1
|
Kumari A, Kamaraj N, Selvaraj R, Nanoth R. Emerging trends and future outlook on chromium removal in the lab, pilot scale, and industrial wastewater system: an updated review exploring 10 years of research. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:547. [PMID: 40227482 DOI: 10.1007/s10661-025-13904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Chromium (Cr) is widely recognized as a carcinogenic metal, and numerous technologies have been studied on a lab scale to manage the pollution caused by Cr contamination in wastewater. However, the removal of Cr presents several challenges and limitations in industrial wastewater management. These issues highlight the ongoing need for research to discover more efficient methods for remediating Cr from wastewater. The proposed review summarizes the current limitations, gaps, and state-of-the-art technologies on Cr removal in industrial wastewater systems over the past 10 years. It aims to lay the groundwork for future research and innovation in Cr remediation for industrial applications. The review emphasizes that conventional physicochemical techniques are often insufficient and highlights the necessity of implementing advanced integrated systems. The limitations related to industrial scaling up are also deeply investigated. Special attention is given to differentiating research conducted at laboratory, pilot, and industrial levels. The findings reveal that limited research has been conducted on an industrial scale, with most investigations focusing on treating tannery and electroplating wastewater. A few studies have also been reported on wastewater from textile, mining, steel mills, pigments, and wood processing. Despite the existence of high-performance systems demonstrated in lab-scale studies, only a handful of treatment techniques have effectively removed Cr at an industrial scale. Nevertheless, innovative breakthroughs in advanced integrated systems show promise for improved performance in the future.
Collapse
Affiliation(s)
- Arpita Kumari
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - Nithya Kamaraj
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
- Centre of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of EngineeringAmrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
| | - Rajendrakumar Selvaraj
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
| | - Rasana Nanoth
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
- Centre of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of EngineeringAmrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| |
Collapse
|
2
|
Tuli SR, Ali MF, Jamal TB, Khan MAS, Fatima N, Ahmed I, Khatun M, Sharmin SA. Characterization and Molecular Insights of a Chromium-Reducing Bacterium Bacillus tropicus. Microorganisms 2024; 12:2633. [PMID: 39770835 PMCID: PMC11676387 DOI: 10.3390/microorganisms12122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025] Open
Abstract
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, Bacillus tropicus CRB14. The isolate is capable of growing on 5000 mg/L Cr (VI) in an LB (Luria Bertani) agar plate while on 900 mg/L Cr (VI) in LB broth. It shows an 86.57% reduction ability in 96 h of culture. It can also tolerate high levels of As, Cd, Co, Fe, Zn, and Pb. The isolate also shows plant growth-promoting potential as demonstrated by a significant activity of nitrogen fixation, phosphate solubilization, IAA (indole acetic acid), and siderophore production. Whole-genome sequencing revealed that the isolate lacks Cr resistance genes in their plasmids and are located on its chromosome. The presence of the chrA gene points towards Cr(VI) transport, while the absence of ycnD suggests alternative reduction pathways. The genome harbors features like genomic islands and CRISPR-Cas systems, potentially aiding adaptation and defense. Analysis suggests robust metabolic pathways, potentially involved in Cr detoxification. Notably, genes for siderophore and NRP-metallophore production were identified. Whole-genome sequencing data also provides the basis for molecular validation of various genes. Findings from this study highlight the potential application of Bacillus tropicus CRB14 for bioremediation while plant growth promotion can be utilized as an added benefit.
Collapse
Affiliation(s)
- Shanjana Rahman Tuli
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Md. Firoz Ali
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Tabassum Binte Jamal
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Md. Abu Sayem Khan
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nigar Fatima
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Irfan Ahmed
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Masuma Khatun
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Shamima Akhtar Sharmin
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| |
Collapse
|
3
|
Vinayagam Y, Rajeswari VD. Genetic Adaptations and Mechanistic Insights Into Bacterial Bioremediation in Ecosystems. J Basic Microbiol 2024; 64:e2400387. [PMID: 39245917 DOI: 10.1002/jobm.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Metal pollution poses significant threats to the ecosystem and human health, demanding effective remediation strategies. Bioremediation, which leverages the unique metal-resistant genes found in bacteria, offers a cost-effective and efficient solution to heavy metal contamination. Genes such as Cad, Chr, Cop, and others provide pathways to improve the detoxification of the ecosystem. Through multiple techniques, genetic engineering makes bacterial genomes more capable of improving metal detoxification; nonetheless, there are still unanswered questions regarding the nature of new metal-resistant genes. This article examines bacteria's complex processes to detoxify toxic metals, including biosorption, bioaccumulation, bio-precipitation, and bioleaching. It also explores essential genes, proteins, signaling mechanisms, and bacterial biomarkers involved in breaking toxic metals.
Collapse
Affiliation(s)
- Yamini Vinayagam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vijayarangan Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Aké AHJ, Rochdi N, Jemo M, Hafidi M, Ouhdouch Y, El Fels L. Cr(VI) removal performance from wastewater by microflora isolated from tannery effluents in a semi-arid environment: a SEM, EDX, FTIR and zeta potential study. Front Microbiol 2024; 15:1423741. [PMID: 39011144 PMCID: PMC11246972 DOI: 10.3389/fmicb.2024.1423741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Hexavalent chromium removal from the environment remains a crucial worldwide challenge. To address this issue, microbiological approaches are amongst the straightforward strategies that rely mainly on the bacteria's and fungi's survival mechanisms upon exposure to toxic metals, such as reduction, efflux system, uptake, and biosorption. In this work, scanning electron microscopy, energy-dispersive X-ray spectrophotometry, Fourier transform infrared spectroscopy, and zeta potential measurements were used to investigate the ability of chromium adsorption by Bacillus licheniformis, Bacillus megaterium, Byssochlamys sp., and Candida maltosa strains isolated from tannery wastewater. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy revealed alterations in the cells treated with hexavalent chromium. When exposed to 50 mg/L Cr6+, Bacillus licheniformis and Candida maltosa cells become rough, extracellular secretions are reduced in Bacillus megaterium, and Byssochlamys sp. cells are tightly bound and exhibit the greatest Cr weight percentage. In-depth analysis of Fourier transform infrared spectra of control and Cr-treated cells unveiled Cr-microbial interactions involving proteins, lipids, amino acids, and carbohydrates. These findings were supported by zeta potential measurements highlighting significant variations in charge after treatment with Cr(VI) with an adsorption limit of 100 mg/L Cr6+ for all the strains. Byssochlamys sp. showed the best performance in Cr adsorption, making it the most promising candidate for treating Cr-laden wastewater.
Collapse
Affiliation(s)
- Aké Henri Joël Aké
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
| | - Nabil Rochdi
- Laboratory of Innovative Materials, Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Marrakesh, Morocco
- Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco
| | - Yedir Ouhdouch
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
5
|
Song T, Tu W, Chen S, Fan M, Jia L, Wang B, Yang Y, Li S, Luo X, Su M, Guo J. Relationships between high-concentration toxic metals in sediment and evolution of microbial community structure and carbon-nitrogen metabolism functions under long-term stress perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29763-29776. [PMID: 38592631 DOI: 10.1007/s11356-024-33150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Microorganisms are highly sensitive to toxic metal pollution and play an important role in the material cycling and energy flow of the water ecosystem. Herein, 13 sediment samples from Junchong Reservoir (Guangxi Province, China) were collected in December 2021. The spatial distribution of pollution levels for toxic metals and the effects of toxic metals on the composition, functional characteristics, and metabolism of microorganisms were investigated. The results demonstrated that the area is a proximate area to industrial zones with severity of toxic metal pollution. Their mean concentrations of As, Cu, Zn, and Pb were up to 128.79 mg/kg, 57.62 mg/kg, 594.77 mg/kg, and 97.12 mg/kg respectively. There was a strong correlation between As, Cu, Zn, and Pb, with the highest correlation coefficient reaching 0.94. As the level of toxic metal pollution increases, the diversity and abundance of microorganisms gradually decrease. Compared to those with lower pollution levels, the Shannon index in regions with higher pollution levels decreases by up to 0.373, and the Chao index decreases by up to 143.507. However, the relative abundance of Bacteroidota, Patescibacteria, and Chloroflexi increased by 23%, 20%, and 5%, respectively, indicating their higher adaptability to toxic metals. Furthermore, microbial carbon and nitrogen metabolism were also affected by the presence of toxic metals. FAPROTAX analysis demonstrated an abundant reduction of ecologically functional groups associated with carbon and nitrogen transformations under high toxic metal pollution levels. KEGG pathway analysis indicated that carbon fixation and nitrogen metabolism pathways were inhibited with increasing toxic metal concentrations. These findings would contribute to a better understanding of the effects of toxic metal pollution on sediment microbial communities and function, shedding light on the ecological consequences of toxic metal contamination.
Collapse
Affiliation(s)
- Tao Song
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China.
| | - Min Fan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Liang Jia
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Yuankun Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Sen Li
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Mingyue Su
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Jingjing Guo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| |
Collapse
|
6
|
Fakhry H, Ghoniem AA, Al-Otibi FO, Helmy YA, El Hersh MS, Elattar KM, Saber WIA, Elsayed A. A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling. Polymers (Basel) 2023; 15:3754. [PMID: 37765609 PMCID: PMC10537747 DOI: 10.3390/polym15183754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents was comparatively considered. The efficiency of Cr(VI) biosorption by the two sorbents used was augmented up to 240 min. The maximum sorption capacities were 485.747 (fungus biomass) and 595.974 (melanin) mg/g. The practical data were merely fitted to both Langmuir and Freundlich isotherms. The kinetics of the biosorption process obeyed the pseudo-first-order. Melanin was superior in Cr(VI) sorption than fungal biomass. Furthermore, four independent variables (contact time, initial concentration of Cr(VI), biosorbent dosage, and pH,) were modeled by the two decision trees (DTs). Conversely, to equilibrium isotherms and kinetic studies, DT of fungal biomass had lower errors compared to DT of melanin. Lately, the DTs improved the efficacy of the Cr(VI) removal process, thus introducing complementary and alternative solutions to equilibrium isotherms and kinetic studies. The Cr(VI) biosorption onto the biosorbents was confirmed and elucidated through FTIR, SEM, and EDX investigations. Conclusively, this is the first report study attaining the biosorption of Cr(VI) by biomass of A. pullulans and its extracellular melanin among equilibrium isotherms, kinetic study, and algorithmic decision tree modeling.
Collapse
Affiliation(s)
- Hala Fakhry
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11865, Egypt
- Department of Aquatic Environmental Science, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Abeer A. Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Mohammed S. El Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
7
|
Rahman Z, Thomas L, Chetri SPK, Bodhankar S, Kumar V, Naidu R. A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59163-59193. [PMID: 37046169 DOI: 10.1007/s11356-023-26624-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Siva P K Chetri
- Department of Botany, Dimoria College, Gauhati University, Guwahati, Assam, India
| | - Shrey Bodhankar
- Department of Agriculture Microbiology, School of Agriculture Sciences, Anurag University, Hyderabad, Telangana, India
| | - Vikas Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
8
|
Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12071502. [PMID: 37050128 PMCID: PMC10097182 DOI: 10.3390/plants12071502] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakeeb A. Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bajhol 173229, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Zahoor A. Mir
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Showkat A. Lone
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Ajaz A. Bhat
- Govt. Degree College for Women, University of Kashmir, Baramulla 193101, India
| | - Uqab Baba
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes (Basel) 2023. [DOI: 10.3390/pr11010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Due to the adverse effects of hexavalent chromium (Cr6+) on human health and the quality of the environment, the scientific community has invested a lot of effort to solve this pollution problem. Thus, implementing sustainable alternatives for Cr6+ elimination by exploiting the capacity of microbial biomass to retain heavy metals by biosorption is considered an economic and eco-friendly solution, compared to the conventional physico-chemical processes. However, the ability of microorganisms to remove Cr6+ from liquid effluents can strongly be affected by biotic and abiotic factors. With these issues in mind, the main purpose of this paper was to investigate Cr6+ biosorption on Bacillus megaterium and Rhodotorula sp. biomass inactivated by thermal treatments, exploring the effects of some factors such as: pH, biosorbent dose, initial concentration of the metal in solution, temperature and contact time between the biosorbent and the metal ions on process effectiveness. The results showed that Cr6+ removal by biosorption on the selected microorganisms was strongly influenced by the pH of the solution which contains chromium, the reduction being the principal mechanism involved in hexavalent chromium biosorption. Equilibrium and kinetic studies were also performed, together with SEM-EDX and FTIR spectra, to explain the mechanisms of the biosorption process on the selected biomasses. Maximum uptake capacities of 34.80 mg/g biosorbent and 47.70 mg/g biosorbent were achieved by Bacillus megaterium and Rhodotorula sp., respectively, at pH 1, biosorbent dosage of 8 g/L, 25 °C, after a contact time of 48 h and an initial Cr6+ concentration in solution of 402.52 mg/L. The experimental results showed that Cr6+ biosorption by selected microorganisms followed the Elovich model, the values of the correlation coefficients being 0.9868 and 0.9887, respectively. The Freundlich isotherm model best describes the Cr6+ biosorption by Bacillus megaterium and Rhodotorula sp., indicating that a multilayer biosorption mainly controls the process and is conducted on heterogeneous surfaces with uniformly distributed energy.
Collapse
|
10
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int J Mol Sci 2022; 24:178. [PMID: 36613625 PMCID: PMC9820705 DOI: 10.3390/ijms24010178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | | | | | | |
Collapse
|
11
|
Zhang M, Zhang T, Zhou L, Lou W, Zeng W, Liu T, Yin H, Liu H, Liu X, Mathivanan K, Praburaman L, Meng D. Soil microbial community assembly model in response to heavy metal pollution. ENVIRONMENTAL RESEARCH 2022; 213:113576. [PMID: 35710022 DOI: 10.1016/j.envres.2022.113576] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution affected the stability and function of soil ecosystem. The impact of heavy metals on soil microbial community and the interaction of microbial community has been widely studied, but little was known about the response of community assembly to the heavy metal pollution. In this study, we collected 30 soil samples from non (CON), moderately (CL) and severely (CH) contaminated fields. The prokaryotic community was studied using high-throughput Illumina sequencing of 16s rRNA gene amplicons, and community assembly were quantified using phylogenetic-bin-based null approach (iCAMP). Results showed that diversity and composition of both bacterial and archaeal community changed significantly in response to heavy metal pollution. The microbial community assembly tended to be more deterministic with the increase of heavy metal concentration. Among the assembly processes, the relative importance of homogeneous selection (deterministic process) increased significantly (increased by 16.2%), and the relative importance of drift and dispersal limitation (stochastic process) decreased significantly (decreased by 11.4% and 5.4%, respectively). The determinacy of bacterial and archaeal community assembly also increased with heavy metal stress, but the assembly models were different. The deterministic proportion of microorganisms tolerant to heavy metals, such as Thiobacillus, Euryarchaeota and Crenarchaeota (clustered in bin 32, bin59 and bin60, respectively) increased, while the stochastic proportion of microorganisms sensitive to heavy metals, such as Koribacteraceae (clustered in bin23) increased. Therefore, the heavy metal stress made the prokaryotic community be deterministic, however, the effects on the assembly process of different microbial groups differed obviously.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, 410118, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, 101148, China
| | - Wei Lou
- Hunan Heqing Environmental Technology Co., Ltd, 410221, China
| | - Weiai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha, 410011, China
| | - Tianbo Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Loganathan Praburaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
12
|
Vaid N, Sudan J, Dave S, Mangla H, Pathak H. Insight Into Microbes and Plants Ability for Bioremediation of Heavy Metals. Curr Microbiol 2022; 79:141. [PMID: 35320423 DOI: 10.1007/s00284-022-02829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
Contamination of ground and surface water, soil, and air by harmful and carcinogenic chemicals is one of the most prevalent problems in the modern industrialized world. Heavy metal toxicity has demonstrated to be paramount hazardous and there are various risks associated with it. In addition, these heavy metals have adverse effects on human health and plant physiology. The field of bioremediation has undergone an impactful revolution in recent years due to an exponential increase in various issues related to soil and water pollution. Bioremediation is an advanced and efficient technology, which involves the use of biological means such as microorganisms and plants to degrade heavy metal contaminants. Among the millions of microbes present in the ecosystem, the highest metal adsorption ability is possessed by species belonging to genus Penicillium, Streptomyces, Bacillus, Rhizopus, Chlorella, Ascophyllum, Sargassum, and Aspergillus. Among different plant species, Allium, Eucalyptus, Helianthus, and Hibiscus are the main heavy metal absorbers. The present review concentrates on the research in the bioremediation of important heavy metals through the use of plants and microbes.
Collapse
Affiliation(s)
- Nishtha Vaid
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Jebi Sudan
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Saurabh Dave
- Department of Chemistry, JECRC University, Jaipur, Rajasthan, India
| | - Himanshi Mangla
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Hardik Pathak
- Department of Plant Biotechnology, JECRC University, Jaipur, Rajasthan, India.
| |
Collapse
|
13
|
Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022; 13:4923-4938. [PMID: 35164635 PMCID: PMC8973695 DOI: 10.1080/21655979.2022.2037273] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Industrial effluents/wastewater are the main sources of hexavalent chromium (Cr (VI)) pollutants in the environment. Cr (VI) pollution has become one of the world’s most serious environmental concerns due to its long persistence in the environment and highly deadly nature in living organisms. To its widespread use in industries Cr (VI) is highly toxic and one of the most common environmental contaminants. Cr (VI) is frequently non-biodegradable in nature, which means it stays in the environment for a long time, pollutes the soil and water, and poses substantial health risks to humans and wildlife. In living things, the hexavalent form of Cr is carcinogenic, genotoxic, and mutagenic. Physico-chemical techniques currently used for Cr (VI) removal are not environmentally friendly and use a large number of chemicals. Microbes have many natural or acquired mechanisms to combat chromium toxicity, such as biosorption, reduction, subsequent efflux, or bioaccumulation. This review focuses on microbial responses to chromium toxicity and the potential for their use in environmental remediation. Moreover, the research problem and prospects for the future are discussed in order to fill these gaps and overcome the problem associated with bacterial bioremediation’s real-time applicability.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur India
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
14
|
Sampath MK, Nigam VK. Microbial-based eco-friendly processes for the recovery of metals from E-waste. BIOPROSPECTING OF MICROBIAL DIVERSITY 2022:393-405. [DOI: 10.1016/b978-0-323-90958-7.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112863. [PMID: 34619478 DOI: 10.1016/j.ecoenv.2021.112863] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination poses a serious environmental hazard, globally necessitating intricate attention. Heavy metals can cause deleterious health hazards to humans and other living organisms even at low concentrations. Environmental biotechnologists and eco-toxicologists have rigorously assessed a plethora of bioremediation mechanisms that can hamper the toxic outcomes and the molecular basis for rejuvenating the hazardous impacts, optimistically. Environmental impact assessment and restoration of native and positive scenario has compelled biological management in ensuring safety replenishment in polluted realms often hindered by heavy metal toxicity. Copious treatment modalities have been corroborated to mitigate the detrimental effects to remove heavy metals from polluted sites. In particular, Biological-based treatment methods are of great attention in the metal removal sector due to their high efficiency at low metal concentrations, ecofriendly nature, and cost-effectiveness. Due to rapid multiplication and growth rates, bacteria having metal resistance are advocated for metal removal applications. Evolutionary implications of coping with heavy metals toxicity have redressed bacterial adaptive/resistance strategies related to physiological and cross-protective mechanisms. Ample reviews have been reported for the bacterial adaptive strategies to cope with heavy metal toxicity. Nevertheless, a holistic review summarizing the redox reactions that address the cross-reactivity mechanisms between metallothionein synthesis, extracellular polysaccharides production, siderophore production, and efflux systems of metal resistant bacteria are scarce. Molecular dissection of how bacteria adapt themselves to metal toxicity can augment novel and innovative technologies for efficient detoxification, removal, and combat the restorative difficulties for stress alleviations. The present comprehensive compilation addresses the identification of newer methodologies, summarizing the prevailing strategies of adaptive/resistance mechanisms in bacterial bioremediation. Further pitfalls and respective future directions are enumerated in invigorating effective bioremediation technologies including overexpression studies and delivery systems. The analysis will aid in abridging the gap for limitations in heavy metal removal strategies and necessary cross-talk in elucidating the complex cascade of events in better bioremediation protocols.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China; The Hunan International Scientific and Technological Cooperation Base of Environmental Microbiome and Application, Central South University, Changsha 410083, PR China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China; The Hunan International Scientific and Technological Cooperation Base of Environmental Microbiome and Application, Central South University, Changsha 410083, PR China.
| |
Collapse
|
16
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
17
|
Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J CHEM-NY 2021. [DOI: 10.1155/2021/7694157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.
Collapse
|
18
|
Deepa A, Singh A, Singh A, Mishra BK. An experimental approach for the utilization of tannery sludge-derived Bacillus strain for biosorptive removal of Cr(VI)-contaminated wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9864-9876. [PMID: 33159227 DOI: 10.1007/s11356-020-11284-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Biosorption efficacy of Bacillus strain DPAML065, isolated from the tannery sludge, was appraised for the removal of toxic hexavalent chromium (VI) ions from synthetic wastewater. Effects of the process variable on biosorbent surface by variation in pH, metal Cr(VI) concentration and retention time were examined using batch experiments. The isolated Bacillus strain biosorbent was studied for its morphology and surface chemistry through FE-SEM, EDX and FTIR. It discloses that, the reduction mechanism of Cr(VI) during the process is mainly attributed to precipitation in addition to the functional groups (such as -COOH, -OH, C-O, P=O) present on the cellular matrix of Bacillus. Biochemical tests and 16s rRNA sequencing were also performed to identify the biosorbent at the genus level. A 95% Cr(VI) removal efficiency was procured by Bacillus strain DPAML065 biosorbent at pH 6, incubation period 24 h, 80 mg/L initial feed concentration and operational temperature 35 °C. Equilibrium behaviour of chromium binding follows the Langmuir isotherm model (R2 = 0.968) with an adsorption capacity of 106.38 mg/g. Kinetic modelling disseminates that biosorption of Cr(VI) ions by Bacillus strain DPAML065 obeyed pseudo-second-order model (R2 = 0.984) rather than the pseudo-first-order model. Concisely, the results indicate that the Bacillus strain DPAML065 is a potential, economically feasible and eco-friendly biosorbent which can be effectively used for removal of chromium (VI) from wastewater.
Collapse
Affiliation(s)
- Arukula Deepa
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand,, 826004, India
| | - Astha Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand,, 826004, India
| | - Aakansha Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand,, 826004, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand,, 826004, India.
| |
Collapse
|