1
|
Wang Y, Hu Q, Chen B, Ma D. Effects of Liupao Tea with Different Years of Aging on Glycolipid Metabolism, Body Composition, and Gut Microbiota in Adults with Obesity or Overweight: A Randomized, Double-Blind Study. Foods 2025; 14:866. [PMID: 40077569 PMCID: PMC11898661 DOI: 10.3390/foods14050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Liupao tea (LPT) is a traditionally fermented dark tea from Guangxi, China and the effects of different aging periods of LPT on metabolic health remain inadequately explored. METHODS This randomized, double-blind, longitudinal study enrolled 106 adults with obesity or overweight who were assigned to consume LPT of different ages over a 90-day period. Participants were randomly divided into four groups, each consuming LPT that had been aged for 1 year, 4 years, 7 years, or 10 years. The metabolic parameters, body composition, and gut microbiota were assessed at baseline and after the 90-day intervention. RESULTS All LPT groups experienced significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP), with the 10-year-aged group showing the most notable SBP decrease (p < 0.001). Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels decreased significantly in the 1-, 4-, and 10-year-aged groups (p < 0.05), while high-density lipoprotein cholesterol (HDL-C) increased in the 7-year-aged group (p < 0.05). Body weight, body fat mass (BFM), body mass index (BMI), waist circumference (WC), body fat percentage (BFP), and visceral fat area (VFA) significantly declined across all groups (p < 0.05). Gut microbiota analysis showed changes in specific genera, though overall diversity remained stable. No significant differences were found in metabolic or microbiota outcomes between the different aged groups. CONCLUSIONS LPT consumption effectively improves blood pressure, lipid profiles, and body composition in adults with obesity without adverse liver effects. The aging duration of LPT does not significantly alter these health benefits, challenging the belief that longer-aged LPT is superior.
Collapse
Affiliation(s)
| | | | | | - Defu Ma
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China (Q.H.)
| |
Collapse
|
2
|
Zhou H, Wang X, She Z, Huang L, Wei H, Yang S, Wei Z, Chen H, Yang B, Hu Z, Feng X, Zhu P, Li Z, Shen J, Liu H, Dong H, Chen G, Zhang Q. Combining bioinformatics and multiomics strategies to investigate the key microbiota and active components of Liupao tea ameliorating hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118438. [PMID: 38848972 DOI: 10.1016/j.jep.2024.118438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperlipidemia as a major health issue has attracted much public attention. As a geographical indication product of China, Liupao tea (LPT) is a typical representative of traditional Chinese dark tea that has shown good potential in regulating glucose and lipid metabolism. LPT has important medicinal value in hyperlipidemia prevention. However, the active ingredients and metabolic mechanisms by which LPT alleviates hyperlipidemia remain unclear. AIM OF THE STUDY This study aimed to systematically investigate the metabolic mechanisms and active ingredients of LPT extract in alleviating hyperlipidemia. MATERIALS AND METHODS Firstly, we developed a mouse model of hyperlipidemia to study the pharmacodynamics of LPT. Subsequently, network pharmacology and molecular docking were performed to predict the potential key active ingredients and core targets of LPT against hyperlipidemia. LC-MS/MS was used to validate the identity of key active ingredients in LPT with chemical standards. Finally, the effect and metabolic mechanisms of LPT extract in alleviating hyperlipidemia were investigated by integrating metabolomic, lipidomic, and gut microbiome analyses. RESULTS Results showed that LPT extract effectively improved hyperlipidemia by suppressing weight gain, remedying dysregulation of glucose and lipid metabolism, and reducing hepatic damage. Network pharmacology analysis and molecular docking suggested that four potential active ingredients and seven potential core targets were closely associated with roles for hyperlipidemia treatment. Ellagic acid, catechin, and naringenin were considered to be the key active ingredients of LPT alleviating hyperlipidemia. Additionally, LPT extract modulated the mRNA expression levels of Fxr, Cyp7a1, Cyp8b1, and Cyp27a1 associated with bile acid (BA) metabolism, mitigated the disturbances of BA and glycerophospholipid (GP) metabolism in hyperlipidemia mice. Combining fecal microbiota transplantation and correlation analysis, LPT extract effectively improved species diversity and abundance of gut microbiota, particularly the BA and GP metabolism-related gut microbiota, in the hyperlipidemia mice. CONCLUSIONS LPT extract ameliorated hyperlipidemia by modulating GP and BA metabolism by regulating Lactobacillus and Dubosiella, thereby alleviating hyperlipidemia. Three active ingredients of LPT served as the key factors in exerting an improvement on hyperlipidemia. These findings provide new insights into the active ingredients and metabolic mechanisms of LPT in improving hyperlipidemia, suggesting that LPT can be used to prevent and therapeutic hyperlipidemia.
Collapse
Affiliation(s)
- Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, China.
| | - Huijie Wei
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, China.
| | - Shanyi Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Zhijuan Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Hongwei Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Bao Yang
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Hubei, China.
| | - Zehua Hu
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Hubei, China.
| | - Xue Feng
- Center for Instrumental Analysis, Guangxi University, Guangxi, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China.
| | - Zijian Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Jiahui Shen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Huan Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China.
| | - Guanghui Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Guangxi, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Guangxi, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Hubei, China; Center for Instrumental Analysis, Guangxi University, Guangxi, China.
| |
Collapse
|
3
|
Yu M, Zhao J, Xie Q, Deng J, Zhu Y, Chen J, Xiang Z, Zhang T, Liu G, Xia C, Shi L, Wu B, Gouvinhas I, Barros AN. Golden Flower Tibetan Tea Polysaccharides Alleviate Constipation in Mice by Regulating Aquaporins-Mediated Water Transport System and Gut Microbiota. Foods 2024; 13:2749. [PMID: 39272514 PMCID: PMC11394950 DOI: 10.3390/foods13172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Constipation, a widespread gastrointestinal disorder, often leads to the exploration of natural remedies. This study examines the efficacy of Golden Flower Tibetan Tea Polysaccharides (GFTTPs) in alleviating constipation in mice. Chemical analyses reveal that GFTTPs possess O-H, carboxyl, carboxylic acid (-COOH), and C-O-C groups, alongside a porous crystal structure with thermal stability. In animal experiments, GFTTPs significantly upregulated aquaporin 3 (AQP3) and aquaporin 8 (AQP8) expressions in the colon, enhancing water absorption and reducing fecal water content. At a 400 mg/kg dosage, GFTTPs notably improved colonic tissue alterations and serum levels of excitatory neurotransmitters caused by loperamide hydrochloride. They also beneficially altered gut microbiota, increasing Coprococcus, Lactobacillus, and Pediococcus populations. These changes correlated with improved stool frequency, consistency, and weight in constipated mice. Importantly, GFTTPs at 200 and 400 mg/kg doses exhibited comparable effects to the normal control group in key parameters, such as gastrointestinal transit rate and fecal moisture. These findings suggest that GFTTPs may serve as a potent natural remedy for constipation, offering significant therapeutic potential within the context of gut health and with promising implications for human applications.
Collapse
Affiliation(s)
- Manyou Yu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qingling Xie
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Ting Zhang
- Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Gang Liu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Liugang Shi
- Yazhou Hengtai Tea Industry Co., Ltd., Ya'an 625100, China
| | - Bin Wu
- Yazhou Hengtai Tea Industry Co., Ltd., Ya'an 625100, China
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Ye J, Gong M, Zhang Y, Xu Q, Zhao J. Effects of Fermented Extracts of Wuniuzao Dark Loose Tea on Hepatic Sterol Regulatory Element-Binding Protein Pathway and Gut Microbiota Disorder in Obese Mice. J Nutr 2024; 154:626-637. [PMID: 38110182 DOI: 10.1016/j.tjnut.2023.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.
Collapse
Affiliation(s)
- Jiangcheng Ye
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingxiu Gong
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yifan Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jin Zhao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
5
|
Xu Q, Ye J, Gong M, Zhang Y, Yuan Y, Zhao J. Theabrownin from Wuniuzao Dark Tea Regulates Hepatic Lipid Metabolism and Gut Microbiota in Mice Fed High-Fat Diet. Nutrients 2023; 15:4912. [PMID: 38068770 PMCID: PMC10708223 DOI: 10.3390/nu15234912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The search for functional foods with no side effects that can alleviate obesity has been a common trend. Wuniuzao dark tea could be a safe choice. This study aimed to explore whether theabrownin from Wuniuzao dark tea could regulate hepatic lipid metabolism and gut microbiota in mice fed a high-fat diet. In total, fifty 8-week-old male C57BL/6 mice were randomly divided into five treatment groups, including a normal control group, high-fat diet group, positive control group, low-dose theabrownin group, and high-dose theabrownin group. After a 9-week intervention, these mice were selected from each treatment group for sampling. The results showed that the body weight and epididymis fat weight of obese mice fed with theabrownin were decreased. Serum total triglycerides, total cholesterol, and low-density lipoprotein cholesterol, and activities of aspartate aminotransferase and alanine aminotransferase were also decreased. Protein and mRNA expression of fatty acid synthesis and lipid production-related genes of mice fed with theabrownin were downregulated. The gut microbiota composition in the theabrownin group was improved. The study indicated that theabrownin from Wuniuzao dark tea could achieve the liver protection and anti-obesity effects by regulating the Srebp lipid metabolism pathway and bile acid metabolism process, and improving the gut microbiota composition of mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Zhao
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.X.); (J.Y.); (M.G.); (Y.Z.); (Y.Y.)
| |
Collapse
|
6
|
Wang N, Li L, Zhang P, Mehmood MA, Lan C, Gan T, Li Z, Zhang Z, Xu K, Mo S, Xia G, Wu T, Zhu H. In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice. Nutr Res Pract 2023; 17:682-697. [PMID: 37529260 PMCID: PMC10375330 DOI: 10.4162/nrp.2023.17.4.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Luzhou LaoJiao Group Co. Ltd., Luzhou 646000, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Puyu Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Tian Gan
- Ya’an Youyi Tea Co., Ltd, Ya’an 625000, China
| | - Zaixin Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhi Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Shan Mo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Gang Xia
- Comprehensive Agricultural Service Center of Dachuan, Lushan, Ya’an 625000, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
7
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
8
|
Fadieienko G, Gridnyev O, Kurinna O, Chereliuk N. Gut microbiota changes in nonalcoholic fatty liver disease and concomitant coronary artery disease. COR ET VASA 2023; 65:489-495. [DOI: 10.33678/cor.2022.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zhao Y, Tang C, Tang W, Zhang X, Jiang X, Duoji Z, Kangzhu Y, Zhao X, Xu X, Hong F, Liu Q. The association between tea consumption and blood pressure in the adult population in Southwest China. BMC Public Health 2023; 23:476. [PMID: 36915113 PMCID: PMC10010002 DOI: 10.1186/s12889-023-15315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVES Prior research on the effect of tea consumption on blood pressure (BP) generated inconsistent findings. The objective of this study was to explore the effects of different types of tea consumption on BP. METHODS We included 76,673 participants aged 30-79 from the baseline data of the China Multi-Ethnic Cohort (CMEC) study. Binary logistic regression was used to analyze the influences of different types of tea consumption on the risk of hypertensive BP. Moreover, multiple linear regression was used to examine the association between tea drinking and BP. RESULTS Tea consumption was associated with a reduced risk of hypertensive BP by 10% (AOR: 0.90, 95%CI: 0.86-0.94). While dark tea was related to a 1.79-5.31 mmHg reduction in systolic blood pressure (SBP) and a 0.47-1.02 mmHg reduction in diastolic blood pressure (DBP), sweet tea, regardless of the duration, frequency, or amount of consumption, significantly was associated with a reduced SBP by 3.19-7.18 mmHg. Green tea also was associated with a reduced SBP by 1.21-2.98 mmHg. Although scented tea was related to reduced SBP by 1.26-2.48 mmHg, the greatest effect came from the long duration (> 40 years:β=-2.17 mmHg, 95%CI=-3.47 mmHg --0.87 mmHg), low frequency (1-2 d/w: β = -2.48 mmHg, 95%CI=-3.76 mmHg--1.20 mmHg), and low amount (≤ 2 g/d: β=-2.21 mmHg, 95%CI=-3.01 mmHg--1.40 mmHg). Additionally, scented tea was correlated to a decrease in DBP at the frequency of 1-2 d/w (β=-0.84 mmHg, 95%CI=-1.65 mmHg--0.02 mmHg). Drinking black tea only was associated with lowered SBP. The protective effect of black tea on SBP was characterized by the long-duration (> 15 years, -2.63--5.76 mmHg), high frequency (6-7 d/w, -2.43 mmHg), and medium amount (2.1-4.0 g/d, -3.06 mmHg). CONCLUSION Tea consumption was associated with lower SBP and a reduced risk of hypertensive BP. The antihypertensive effect varies across types of tea consumed.
Collapse
Affiliation(s)
- Ying Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China
| | - Chengmeng Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, 400042, Chongqing, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, 650500, Kunming, China
| | - Xiaoman Jiang
- Chengdu Center for Disease Control and Prevention, 610041, Chengdu, China
| | - Zhuoma Duoji
- School of Medicine, Tibet University, 850000, Lhasa, China
| | - Yixi Kangzhu
- Tibet Center for disease control and prevention, 850000, Lhasa, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China
| | - Xiaohe Xu
- Department of Sociology , University of Texas at San Antonio, San Antonio, USA.,Department of Sociology and Psychology, School of Public Administration, Sichuan University, 610064, Chengdu, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Qiaolan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China.
| |
Collapse
|
10
|
Yan G, Li S, Wen Y, Luo Y, Huang J, Chen B, Lv S, Chen L, He L, He M, Yang Q, Yu Z, Xiao W, Tang Y, Li W, Han J, Zhao F, Yu S, Kong F, Abbasi B, Yin H, Gu C. Characteristics of intestinal microbiota in C57BL/6 mice with non-alcoholic fatty liver induced by high-fat diet. Front Microbiol 2022; 13:1051200. [PMID: 36620001 PMCID: PMC9813237 DOI: 10.3389/fmicb.2022.1051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction As a representation of the gut microbiota, fecal and cecal samples are most often used in human and animal studies, including in non-alcoholic fatty liver disease (NAFLD) research. However, due to the regional structure and function of intestinal microbiota, whether it is representative to use cecal or fecal contents to study intestinal microbiota in the study of NAFLD remains to be shown. Methods The NAFLD mouse model was established by high-fat diet induction, and the contents of the jejunum, ileum, cecum, and colon (formed fecal balls) were collected for 16S rRNA gene analysis. Results Compared with normal mice, the diversity and the relative abundance of major bacteria and functional genes of the ileum, cecum and colon were significantly changed, but not in the jejunum. In NAFLD mice, the variation characteristics of microbiota in the cecum and colon (feces) were similar. However, the variation characteristics of intestinal microbiota in the ileum and large intestine segments (cecum and colon) were quite different. Discussion Therefore, the study results of cecal and colonic (fecal) microbiota cannot completely represent the results of jejunal and ileal microbiota.
Collapse
Affiliation(s)
- Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lang Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yong Tang
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Kong
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Benazir Abbasi
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Hongmei Yin
- College of Animal Science, Xichang University, Xichang, China,*Correspondence: Hongmei Yin,
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Congwei Gu,
| |
Collapse
|
11
|
Lu R, Sugimoto T, Tsuboi T, Sekikawa T, Tanaka M, Lyu X, Yokoyama S. Sichuan dark tea improves lipid metabolism and prevents aortic lipid deposition in diet-induced atherosclerosis model rats. Front Nutr 2022; 9:1014883. [PMID: 36505232 PMCID: PMC9729532 DOI: 10.3389/fnut.2022.1014883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background and aims Sichuan dark tea (ST), Zangcha, is a traditional fermented Chinese tea found in Sichuan and Tibet and claimed for beneficial effects against lifestyle-related metabolic disorders. We examined the effects of ST on lipid metabolism and atherosclerosis. Methods and results Sichuan dark tea was given to fat-rich diet-induced atherosclerosis model rats in comparison with dark-fermented Chinese Pu-erh tea (PT) and Japanese green tea (GT). After 8 weeks of feeding, ST and PT induced an increase in high-density lipoprotein (HDL)-cholesterol and a decrease in glucose, and ST decreased triglyceride in plasma. ST also induced low pH in the cecum. There was no significant change in their body weight among the fat-feeding groups but a decrease was found in the visceral fat and liver weight in the ST group. Accordingly, ST reduced lipid deposition in the aorta in comparison with PT and GT. ST increased mRNA of LXRα, PPARα, PPARγ, and ABCA1 in the rat liver. The extract of ST stimulated the AMPK pathway to increase the expression of ABCA1 in J774 cells and increased expression of lipoprotein lipase and hormone-sensitive lipase in 3T3L1 cells, consistent with its anti-atherogenic effects in rats. High-performance liquid chromatography analysis showed unique spectra of original specific compounds of caffeine and catechins in each tea extract, but none of them was likely responsible for these effects. Conclusion Sichuan dark tea increases plasma HDL and reduces plasma triglyceride to decrease atherosclerosis through AMPK activation. Further study is required to identify specific components for the effects of this tea preparation.
Collapse
Affiliation(s)
- Rui Lu
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Takumi Sugimoto
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Tomoe Tsuboi
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | | | - Mamoru Tanaka
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Xiaohua Lyu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shinji Yokoyama
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan,*Correspondence: Shinji Yokoyama,
| |
Collapse
|
12
|
Zhu C, Yang Z, He L, Lu X, Tang J, Laghi L. The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods 2022; 11:foods11192986. [PMID: 36230062 PMCID: PMC9563412 DOI: 10.3390/foods11192986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
As an essential beverage beneficial for Tibetan people, Ya’an Tibetan tea has received scarce attention, particularly from the point of view of the characterization of its metabolome. The aim of the study is to systematically characterize the metabolome of Tibetan tea by means of untargeted 1H-NMR. Moreover, the variations of its metabolome along ageing time are evaluated by taking advantage of univariate and multivariate analyses. A total of 45 molecules are unambiguously identified and quantified, comprising amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and catechins. The concentrations of amino acids, organic acids, carbohydrates and catechins are mainly determined by ageing time. The present study would serve as a reference guide for further work on the Ya’an Tibetan tea metabolome, therefore contributing to the related industries.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928478 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
13
|
Guo W, Luo L, Meng Y, Chen W, Yu L, Zhang C, Qiu Z, Cao P. Luteolin alleviates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by modulating host serum metabolome and gut microbiome. Front Nutr 2022; 9:936237. [PMID: 35990349 PMCID: PMC9389599 DOI: 10.3389/fnut.2022.936237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Previous studies have indicated the protective effects of luteolin against non-alcoholic steatohepatitis (NASH), but the definite underlying mechanism still remains unclear. This study aimed to explore the metabolomic and metagenomic signatures of NASH with luteolin supplementation. Experimental approach Mice were fed with a methionine–choline-deficient (MCD) diet containing 0.05% luteolin for 6 weeks. NASH severity was determined based on the liver histological observations, serum and hepatic biochemical measurements. Targeted metabolomics was conducted to identify differential metabolites in mice serum. 16S rRNA sequencing was conducted to assess the gut microbiota composition and function in mice colon. Results In detail, luteolin treatment significantly alleviated MCD diet-induced hepatic lipid deposition, liver function damage, and oxidative stress. Targeted plasma metabolomics revealed that 5-hydroxyindole, LPE (0:0/22:5), indole 3-phosphate, and N-phenylacetylphenylalanine were remarkably elevated, and homogentisic acid, thiamine, KN-93, PC (16:1e/8, 9-EpETE), carnitine C9:1-OH, FFA (18:4) and carnitine C8:1 were significantly decreased in NASH group as compared to normal group, which could be profoundly reversed after luteolin treatment. 16S rRNA sequencing indicated that luteolin supplementation significantly increased Erysipelatoclostridium and Pseudomonas as well as decreased Faecalibaculum at genus level. Most importantly, a negative association between thiamine and Faecalibaculum was observed based on Spearman's correlation analysis, which may play an important role in the preventive effects of luteolin against NASH. Conclusion Collectively, luteolin may alleviate the NASH by modulating serum metabolome and gut microbiome, which supports its use as a dietary supplement for NASH prevention.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
14
|
Wen S, An R, Li ZG, Lai ZX, Li DL, Cao JX, Chen RH, Zhang WJ, Li QH, Lai XF, Sun SL, Sun LL. Citrus maxima and tea regulate AMPK signaling pathway to retard the progress of nonalcoholic fatty liver disease. Food Nutr Res 2022; 66:7652. [PMID: 35757439 PMCID: PMC9199835 DOI: 10.29219/fnr.v66.7652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease that easily induces hepatitis, cirrhosis, and even liver cancer. The long-term use of NAFLD therapeutic drugs produces toxicity and drug resistance. Therefore, it is necessary to develop high efficiency and low-toxicity active ingredients to alleviate NAFLD. Objective This study aimed to reveal the role and mechanism of a new functional food CMT in alleviating NAFLD. Results In the ob/ob fatty liver mice models, the CMT extracts significantly inhibited the weight gain of the mice and reduced the accumulation of white fat. The anatomical and pathological results showed that CMT relieved fatty liver in mice and reduced excessive lipid deposition and inflammatory infiltration. Serological and liver biochemical indicators suggest that CMT reduced dyslipidemia and liver damage caused by fatty liver. CMT obviously activated the adenosine 5′-monophosphate-activated protein kinase (AMPK)/acetyl-coA carboxylase (ACC) and AMPK/fatty acid synthase (FAS) signaling pathways, promoted fat oxidation, and inhibited synthesis. Moreover, CMT regulated the expression of inflammatory factors to relieve hepatitis caused by NAFLD. Conclusion The study explained the role and mechanism of CMT in alleviating NAFLD and suggested that the active ingredients of CMT might be beneficial in NAFLD therapy.
Collapse
Affiliation(s)
- Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Zhi-Gang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Zhao-Xiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Jun-Xi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ruo-Hong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Wen-Ji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Qiu-Hua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Xing-Fei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Shi-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ling-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| |
Collapse
|
15
|
Dong XK, Luo D, Chen WJ, Wang RR, Yang J, Niu MM. Association between serum uric acid and carotid atherosclerosis in elderly postmenopausal women: A hospital-based study. J Clin Lab Anal 2021; 36:e24097. [PMID: 34837265 PMCID: PMC8761458 DOI: 10.1002/jcla.24097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carotid atherosclerosis (CAS) is associated with increased cardiovascular risk and implicated in 20-30% of strokes. METHODS 504 patients were included in this study. The detailed medical history and the results of physical examination, carotid ultrasound examination, and routine laboratory tests were collected. Logistic regression analyses were conducted to analyze the relationship between the SUA and the presence of carotid plaques. And the relationship between SUA and the progression of CAS was analyzed by multiple linear regression. The effect of hormone replacement therapy (HRT) on CAS has also be evaluated. RESULTS 412 patients (81.7%) had carotid plaques of different sizes by carotid ultrasound examination. We found a positive association between the level of SUA and the probability of having carotid plaque by univariate logistic regression (OR: 2.01, 95% CI: 1.83-2.19, p = 0.003). At 2 years post-discharge, we found that 1 mg/dL increase in SUA levels was expected to 0.946% increase in plaque score and 0.026 cm increase in carotid intima-media thickness, separately. Moreover, patients treated by long-term HRT (≥5 years) had a lower level of SUA and blood lipid and the less change of plaque score and carotid intima-media thickness than patients without HRT. CONCLUSION The presence and progression of CAS had significantly positive associations with the level of SUA. And the HRT may have the ability to prevent the presence and progression of CAS. However, the safety and long-term outcome of HRT on CAS should be evaluated in further studies.
Collapse
Affiliation(s)
- Xiao-Kang Dong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Luo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Jing Chen
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong-Rong Wang
- Department of Gynecology, Sishui County People's Hospital, Jining, China
| | - Jie Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao-Miao Niu
- Department of Pharmacy, Tai'an Traditional Second Chinese Medicine Hospital, Tai'an, China
| |
Collapse
|
16
|
Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, Zou L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem 2021; 367:130697. [PMID: 34365248 DOI: 10.1016/j.foodchem.2021.130697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
Metabolomics is an important branch of systems biology, which can detect changes in the body's metabolism before and after the intervention of functional foods, identify effective metabolites, and predict the interventional effects and the mechanism. This review summarizes the latest research outcomes regarding interventional effects of functional foods on metabolic diseases via metabolomics analysis. Since metabolomics approaches are powerful strategies for revealing the changes in bioactive compounds of functional foods during processing and storage, we also discussed the effects of these parameters on functional food metabolites using metabolomics approaches. To date, a number of endogenous metabolites related to the metabolic diseases after functional foods intervention have been discovered. Unfortunately, the mechanisms of metabolic disease-related molecules are still unclear and require further studies. The combination of metabolomics with other omics technologies could further promote its ability to fully understand the precise biological processes of functional food intervention on metabolic diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yan Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
17
|
Xu J, Li M, Zhang Y, Chu S, Huo Y, Zhao J, Wan C. Huangjinya Black Tea Alleviates Obesity and Insulin Resistance via Modulating Fecal Metabolome in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2020; 64:e2000353. [PMID: 33002297 DOI: 10.1002/mnfr.202000353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/04/2020] [Indexed: 02/05/2023]
Abstract
SCOPE Huangjinya is a light-sensitive tea mutant containing low levels of tea polyphenols. Currently, most studies focused on characteristics formation, free amino acid metabolism and phytochemical purification. The biological activity of Huangjinya black tea (HJBT) on metabolic syndrome regarding fecal metabolome modulation is unavailable and is studied herein. METHODS AND RESULTS High-fat diet (HFD)-fed mice are treated with HJBT for 9 weeks, various metabolic biomarkers and fecal metabolites are determined. HJBT reduces adipogenic and lipogenic gene expression, enhances lipolytic gene expression, decreases adipocyte expansion, and prevents the development of obesity. HJBT reduces lipogenic gene expression, increases fatty acid oxidation-related genes expression, which alleviates liver steatosis. HJBT enhances glucose/insulin tolerance, increases insulin/Akt signaling, attenuates hyperlipidemia and hyperglycemia, prevents the onset of insulin resistance. HJBT modulates bile acid metabolism, promotes secondary/primary bile acid ratio; increases short-chain fatty acids production, promotes saturated and polyunsaturated fatty acids content; reduces carnitines and phosphocholines, but increases myo-inositol content; decreases branched-chain and aromatic amino acids content; increases the metabolite content related to pentose phosphate pathway. CONCLUSION This study reported the association between fecal metabolome modulation and metabolism improvement due to HJBT administration, proposes HJBT as a dietary intervention for preventing obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, P. R. China
| | - Yi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Suo Chu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yan Huo
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Jie Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, P. R. China
| |
Collapse
|
18
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|