Lasso G, Libin P, List M, Löchel HF, Martin MJ, Martin R, Matschinske J, McHardy AC, Mendes P, Mistry J, Navratil V, Nawrocki EP, O’Toole ÁN, Ontiveros-Palacios N, Petrov AI, Rangel-Pineros G, Redaschi N, Reimering S, Reinert K, Reyes A, Richardson L, Robertson DL, Sadegh S, Singer JB, Theys K, Upton C, Welzel M, Williams L, Marz M. Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief Bioinform 2021; 22:642-663. [PMID: 33147627 PMCID: PMC7665365 DOI: 10.1093/bib/bbaa232] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christian Brandt
- Institute of Infectious Disease and Infection Control at Jena University Hospital, Germany
| | - Marco Cacciabue
- Consejo Nacional de Investigaciones Científicas y Tócnicas (CONICET) working on FMDV virology at the Instituto de Agrobiotecnología y Biología Molecular (IABiMo, INTA-CONICET) and at the Departamento de Ciencias Básicas, Universidad Nacional de Luján (UNLu), Argentina
| | | | - Oliver Drechsel
- bioinformatics department at the Robert Koch-Institute, Germany
| | | | - Adrian Fritz
- Computational Biology of Infection Research group of Alice C. McHardy at the Helmholtz Centre for Infection Research, Germany
| | - Stephan Fuchs
- bioinformatics department at the Robert Koch-Institute, Germany
| | - Georges Hattab
- Bioinformatics Division at Philipps-University Marburg, Germany
| | | | - Dominik Heider
- Data Science in Biomedicine at the Philipps-University of Marburg, Germany
| | | | | | - Stefan Hoops
- Biocomplexity Institute and Initiative at the University of Virginia, USA
| | - Lars Kaderali
- Bioinformatics and head of the Institute of Bioinformatics at University Medicine Greifswald, Germany
| | | | - Max von Kleist
- bioinformatics department at the Robert Koch-Institute, Germany
| | - Renó Kmiecinski
- bioinformatics department at the Robert Koch-Institute, Germany
| | | | - Gorka Lasso
- Chandran Lab, Albert Einstein College of Medicine, USA
| | | | | | | | | | | | | | - Alice C McHardy
- Computational Biology of Infection Research Lab at the Helmholtz Centre for Infection Research in Braunschweig, Germany
| | - Pedro Mendes
- Center for Quantitative Medicine of the University of Connecticut School of Medicine, USA
| | | | - Vincent Navratil
- Bioinformatics and Systems Biology at the Rhône Alpes Bioinformatics core facility, Universitó de Lyon, France
| | | | | | | | | | | | - Nicole Redaschi
- Development of the Swiss-Prot group at the SIB for UniProt and SIB resources that cover viral biology (ViralZone)
| | - Susanne Reimering
- Computational Biology of Infection Research group of Alice C. McHardy at the Helmholtz Centre for Infection Research
| | | | | | | | | | - Sepideh Sadegh
- Chair of Experimental Bioinformatics at Technical University of Munich, Germany
| | - Joshua B Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | | | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | | | | | - Manja Marz
- Friedrich Schiller University Jena, Germany
| |
Collapse
|
9
|
Schlösser M, Kartashev VV, Mikkola VH, Shemshura A, Saukhat S, Kolpakov D, Suladze A, Tverdokhlebova T, Hutt K, Heger E, Knops E, Böhm M, Di Cristanziano V, Kaiser R, Sönnerborg A, Zazzi M, Bobkova M, Sierra S. HIV-1 Sub-Subtype A6: Settings for Normalised Identification and Molecular Epidemiology in the Southern Federal District, Russia. Viruses 2020; 12:v12040475. [PMID: 32331438 PMCID: PMC7232409 DOI: 10.3390/v12040475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Russia has one of the largest and fastest growing HIV epidemics. However, epidemiological data are scarce. Sub-subtype A6 is most prevalent in Russia but its identification is challenging. We analysed protease/reverse transcriptase-, integrase-sequences, and epidemiological data from 303 patients to develop a methodology for the systematisation of A6 identification and to describe the HIV epidemiology in the Russian Southern Federal District. Drug consumption (32.0%) and heterosexual contact (27.1%) were the major reported transmission risks. This study successfully established the settings for systematic identification of A6 samples. Low frequency of subtype B (3.3%) and large prevalence of sub-subtype A6 (69.6%) and subtype G (23.4%) were detected. Transmitted PI- (8.8%) and NRTI-resistance (6.4%) were detected in therapy-naive patients. In therapy-experienced patients, 17.3% of the isolates showed resistance to PIs, 50.0% to NRTI, 39.2% to NNRTIs, and 9.5% to INSTIs. Multiresistance was identified in 52 isolates, 40 corresponding to two-class resistance and seven to three-class resistance. Two resistance-associated-mutations significantly associated to sub-subtype A6 samples: A62VRT and G190SRT. This study establishes the conditions for a systematic annotation of sub-subtype A6 to normalise epidemiological studies. Accurate knowledge on South Russian epidemiology will allow for the development of efficient regional frameworks for HIV-1 infection management.
Collapse
Affiliation(s)
- Madita Schlösser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Vladimir V. Kartashev
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
- Department of Infectious Diseases, Rostov State Medical University, 344022 Rostov-na-Donu, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Visa H. Mikkola
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Andrey Shemshura
- Clinical Center of HIV/AIDS of the Ministry of Health of Krasnodar Region, 350015 Krasnodar, Russia;
| | - Sergey Saukhat
- Department of Infectious Diseases, Rostov State Medical University, 344022 Rostov-na-Donu, Russia;
| | - Dmitriy Kolpakov
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Alexandr Suladze
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Tatiana Tverdokhlebova
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Katharina Hutt
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Michael Böhm
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maurizio Zazzi
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Marina Bobkova
- Department of General Virology, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Saleta Sierra
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
- Correspondence: ; Tel.: +49-221-4788-5807
| |
Collapse
|