1
|
Folkerts EJ, Oehlert AM, Heuer RM, Nixon S, Stieglitz JD, Grosell M. The role of marine fish-produced carbonates in the oceanic carbon cycle is determined by size, specific gravity, and dissolution rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170044. [PMID: 38244625 DOI: 10.1016/j.scitotenv.2024.170044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Rising CO2 emissions have heightened the necessity for increased understanding of Earth's carbon cycle to predict future climates. The involvement of marine planktonic species in the global carbon cycle has been extensively studied, but contributions by marine fish remain poorly characterized. Marine teleost fishes produce carbonate minerals ('ichthyocarbonates') within the lumen of their intestines which are excreted at significant rates on a global scale. However, we have limited understanding of the fate of excreted ichthyocarbonate. We analyzed ichthyocarbonate produced by three different marine teleosts for mol%MgCO3 content, size, specific gravity, and dissolution rate to gain a better understanding of ichthyocarbonate fate. Based on the species examined here, we report that 75 % of ichthyocarbonates are ≤0.91 mm in diameter. Analyses indicate high Mg2+ content across species (22.3 to 32.3 % mol%MgCO3), consistent with previous findings. Furthermore, ichthyocarbonate specific gravity ranged from 1.23 to 1.33 g/cm3, and ichthyocarbonate dissolution rates varied among species as a function of aragonite saturation state. Ichthyocarbonate sinking rates and dissolution depth were estimated for the Atlantic, Pacific, and Indian ocean basins for the three species examined. In the North Atlantic, for example, ~33 % of examined ichthyocarbonates are expected to reach depths exceeding 200 m prior to complete dissolution. The remaining ~66 % of ichthyocarbonate is estimated to dissolve and contribute to shallow water alkalinity budgets. Considering fish biomass and ichthyocarbonate production rates, our results support that marine fishes are critical to the global carbon cycle, contributing to oceanic alkalinity budgets and thereby influencing the ability of the oceans to neutralize atmospheric CO2.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States of America.
| | - Amanda M Oehlert
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States of America
| | - Rachael M Heuer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States of America
| | - Sandy Nixon
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States of America
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States of America
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States of America
| |
Collapse
|
2
|
Costa RA, Olvera A, Power DM, Velez Z. Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabream. Biol Open 2022; 11:274528. [PMID: 35199828 PMCID: PMC8935210 DOI: 10.1242/bio.059073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
A possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) to 4 weeks' exposure to ocean acidification (OA). Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the 4 weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after 4 weeks' exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after 4 weeks' exposure, except for [Cl−], which remained elevated. This suggests that, in general, there is an early physiological response to OA and by 4 weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity. Summary: Ocean acidification alters fish behaviour. We show altered expression of genes involved in neuroplasticity and neuromodulation in fish exposed to high PCO2, highlighting their possible roles in such behavioural alterations.
Collapse
Affiliation(s)
- Rita A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Aurora Olvera
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Zélia Velez
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
4
|
Ruiz-Jarabo I, Gregório SF, Alves A, Mancera JM, Fuentes J. Ocean acidification compromises energy management in Sparus aurata (Pisces: Teleostei). Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110911. [PMID: 33647459 DOI: 10.1016/j.cbpa.2021.110911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022]
Abstract
The effects of ocean acidification mediated by an increase in water pCO2 levels on marine organisms are currently under debate. Elevated CO2 concentrations in the seawater induce several physiological responses in teleost fish, including acid-base imbalances and osmoregulatory changes. However, the consequences of CO2 levels enhancement on energy metabolism are mostly unknown. Here we show that 5 weeks of exposure to hypercapnia (950 and 1800 μatm CO2) altered intermediary metabolism of gilthead seabream (Sparus aurata) compared to fish acclimated to current ocean values (440 μatm CO2). We found that seabream compromises its physiological acid-base balance with increasing water CO2 levels and the subsequent acidification. Intestinal regions (anterior, mid, and rectum) engaged in maintaining this balance are thus altered, as seen for Na+/K+-ATPase and the vacuolar-type H+-ATPase activities. Moreover, liver and muscle counteracted these effects by increasing catabolic routes e.g., glycogenolysis, glycolysis, amino acid turnover, and lipid catabolism, and plasma energy metabolites were altered. Our results demonstrate how a relatively short period of 5 weeks of water hypercapnia is likely to disrupt the acid-base balance, osmoregulatory capacity and intermediary metabolism in S. aurata. However, long-term studies are necessary to fully understand the consequences of ocean acidification on growth and other energy-demanding activities, such as reproduction.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Cádiz, Spain; Department of Animal Physiology, Faculty of Biological Sciences, University Complutense, Madrid, Spain.
| | - S F Gregório
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal
| | - A Alves
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Cádiz, Spain
| | - J Fuentes
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
5
|
Alves A, Gregório SF, Ruiz-Jarabo I, Fuentes J. Intestinal response to ocean acidification in the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110789. [DOI: 10.1016/j.cbpa.2020.110789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
|
6
|
Slc4 Gene Family in Spotted Sea Bass (Lateolabrax maculatus): Structure, Evolution, and Expression Profiling in Response to Alkalinity Stress and Salinity Changes. Genes (Basel) 2020; 11:genes11111271. [PMID: 33126655 PMCID: PMC7692064 DOI: 10.3390/genes11111271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
The solute carrier 4 (SLC4) family is a class of cell membranes transporters involved in base transport that plays crucial roles in diverse physiological processes. In our study, 15 slc4 genes were identified and annotated in spotted sea bass, including five members of Cl−/HCO3− exchangers, eight genes coding Na+-dependent HCO3− transporters, and two copies of Na+-coupled borate transporters. The gene sequence and structure, chromosomal and syntenic arrangement, phylogenetic and evolution profiles were analyzed. Results showed that the slc4 gene in teleosts obviously expanded compared with higher vertebrates, arising from teleost-specific whole genome duplication event. Most gene sites of slc4 in spotted sea bass were under strong purifying selection during evolution, while positive selection sites were only detected in slc4a1b, slc4a8, and slc4a10b. Additionally, qRT-PCR results showed that different slc4 genes exhibited distinct branchial expression patterns after alkalinity and salinity stresses, of which the strongly responsive members may play essential roles during these physiological processes. Our study provides the systemic overview of the slc4 gene family in spotted sea bass and enables a better understanding for the evolution of this family and further deciphering the biological roles in maintaining ion and acid–base homeostasis in teleosts.
Collapse
|
7
|
Cominassi L, Moyano M, Claireaux G, Howald S, Mark FC, Zambonino-Infante JL, Peck MA. Food availability modulates the combined effects of ocean acidification and warming on fish growth. Sci Rep 2020; 10:2338. [PMID: 32047178 PMCID: PMC7012865 DOI: 10.1038/s41598-020-58846-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
When organisms are unable to feed ad libitum they may be more susceptible to negative effects of environmental stressors such as ocean acidification and warming (OAW). We reared sea bass (Dicentrarchus labrax) at 15 or 20 °C and at ambient or high PCO2 (650 versus 1750 µatm PCO2; pH = 8.1 or 7.6) at ad libitum feeding and observed no discernible effect of PCO2 on the size-at-age of juveniles after 277 (20 °C) and 367 (15 °C) days. Feeding trials were then conducted including a restricted ration (25% ad libitum). At 15 °C, growth rate increased with ration but was unaffected by PCO2. At 20 °C, acidification and warming acted antagonistically and low feeding level enhanced PCO2 effects. Differences in growth were not merely a consequence of lower food intake but also linked to changes in digestive efficiency. The specific activity of digestive enzymes (amylase, trypsin, phosphatase alkaline and aminopeptidase N) at 20 °C was lower at the higher PCO2 level. Our study highlights the importance of incorporating restricted feeding into experimental designs examining OAW and suggests that ad libitum feeding used in the majority of the studies to date may not have been suitable to detect impacts of ecological significance.
Collapse
Affiliation(s)
- Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany.
| | - Marta Moyano
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, 29280, Plouzané, France
| | - Sarah Howald
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | - José-Luis Zambonino-Infante
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, Reproduction and Nutrition of Fish, Centre Ifremer de Bretagne, 29280, Plouzané, France
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, 22767, Hamburg, Germany
| |
Collapse
|
8
|
Fonseca F, Cerqueira R, Fuentes J. Impact of Ocean Acidification on the Intestinal Microbiota of the Marine Sea Bream ( Sparus aurata L.). Front Physiol 2019; 10:1446. [PMID: 31849701 PMCID: PMC6893888 DOI: 10.3389/fphys.2019.01446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Within a scenario of increasing atmospheric CO2 and ocean acidification (OA), it is highly relevant to investigate its impacts not only on fish performance but also on fish intestinal microbiome and how that reflects on host performance and health. The main objective of this study was to establish if the intestinal microbiota of the sea bream (Sparus aurata) was affected by high level of CO2 in line with the predictions for this century. The bacterial communities of the intestinal fluid were characterized in animals kept at the present-day level of CO2 (400 μatm) and in animals switched to high CO2 (1200 μatm) for 1 month. Bacterial taxa identification was based on molecular methods, using the DNA coding for the 16S ribosomal RNA and primers targeting the regions V1-V3. Amplicons obtained from DNA samples of animals in the same tank were combined, cloned to obtain a bacterial DNA library, and the clones were sequenced. No significant differences were found between the two treatments for alpha diversity. However, beta diversity analysis revealed distinct dysbiosis in response to hypercapnia, with phylum Firmicutes absent from the bacterial communities of fish exposed to 1200 μatm CO2, whereas Proteobacteria relative abundance was increased at elevated CO2, due to the presence of Gammaproteobacteria (Vibrionaceae and Alteromonadaceae), a class not present in the control samples. This study provides a first glimpse at the impact of OA in fish intestinal microbiota and highlights potential downstream effects to the general condition of fishes under hypercapnia.
Collapse
Affiliation(s)
- Filomena Fonseca
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Faro, Portugal
| | - Ricardo Cerqueira
- Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Faro, Portugal
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|