1
|
Krause H, Engelmann UM. Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416838. [PMID: 39985275 PMCID: PMC11967826 DOI: 10.1002/advs.202416838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Superparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles' magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
Collapse
Affiliation(s)
- Hans‐Joachim Krause
- Institute of Biological Information ProcessingBioelectronics (IBI‐3)Forschungszentrum Jülich52425JülichGermany
| | - Ulrich M. Engelmann
- Medical Engineering and Applied MathematicsFH Aachen University of Applied Sciences52428JülichGermany
| |
Collapse
|
2
|
Garlan B, Rabehi A, Ngo K, Neveu S, Askari Moghadam R, Kokabi H. Miniaturized Pathogen Detection System Using Magnetic Nanoparticles and Microfluidics Technology. MICROMACHINES 2024; 15:1272. [PMID: 39459146 PMCID: PMC11509726 DOI: 10.3390/mi15101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Rapid detection of a biological agent is essential to anticipate a threat to the protection of biodiversity and ecosystems. Our goal is to miniaturize a magnetic pathogen detection system in order to fabricate an efficient and portable system. The detection device is based on flat, multilayer coils associated with microfluidic structures to detect magnetic nanoparticles linked to pathogen agents. One type of immunological diagnosis is based on the measurement of the magnetic sensitivity of magnetic nanoparticles (MNPs), which are markers connected to pathogens. This method of analysis involves the coupling of antibodies or antigen proteins with MNPs. Among the available magnetic techniques, the frequency mixing method has a definite advantage by making it possible to quantify MNPs. An external magnetic field composed of a low- and a high-frequency field is applied to the sample reservoir. Then, the response signal is measured and analyzed. In this paper, magnetic microcoils are implemented on a multilayer Printed Circuit Board (PCB), and a microfluidics microstructure is designed in connection with the planar coils. Simulation software, COMSOL version 5.3, provides an analytical perspective to choose the number of turns in magnetic coils and to understand the effects of changing the shape and dimensions of the microfluidics microstructure.
Collapse
Affiliation(s)
- Benjamin Garlan
- Group of Electrical Engineering of Paris (GeePs), Sorbonne Université, CNRS UMR8507, 75005 Paris, France; (B.G.); (A.R.); (H.K.)
| | - Amine Rabehi
- Group of Electrical Engineering of Paris (GeePs), Sorbonne Université, CNRS UMR8507, 75005 Paris, France; (B.G.); (A.R.); (H.K.)
| | - Kieu Ngo
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, UMR CNRS 7197, 75252 Paris, France;
| | - Sophie Neveu
- Laboratoire Physicochimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Sorbonne Université, UMR CNRS 8234, 75252 Paris, France;
| | - Reza Askari Moghadam
- CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, Sorbonne Université, 75006 Paris, France
| | - Hamid Kokabi
- Group of Electrical Engineering of Paris (GeePs), Sorbonne Université, CNRS UMR8507, 75005 Paris, France; (B.G.); (A.R.); (H.K.)
| |
Collapse
|
3
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
4
|
Abuawad A, Ashhab Y, Offenhäusser A, Krause HJ. DNA Sensor for the Detection of Brucella spp. Based on Magnetic Nanoparticle Markers. Int J Mol Sci 2023; 24:17272. [PMID: 38139102 PMCID: PMC10744106 DOI: 10.3390/ijms242417272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.
Collapse
Affiliation(s)
- Abdalhalim Abuawad
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Yaqoub Ashhab
- Palestine–Korea Biotechnology Center, Palestine Polytechnic University, Hebron P720, Palestine
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
| |
Collapse
|
5
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558657. [PMID: 37786702 PMCID: PMC10541581 DOI: 10.1101/2023.09.20.558657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Binding events to elements of the cell membrane act as receptors which regulate cellular function and communication and are the targets of many small molecule drug discovery efforts for agonists and antagonists. Conventional techniques to probe these interactions generally require labels and large amounts of receptor to achieve satisfactory sensitivity. Whispering gallery mode microtoroid optical resonators have demonstrated sensitivity to detect single-molecule binding events. Here, we demonstrate the use of frequency-locked optical microtoroids for characterization of membrane interactions in vitro at zeptomolar concentrations using a supported biomimetic membrane. Arrays of microtoroids were produced using photolithography and subsequently modified with a biomimetic membrane, providing high quality (Q) factors (> 10 6 ) in aqueous environments. Fluorescent recovery after photobleaching (FRAP) experiments confirmed the retained fluidity of the microtoroid supported-lipid membrane with a diffusion coefficient of 3.38 ± 0.26 μm 2 ⋅ s - 1 . Utilizing this frequency-locked membrane-on-a-chip model combined with auto-balanced detection and non-linear post-processing techniques, we demonstrate zeptomolar detection levels The binding of Cholera Toxin B- monosialotetrahexosyl ganglioside (GM1) was monitored in real-time, with an apparent equilibrium dissociation constant k d = 1.53 nM . The measured affiny of the agonist dynorphin A 1-13 to the κ -opioid receptor revealed a k d = 3.1 nM using the same approach. Radioligand binding competition with dynorphin A 1-13 revealed a k d in agreement (1.1 nM) with the unlabeled method. The biosensing platform reported herein provides a highly sensitive real-time characterization of membrane embedded protein binding kinetics, that is rapid and label-free, for toxin screening and drug discovery, among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| | - Jeffrey E. Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
6
|
Yari P, Rezaei B, Dey C, Chugh VK, Veerla NVRK, Wang JP, Wu K. Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094411. [PMID: 37177614 PMCID: PMC10181768 DOI: 10.3390/s23094411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Since its first report in 2006, magnetic particle spectroscopy (MPS)-based biosensors have flourished over the past decade. Currently, MPS are used for a wide range of applications, such as disease diagnosis, foodborne pathogen detection, etc. In this work, different MPS platforms, such as dual-frequency and mono-frequency driving field designs, were reviewed. MPS combined with multi-functional magnetic nanoparticles (MNPs) have been extensively reported as a versatile platform for the detection of a long list of biomarkers. The surface-functionalized MNPs serve as nanoprobes that specifically bind and label target analytes from liquid samples. Herein, an analysis of the theories and mechanisms that underlie different MPS platforms, which enable the implementation of bioassays based on either volume or surface, was carried out. Furthermore, this review draws attention to some significant MPS platform applications in the biomedical and biological fields. In recent years, different kinds of MPS point-of-care (POC) devices have been reported independently by several groups in the world. Due to the high detection sensitivity, simple assay procedures and low cost per run, the MPS POC devices are expected to become more widespread in the future. In addition, the growth of telemedicine and remote monitoring has created a greater demand for POC devices, as patients are able to receive health assessments and obtain results from the comfort of their own homes. At the end of this review, we comment on the opportunities and challenges for POC devices as well as MPS devices regarding the intensely growing demand for rapid, affordable, high-sensitivity and user-friendly devices.
Collapse
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Clifton Dey
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Pourshahidi AM, Achtsnicht S, Offenhäusser A, Krause HJ. Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source. SENSORS (BASEL, SWITZERLAND) 2022; 22:8776. [PMID: 36433383 PMCID: PMC9694433 DOI: 10.3390/s22228776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Frequency mixing magnetic detection (FMMD) has been explored for its applications in fields of magnetic biosensing, multiplex detection of magnetic nanoparticles (MNP) and the determination of core size distribution of MNP samples. Such applications rely on the application of a static offset magnetic field, which is generated traditionally with an electromagnet. Such a setup requires a current source, as well as passive or active cooling strategies, which directly sets a limitation based on the portability aspect that is desired for point of care (POC) monitoring applications. In this work, a measurement head is introduced that involves the utilization of two ring-shaped permanent magnets to generate a static offset magnetic field. A steel cylinder in the ring bores homogenizes the field. By variation of the distance between the ring magnets and of the thickness of the steel cylinder, the magnitude of the magnetic field at the sample position can be adjusted. Furthermore, the measurement setup is compared to the electromagnet offset module based on measured signals and temperature behavior.
Collapse
Affiliation(s)
- Ali Mohammad Pourshahidi
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Stefan Achtsnicht
- Institute of Nano-and Biotechnologies (INB), FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Nano-and Biotechnologies (INB), FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| |
Collapse
|
8
|
Wu K, Liu J, Chugh VK, Liang S, Saha R, Krishna VD, Cheeran MCJ, Wang JP. Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap. NANO FUTURES 2022; 6:022001. [PMID: 36199556 PMCID: PMC9531898 DOI: 10.1088/2399-1984/ac5cd1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
9
|
Li T, Wang K, Zheng C, Zheng W, Cheng Y, Ning Q, Xu H, Cui D. Magnetic frequency mixing technological advances for the practical improvement of point-of-care testing. Biotechnol Bioeng 2021; 119:347-360. [PMID: 34859425 DOI: 10.1002/bit.28005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
Nanomaterials, especially superparamagnetic nanomaterials, have recently played essential roles in point-of-care testing due to their intrinsic magnetic, electrochemical, and optical properties. The inherent superparamagnetism of magnetic nanoparticles makes them highly sensitive for quantitative detection. Among the various magnetic detection technologies, frequency mixing technology (FMT) technology is an emerging detection technique in the nanomedical field. FMT sensors have high potential for development in the field of biomedical quantitative detection due to their simple structure, and they are not limited to the materials used. In particular, they can be applied for large-scale disease screening, early tumor marker detection, and low-dose drug detection. This review summarizes the principles of FMT and recent advances in the fields of immunoadsorption, lateral flow assay detection, magnetic imaging, and magnetic nanoparticles recognition. The advantages and limitations of FMT sensors for robust, ultrasensitive biosensing are highlighted. Finally, the future requirements and challenges in the development of this technology are described. This review provides further insights for researchers to inspire the future development of FMT by integration into biosensing and devices with a broad field of applications in analytical sensing and clinical usage.
Collapse
Affiliation(s)
- Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Chujun Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Wei Zheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| | - Hao Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, Shanghai, China
| |
Collapse
|
10
|
Yilmaz T, Goluch ED. A comprehensive review of conventional techniques and biosensor systems developed for in situ detection of vibrio cholerae. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Pourshahidi AM, Achtsnicht S, Nambipareechee MM, Offenhäusser A, Krause HJ. Multiplex Detection of Magnetic Beads Using Offset Field Dependent Frequency Mixing Magnetic Detection. SENSORS 2021; 21:s21175859. [PMID: 34502749 PMCID: PMC8433651 DOI: 10.3390/s21175859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies f1 + n⋅f2, n = 1, 2, 3, 4 with f1 = 30.8 kHz and f2 = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible.
Collapse
Affiliation(s)
- Ali Mohammad Pourshahidi
- Institute of Biological Information Processing-Biolelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.M.P.); (S.A.); (M.M.N.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Stefan Achtsnicht
- Institute of Biological Information Processing-Biolelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.M.P.); (S.A.); (M.M.N.); (A.O.)
- Institute of Nano- and Biotechnologies (INB), FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Mrinal Murali Nambipareechee
- Institute of Biological Information Processing-Biolelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.M.P.); (S.A.); (M.M.N.); (A.O.)
| | - Andreas Offenhäusser
- Institute of Biological Information Processing-Biolelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.M.P.); (S.A.); (M.M.N.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing-Biolelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.M.P.); (S.A.); (M.M.N.); (A.O.)
- Institute of Nano- and Biotechnologies (INB), FH Aachen University of Applied Sciences, 52428 Jülich, Germany
- Correspondence: h.-; Tel.: +49-2461-61-2955
| |
Collapse
|
12
|
Seherler S, Bozdogan A, Ozal Ildeniz TA, Kok FN, Anac Sakir I. Detection of cholera toxin with surface plasmon field-enhanced fluorescent spectroscopy. Biotechnol Appl Biochem 2021; 69:1557-1566. [PMID: 34297408 DOI: 10.1002/bab.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
In this work, a biosensor based on surface plasmon field-enhanced florescence spectroscopy (SPFS) method was successfully constructed to detect the truncated form of cholera toxin, that is, its beta subunit (CTX-B). CTX-B is a relatively small molecule (12 kDa) and it was chosen as model analyte for the detection of protein toxins originated from waterborne pathogens. Recognition layer was prepared on gold-coated LaSFN9 glasses modified with 11-mercaptoundecanoic acid (11-MUA). Biotin-conjugated anti-CTX-B polyclonal antibody (B-Ab) was immobilized on streptavidin (SA) layer constructed on the 11-MUA-modified surface. CTX-B amount was determined with direct assay using B-Ab in surface plasmon resonance (SPR) mode and with sandwich assay in SPFS mode using Cy5-conjugated anti-CTX-B polyclonal antibody. Minimum detected CTX-B concentrations were 10 and 0.01 μg/ml with SPR and SPFS, respectively, showing the sensitivity of the SPFS system over the conventional one. The detection was done in 2-6 h, which was faster than both culture and polymerase chain reaction (PCR)-based methods. Stability tests were performed with SA-coated sensors (excluding B-Ab). In this form, the layer was stable after 30 days of storage in phosphate-buffered saline (PBS; 0.01 M, pH = 7.4) at +4°C. B-Ab layer was formed immediately on them before each measurement.
Collapse
Affiliation(s)
- Sebnem Seherler
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Anil Bozdogan
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, Tulln, Austria
| | - Tugba Arzu Ozal Ildeniz
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Nese Kok
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Ilke Anac Sakir
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
13
|
Petrucci S, Costa C, Broyles D, Dikici E, Daunert S, Deo S. On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. Trends Food Sci Technol 2021; 115:409-421. [PMID: 34267423 DOI: 10.1016/j.tifs.2021.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the rise in outbreaks of pathogenic bacteria in both food and water resulting in an increased instance of infection, there is a growing public health problem in both developed and developing countries. In this increasing threat the most effective method for control and prevention is rapid and cost-effective detection. Research has shifted in recent years towards the development of rapid and on-site assays for the detection of these kinds of bacteria. However, there are still some limitations in the implementation of these assays in the field. This article discusses the current on-site detection methods. Current scope of advancements and limitations in the development or use of these on-site technologies for food and waterborne bacterial detection is evaluated in this study. With the continued development of these technologies, on-site detection will continue to impact many areas of public health. As these methods continue to improve and diversify further, on-site detection could become more widely implemented in food and water analysis.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Connor Costa
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| |
Collapse
|
14
|
Engelmann UM, Shalaby A, Shasha C, Krishnan KM, Krause HJ. Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1257. [PMID: 34064640 PMCID: PMC8151130 DOI: 10.3390/nano11051257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022]
Abstract
Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.
Collapse
Affiliation(s)
- Ulrich M. Engelmann
- Department of Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany;
| | - Ahmed Shalaby
- Department of Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany;
| | - Carolyn Shasha
- Department of Physics, University of Washington, Seattle, WA 98195, USA; (C.S.); (K.M.K.)
| | - Kannan M. Krishnan
- Department of Physics, University of Washington, Seattle, WA 98195, USA; (C.S.); (K.M.K.)
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hans-Joachim Krause
- Department of Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany;
- Institute of Biological Information Processing—Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
15
|
Pietschmann J, Voepel N, Voß L, Rasche S, Schubert M, Kleines M, Krause HJ, Shaw TM, Spiegel H, Schroeper F. Development of Fast and Portable Frequency Magnetic Mixing-Based Serological SARS-CoV-2-Specific Antibody Detection Assay. Front Microbiol 2021; 12:643275. [PMID: 34025604 PMCID: PMC8132704 DOI: 10.3389/fmicb.2021.643275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
A novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in China in December 2019, causing an ongoing, rapidly spreading global pandemic. Worldwide, vaccination is now expected to provide containment of the novel virus, resulting in an antibody-mediated immunity. To verify this, serological antibody assays qualitatively as well as quantitatively depicting the amount of generated antibodies are of great importance. Currently available test methods are either laboratory based or do not have the ability to indicate an estimation about the immune response. To overcome this, a novel and rapid serological magnetic immunodetection (MID) point-of-care (PoC) assay was developed, with sensitivity and specificity comparable to laboratory-based DiaSorin Liaison SARS-CoV-2 S1/S2 IgG assay. To specifically enrich human antibodies against SARS-CoV-2 in immunofiltration columns (IFCs) from patient sera, a SARS-CoV-2 S1 antigen was transiently produced in plants, purified and immobilized on the IFC. Then, an IgG-specific secondary antibody could bind to the retained antibodies, which was finally labeled using superparamagnetic nanoparticles. Based on frequency magnetic mixing technology (FMMD), the magnetic particles enriched in IFC were detected using a portable FMMD device. The obtained measurement signal correlates with the amount of SARS-CoV-2-specific antibodies in the sera, which could be demonstrated by titer determination. In this study, a MID-based assay could be developed, giving qualitative as well as semiquantitative results of SARS-CoV-2-specific antibody levels in patient's sera within 21 min of assay time with a sensitivity of 97% and a specificity of 92%, based on the analysis of 170 sera from hospitalized patients that were tested using an Food and Drug Administration (FDA)-certified chemiluminescence assay.
Collapse
Affiliation(s)
- Jan Pietschmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Leonie Voß
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Max Schubert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Michael Kleines
- Laboratory Diagnostic Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich, Germany
| | | | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Florian Schroeper
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
16
|
Wu K, Liu J, Saha R, Peng C, Su D, Wang YA, Wang JP. Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization. ACS OMEGA 2021; 6:6274-6283. [PMID: 33718717 PMCID: PMC7948237 DOI: 10.1021/acsomega.0c05845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively used as tiny heating sources in magnetic hyperthermia therapy, contrast agents in magnetic resonance imaging, tracers in magnetic particle imaging, carriers for drug/gene delivery, etc. There have emerged many MNP/microbead suppliers since the past decade, such as Ocean NanoTech, Nanoprobes, US Research Nanomaterials, Miltenyi Biotec, micromod Partikeltechnologie GmbH, nanoComposix, and so forth. In this paper, we report the physical and magnetic characterizations on iron oxide nanoparticle products from Ocean NanoTech. Standard characterization tools such as vibrating-sample magnetometry, X-ray diffraction, dynamic light scattering, transmission electron microscopy, and zeta potential analysis are used to provide MNP customers and researchers with an overview of these iron oxide nanoparticle products. In addition, the dynamic magnetic responses of these iron oxide nanoparticles in aqueous solutions are investigated under low- and high-frequency alternating magnetic fields, giving a standardized operating procedure for characterizing the MNPs from Ocean NanoTech, thereby yielding the best of MNPs for different applications.
Collapse
Affiliation(s)
- Kai Wu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaoyi Peng
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department
of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Jian-Ping Wang
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Pietschmann J, Dittmann D, Spiegel H, Krause HJ, Schröper F. A Novel Method for Antibiotic Detection in Milk Based on Competitive Magnetic Immunodetection. Foods 2020; 9:E1773. [PMID: 33265942 PMCID: PMC7760479 DOI: 10.3390/foods9121773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
The misuse of antibiotics as well as incorrect dosage or insufficient time for detoxification can result in the presence of pharmacologically active molecules in fresh milk. Hence, in many countries, commercially available milk has to be tested with immunological, chromatographic or microbiological analytical methods to avoid consumption of antibiotic residues. Here a novel, sensitive and portable assay setup for the detection and quantification of penicillin and kanamycin in whole fat milk (WFM) based on competitive magnetic immunodetection (cMID) is described and assay accuracy determined. For this, penicillin G and kanamycin-conjugates were generated and coated onto a matrix of immunofiltration columns (IFC). Biotinylated penicillin G or kanamycin-specific antibodies were pre-incubated with antibiotics-containing samples and subsequently applied onto IFC to determine the concentration of antibiotics through the competition of antibody-binding to the antibiotic-conjugate molecules. Bound antibodies were labeled with streptavidin-coated magnetic particles and quantified using frequency magnetic mixing technology. Based on calibration measurements in WFM with detection limits of 1.33 ng·mL-1 for penicillin G and 1.0 ng·mL-1 for kanamycin, spiked WFM samples were analyzed, revealing highly accurate recovery rates and assay precision. Our results demonstrate the suitability of cMID-based competition assay for reliable and easy on-site testing of milk.
Collapse
Affiliation(s)
- Jan Pietschmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (D.D.); (H.S.); (F.S.)
| | - Dominik Dittmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (D.D.); (H.S.); (F.S.)
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (D.D.); (H.S.); (F.S.)
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52428 Jülich, Germany; h.-
| | - Florian Schröper
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (D.D.); (H.S.); (F.S.)
| |
Collapse
|
18
|
Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins (Basel) 2020; 12:toxins12110727. [PMID: 33233770 PMCID: PMC7699850 DOI: 10.3390/toxins12110727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biological toxins are a heterogeneous group of high molecular as well as low molecular weight toxins produced by living organisms. Due to their physical and logistical properties, biological toxins are very attractive to terrorists for use in acts of bioterrorism. Therefore, among the group of biological toxins, several are categorized as security relevant, e.g., botulinum neurotoxins, staphylococcal enterotoxins, abrin, ricin or saxitoxin. Additionally, several security sensitive toxins also play a major role in natural food poisoning outbreaks. For a prompt response to a potential bioterrorist attack using biological toxins, first responders need reliable, easy-to-use and highly sensitive methodologies for on-site detection of the causative agent. Therefore, the aim of this review is to present on-site immunoassay platforms for multiplex detection of biological toxins. Furthermore, we introduce several commercially available detection technologies specialized for mobile or on-site identification of security sensitive toxins.
Collapse
|
19
|
Pietschmann J, Spiegel H, Krause HJ, Schillberg S, Schröper F. Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection. Toxins (Basel) 2020; 12:toxins12050337. [PMID: 32443933 PMCID: PMC7290995 DOI: 10.3390/toxins12050337] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023] Open
Abstract
Food and crop contaminations with mycotoxins are a severe health risk for consumers and cause high economic losses worldwide. Currently, different chromatographic- and immuno-based methods are used to detect mycotoxins within different sample matrices. There is a need for novel, highly sensitive detection technologies that avoid time-consuming procedures and expensive laboratory equipment but still provide sufficient sensitivity to achieve the mandated detection limit for mycotoxin content. Here we describe a novel, highly sensitive, and portable aflatoxin B1 detection approach using competitive magnetic immunodetection (cMID). As a reference method, a competitive ELISA optimized by checkerboard titration was established. For the novel cMID procedure, immunofiltration columns, coated with aflatoxin B1-BSA conjugate were used for competitive enrichment of biotinylated aflatoxin B1-specific antibodies. Subsequently, magnetic particles functionalized with streptavidin can be applied to magnetically label retained antibodies. By means of frequency mixing technology, particles were detected and quantified corresponding to the aflatoxin content in the sample. After the optimization of assay conditions, we successfully demonstrated the new competitive magnetic detection approach with a comparable detection limit of 1.1 ng aflatoxin B1 per mL sample to the cELISA reference method. Our results indicate that the cMID is a promising method reducing the risks of processing contaminated commodities.
Collapse
Affiliation(s)
- Jan Pietschmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52428 Jülich, Germany; h.-
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
| | - Florian Schröper
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
- Correspondence:
| |
Collapse
|