1
|
Fierling N, Billard P, Dluzniewski A, Sohm B, Bauda P, Blaudez D. Importance of the envelope in Escherichia coli resistance to lithium. CHEMOSPHERE 2025; 374:144234. [PMID: 39983623 DOI: 10.1016/j.chemosphere.2025.144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The increasing use of lithium (Li) in emerging technologies has prompted concerns about its effects on living microorganisms. To enhance our understanding of the bacterial cytotoxicity of Li, we conducted a deletomic analysis using the bacterial model Escherichia coli. A screen of 3,985 knockout mutants under Li stress highlighted 27 Li-sensitive and 15 Li-resistant mutants. The synthesis of peptidoglycan and the capsule, along with the secretion of colanic acid, contributed to resistance to Li. Ribosomes and the stringent response also seem to play a role in mitigating Li cytotoxicity. A cross-metal comparison revealed that the Li-sensitive phenotype of the mutants was shared with Ca, whereas the resistant phenotype was shared with Mg, Na and K. Moreover, this allowed the identification of ΔacrA as a Li sensitivity-specific mutant. AcrA is a subunit of the AcrAB-TolC efflux pump, which is responsible for the efflux of various xenobiotics. We demonstrate that ΔacrB-ΔtolC accumulates approximately 1.5 times more Li than the WT, indicating that this pump could also facilitate the efflux of Li. This study offers a more comprehensive insight into the mechanisms involved in the Li response in E. coli.
Collapse
Affiliation(s)
| | | | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
2
|
Dillon L, Dimonaco NJ, Creevey CJ. Accessory genes define species-specific routes to antibiotic resistance. Life Sci Alliance 2024; 7:e202302420. [PMID: 38228374 PMCID: PMC10791901 DOI: 10.26508/lsa.202302420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
A deeper understanding of the relationship between the antimicrobial resistance (AMR) gene carriage and phenotype is necessary to develop effective response strategies against this global burden. AMR phenotype is often a result of multi-gene interactions; therefore, we need approaches that go beyond current simple AMR gene identification tools. Machine-learning (ML) methods may meet this challenge and allow the development of rapid computational approaches for AMR phenotype classification. To examine this, we applied multiple ML techniques to 16,950 bacterial genomes across 28 genera, with corresponding MICs for 23 antibiotics with the aim of training models to accurately determine the AMR phenotype from sequenced genomes. This resulted in a >1.5-fold increase in AMR phenotype prediction accuracy over AMR gene identification alone. Furthermore, we revealed 528 unique (often species-specific) genomic routes to antibiotic resistance, including genes not previously linked to the AMR phenotype. Our study demonstrates the utility of ML in predicting AMR phenotypes across diverse clinically relevant organisms and antibiotics. This research proposes a rapid computational method to support laboratory-based identification of the AMR phenotype in pathogens.
Collapse
Affiliation(s)
- Lucy Dillon
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Nicholas J Dimonaco
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | | |
Collapse
|
3
|
Pun M, Khazanov N, Galsurker O, Kerem Z, Senderowitz H, Yedidia I. Inhibition of AcrAB-TolC enhances antimicrobial activity of phytochemicals in Pectobacterium brasiliense. FRONTIERS IN PLANT SCIENCE 2023; 14:1161702. [PMID: 37229130 PMCID: PMC10203483 DOI: 10.3389/fpls.2023.1161702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Introduction The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.
Collapse
Affiliation(s)
- Manoj Pun
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ortal Galsurker
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Iris Yedidia
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| |
Collapse
|
4
|
Radi MS, Munro LJ, Salcedo-Sora JE, Kim SH, Feist AM, Kell DB. Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. MEMBRANES 2022; 12:1264. [PMID: 36557171 PMCID: PMC9783932 DOI: 10.3390/membranes12121264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance.
Collapse
Affiliation(s)
- Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Lachlan J. Munro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jesus E. Salcedo-Sora
- GeneMill, Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Douglas B. Kell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
5
|
Patel MA, Pandey A, Patel AC, Patel SS, Chauhan HC, Shrimali MD, Patel PA, Mohapatra SK, Chandel BS. Whole genome sequencing and characteristics of extended-spectrum beta-lactamase producing Escherichia coli isolated from poultry farms in Banaskantha, India. Front Microbiol 2022; 13:996214. [PMID: 36312963 PMCID: PMC9614321 DOI: 10.3389/fmicb.2022.996214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide dissemination of extended-spectrum -lactamase (ESBL)-producing Escherichia coli constitutes an emerging global health issue, with animal food products contributing as potential reservoirs. ESBL E. coli infection is associated with the high mortality and mobility rate in developing countries due to less susceptibility to antibiotics. The present study aimed to elucidate the molecular characteristics and sequence-based analysis of ESBL E. coli in the Gujarat state of India. This study included 108 E. coli strains were isolated from different poultry farms (broiler and layer) in the Banaskantha District. PCR was employed to identify genotypic ESBL-producing antimicrobial resistance genes. Overall, a high occurrence of ESBL genes was found in poultry farms due to the high usage of antimicrobials. The PCR analysis revealed that 79.62% of isolates were detected positive with one or more ESBL genes. Among them, blaTEM (63.88%) was found to be the predominant genotype, followed by blaSHV (30.55%) and blaOXA (28.70%). In the blaCTX-M group, a higher occurrence was observed in blaCTX-M-9 (23.14%), followed by blaCTX-M-2 (24.07%) and blaCTX-M-1 (22.22%). We used the whole-genome sequencing (WGS) method to evaluate the antimicrobial resistance genes, virulence factors, single nucleotide polymorphisms (SNPs), plasmid replicons, and plasmid-mediated AMR genes of one ESBL E. coli isolated. We examined the genetic relatedness of a human pathogenic E. coli strain by comparing its sequence with the broad geographical reference E. coli sequences. Escherichia coli ST 681 was determined using multi-locus sequence typing. We compared our findings to the reference sequence of Escherichia coli str. K- 12 substr. MG1655. We found 24,937 SNPs with 21,792 in the genic region, 3,145 in the intergenic region, and six InDels across the genome. The WGS analysis revealed 46 antimicrobial resistance genes and seven plasmid-mediated AMR genes viz., tetA, qnrS1, dfrA14, sul2, aph(3”)-lb, aph(6)-ld, and Aph(3’)-la. The ST 681 was found to have Cib, traT, and terC virulence factors and two plasmid replicons, IncFII(pHN7A8) and IncI1-I(Alpha). This study revealed a higher occurrence of ESBL E. coli detected in poultry.
Collapse
Affiliation(s)
- Mitul A. Patel
- Department of Biotechnology, Sankalchand Patel University, Visnagar, India
- *Correspondence: Mitul A. Patel,
| | - Aparna Pandey
- Department of Biochemistry, Dental College, Sankalchand Patel University, Visnagar, India
| | - A. C. Patel
- Department of Veterinary Microbiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - S. S. Patel
- Department of Veterinary Microbiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - H. C. Chauhan
- Department of Veterinary Microbiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - M. D. Shrimali
- Department of Animal Biotechnology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - Pankaj A. Patel
- Department of Physiology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - S. K. Mohapatra
- Department of Animal Biotechnology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| | - B. S. Chandel
- Department of Animal Biotechnology, Veterinary College, Kamdhenu University, Sardarkushinagar, India
| |
Collapse
|
6
|
Membrane transporter identification and modulation via adaptive laboratory evolution. Metab Eng 2022; 72:376-390. [DOI: 10.1016/j.ymben.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
|
7
|
Ciusa ML, Marshall RL, Ricci V, Stone JW, Piddock LJV. Absence, loss-of-function, or inhibition of Escherichia coli AcrB does not increase expression of other efflux pump genes supporting the discovery of AcrB inhibitors as antibiotic adjuvants. J Antimicrob Chemother 2021; 77:633-640. [PMID: 34897478 PMCID: PMC8865010 DOI: 10.1093/jac/dkab452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives To determine whether expression of efflux pumps and antibiotic susceptibility are altered in Escherichia coli in response to efflux inhibition. Methods The promoter regions of nine efflux pump genes (acrAB, acrD, acrEF, emrAB, macAB, cusCFBA, mdtK, mdtABC, mdfA) were fused to gfp in pMW82 and fluorescence from each reporter construct was used as a measure of the transcriptional response to conditions in which AcrB was inhibited, absent or made non-functional. Expression was also determined by RT-qPCR. Drug susceptibility of efflux pump mutants with missense mutations known or predicted to cause loss of function of the encoded efflux pump was investigated. Results Data from the GFP reporter constructs revealed that no increased expression of the tested efflux pump genes was observed when AcrB was absent, made non-functional, or inhibited by an efflux pump inhibitor/competitive substrate, such as PAβN or chlorpromazine. This was confirmed by RT-qPCR for PAβN and chlorpromazine; however, a small but significant increase in macB gene expression was seen when acrB is deleted. Efflux inhibitors only synergized with antibiotics in the presence of a functional AcrB. When AcrB was absent or non-functional, there was no impact on MICs when other efflux pumps were also made non-functional. Conclusions Absence, loss-of-function, or inhibition of E. coli AcrB did not significantly increase expression of other efflux pump genes, which suggests there is no compensatory mechanism to overcome efflux inhibition and supports the discovery of inhibitors of AcrB as antibiotic adjuvants.
Collapse
Affiliation(s)
- Maria Laura Ciusa
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Vito Ricci
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jack W Stone
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Zwama M, Nishino K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics (Basel) 2021; 10:774. [PMID: 34201908 PMCID: PMC8300642 DOI: 10.3390/antibiotics10070774] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023] Open
Abstract
The rise in multidrug resistance (MDR) is one of the greatest threats to human health worldwide. MDR in bacterial pathogens is a major challenge in healthcare, as bacterial infections are becoming untreatable by commercially available antibiotics. One of the main causes of MDR is the over-expression of intrinsic and acquired multidrug efflux pumps, belonging to the resistance-nodulation-division (RND) superfamily, which can efflux a wide range of structurally different antibiotics. Besides over-expression, however, recent amino acid substitutions within the pumps themselves-causing an increased drug efflux efficiency-are causing additional worry. In this review, we take a closer look at clinically, environmentally and laboratory-evolved Gram-negative bacterial strains and their decreased drug sensitivity as a result of mutations directly in the RND-type pumps themselves (from Escherichia coli, Salmonella enterica, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Acinetobacter baumannii and Legionella pneumophila). We also focus on the evolution of the efflux pumps by comparing hundreds of efflux pumps to determine where conservation is concentrated and where differences in amino acids can shed light on the broad and even broadening drug recognition. Knowledge of conservation, as well as of novel gain-of-function efflux pump mutations, is essential for the development of novel antibiotics and efflux pump inhibitors.
Collapse
Affiliation(s)
- Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. J Bacteriol 2021; 203:e0010921. [PMID: 33972351 DOI: 10.1128/jb.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.
Collapse
|
10
|
Langevin AM, El Meouche I, Dunlop MJ. Mapping the Role of AcrAB-TolC Efflux Pumps in the Evolution of Antibiotic Resistance Reveals Near-MIC Treatments Facilitate Resistance Acquisition. mSphere 2020; 5:e01056-20. [PMID: 33328350 PMCID: PMC7771234 DOI: 10.1128/msphere.01056-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance has become a major public health concern as bacteria evolve to evade drugs, leading to recurring infections and a decrease in antibiotic efficacy. Systematic efforts have revealed mechanisms involved in resistance. Yet, in many cases, how these specific mechanisms accelerate or slow the evolution of resistance remains unclear. Here, we conducted a systematic study of the impact of the AcrAB-TolC efflux pump on the evolution of antibiotic resistance. We mapped how population growth rate and resistance change over time as a function of both the antibiotic concentration and the parent strain's genetic background. We compared the wild-type strain to a strain overexpressing AcrAB-TolC pumps and a strain lacking functional pumps. In all cases, resistance emerged when cultures were treated with chloramphenicol concentrations near the MIC of their respective parent strain. The genetic background of the parent strain also influenced resistance acquisition. The wild-type strain evolved resistance within 24 h through mutations in the acrAB operon and its associated regulators. Meanwhile, the strain overexpressing AcrAB-TolC evolved resistance more slowly than the wild-type strain; this strain achieved resistance in part through point mutations in acrB and the acrAB promoter. Surprisingly, the strain without functional AcrAB-TolC efflux pumps still gained resistance, which it achieved through upregulation of redundant efflux pumps. Overall, our results suggest that treatment conditions just above the MIC pose the largest risk for the evolution of resistance and that AcrAB-TolC efflux pumps impact the pathway by which chloramphenicol resistance is achieved.IMPORTANCE Combatting the rise of antibiotic resistance is a significant challenge. Efflux pumps are an important contributor to drug resistance; they exist across many cell types and can export numerous classes of antibiotics. Cells can regulate pump expression to maintain low intracellular drug concentrations. Here, we explored how resistance emerged depending on the antibiotic concentration, as well as the presence of efflux pumps and their regulators. We found that treatments near antibiotic concentrations that inhibit the parent strain's growth were most likely to promote resistance. While wild-type, pump overexpression, and pump knockout strains were all able to evolve resistance, they differed in the absolute level of resistance evolved, the speed at which they achieved resistance, and the genetic pathways involved. These results indicate that specific treatment regimens may be especially problematic for the evolution of resistance and that the strain background can influence how resistance is achieved.
Collapse
Affiliation(s)
- Ariel M Langevin
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston, Massachusetts, USA
| | - Imane El Meouche
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston, Massachusetts, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Reyes-Fernández EZ, Schuldiner S. Acidification of Cytoplasm in Escherichia coli Provides a Strategy to Cope with Stress and Facilitates Development of Antibiotic Resistance. Sci Rep 2020; 10:9954. [PMID: 32561799 PMCID: PMC7305162 DOI: 10.1038/s41598-020-66890-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/27/2020] [Indexed: 01/21/2023] Open
Abstract
Awareness of the problem of antimicrobial resistance (AMR) has escalated, and drug-resistant infections are named among the most urgent issues facing clinicians today. Bacteria can acquire resistance to antibiotics by a variety of mechanisms that, at times, involve changes in their metabolic status, thus altering diverse biochemical reactions, many of them pH-dependent. In this work, we found that modulation of the cytoplasmic pH (pHi) of Escherichia coli provides a thus far unexplored strategy to support resistance. We show here that the acidification of the cytoplasmic pH is a previously unrecognized consequence of the activation of the marRAB operon. The acidification itself contributes to the full implementation of the resistance phenotype. We measured the pHi of two resistant strains, developed in our laboratory, that carry mutations in marR that activate the marRAB operon. The pHi of both strains is lower than that of the wild type strain. Inactivation of the marRAB response in both strains weakens resistance, and pHi increases back to wild type levels. Likewise, we showed that exposure of wild type cells to weak acids that caused acidification of the cytoplasm induced a resistant phenotype, independent of the marRAB response. We speculate that the decrease of the cytoplasmic pH brought about by activation of the marRAB response provides a signaling mechanism that modifies metabolic pathways and serves to cope with stress and to lower metabolic costs.
Collapse
Affiliation(s)
- Esmeralda Z Reyes-Fernández
- Department Biological Chemistry, Institute of Life Sciences, Silberman Bldg. 1-339, Edmond J. Safra Campus, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | - Shimon Schuldiner
- Department Biological Chemistry, Institute of Life Sciences, Silberman Bldg. 1-339, Edmond J. Safra Campus, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|