1
|
Rombolà G, Crocchiolo R, Falco M, Iozzi S, Marseglia G, Amoriello R, Ballerini C, Donnini I, Nozzoli C, Papola F. Selective HLA Haplotype Loss in Npm1-Positive Acute Myeloid Leukaemia: A Model of Immunological Escape. HLA 2025; 105:e70058. [PMID: 39933756 DOI: 10.1111/tan.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/05/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
The exposure of cancer neoantigens to the patient's immune system by the HLA system sustains immune surveillance and shapes tumour clonal evolution. In acute myeloid leukaemia (AML), the mutation of Nucleophosmin 1 (NPM1) at exon 12 represents a driver mutation, raising a set of highly immunogenic peptides. Whereas the phenomenon of HLA loss is a mechanism of immune escape broadly described in allogeneic haematopoietic stem cell transplantation, less is known about this phenomenon at leukaemia diagnosis. In this study, we present a case of a 47-year-old patient with de novo NPM1-positive AML characterised by HLA loss at diagnosis due to copy neutral number loss of heterozygosity in leukaemic blasts. In silico analyses showed a high affinity of all the lost HLA allotypes for the mutated NPM1-derived tumour neopeptides, suggesting that the selective HLA loss was a relevant mechanism for blast escape from autologous T lymphocyte immunosurveillance. The HLA loss did not lead to any predicted missing ligand for educated natural killer (NK) cells expressing inhibitory killer immunoglobulin-like receptors (KIRs) for self-HLA allotypes, thus not affecting NK-mediated immunosurveillance. The present case represents a model of a 'perfect crime' by immunological escape of leukaemic blasts and supports mutated NPM1-derived neopeptides as an attractive target for AML immunotherapy.
Collapse
MESH Headings
- Humans
- Middle Aged
- Exons
- Haplotypes
- HLA Antigens/genetics
- HLA Antigens/immunology
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nucleophosmin
- Receptors, KIR/immunology
- Receptors, KIR/genetics
- Tumor Escape/genetics
- Female
Collapse
Affiliation(s)
| | - Roberto Crocchiolo
- Immunohematology and Transfusion Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michela Falco
- Clinical and Experimental Immunology Lab, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Iozzi
- Cellular Therapy and Transfusion Medicine, AOU Careggi, Florence, Italy
| | | | | | | | - Irene Donnini
- Neuroimmunology Lab, Dipartimento Medicina Sperimentale e Clinica, Università Firenze, Florence, Italy
| | - Chiara Nozzoli
- Neuroimmunology Lab, Dipartimento Medicina Sperimentale e Clinica, Università Firenze, Florence, Italy
| | - Franco Papola
- Regional Centre of Immunohematology and Tissue Typing, PO L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Bernhardt M, Rech A, Berthold M, Lappe M, Herbel JN, Erhard F, Paschen A, Schilling B, Schlosser A. SILAC-based quantification reveals modulation of the immunopeptidome in BRAF and MEK inhibitor sensitive and resistant melanoma cells. Front Immunol 2025; 15:1490821. [PMID: 39835134 PMCID: PMC11744270 DOI: 10.3389/fimmu.2024.1490821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Background The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential. Methods To meet this need, we developed a pulsed SILAC-based method for quantitative immunopeptidomics. Metabolic labeling with lysine, arginine, and leucine enabled isotopic labeling of nearly all HLA peptides across all allotypes (> 90% on average). We established a data analysis workflow that integrates the de novo sequencing-based tool Peptide-PRISM for comprehensive HLA peptide identification with MaxQuant for accurate quantification. Results We employed this strategy to explore the modulation of the immunopeptidome upon MAPK pathway inhibition (MAPKi) and to investigate alterations associated with early cellular responses to inhibitor treatment and acquired resistance to MAPKi. Our analyses demonstrated significant changes in the immunopeptidome early during MAPKi treatment and in the resistant state. Moreover, we identified putative tumor-specific cryptic HLA peptides linked to these processes that might represent exploitable targets for cancer immunotherapy. Conclusions We have developed a new mass spectrometric approach that allowed us to investigate the effects of common MAPK inhibitors on the immunopeptidome of melanoma cells. This finally led to the discovery of new potential targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Melissa Bernhardt
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Anne Rech
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Marion Berthold
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Melina Lappe
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Jan-Niklas Herbel
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Greiner J, Mohamed E, Fletcher DM, Schuler PJ, Schrezenmeier H, Götz M, Guinn BA. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3443. [PMID: 39456538 PMCID: PMC11505958 DOI: 10.3390/cancers16203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the blood and bone marrow that is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Nucleophosmin 1 (NPM1) gene mutations are the most common genetic abnormality in AML, detectable in blast cells from about one-third of adults with AML. AML NPM1mut is recognized as a separate entity in the World Health Organization classification of AML. Clinical and survival data suggest that patients with this form of AML often have a more favorable prognosis, which may be due to the immunogenicity created by the mutations in the NPM1 protein. Consequently, AML with NPM1mut can be considered an immunogenic subtype of AML. However, the underlying mechanisms of this immunogenicity and associated favorable survival outcomes need to be further investigated. Immune checkpoint molecules, such as the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, play important roles in leukemogenesis through their maintenance of an immunosuppressive tumor microenvironment. Preclinical trials have shown that the use of PD-1/PD-L1 checkpoint inhibitors in solid tumors and lymphoma work best in novel therapy combinations. Patients with AML NPM1mut may be better suited to immunogenic strategies that are based on the inhibition of the PD-1 immune checkpoint pathway than patients without this mutation, suggesting the genetic landscape of patients may also inform best practice for the use of PD-1 inhibitors.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89075 Ulm, Germany;
- Department of Oto-Rhino-Laryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89073 Ulm, Germany;
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| |
Collapse
|
5
|
Faria D, Eugénio P, Contreiras Silva M, Balbi L, Bedran G, Kallor AA, Nunes S, Palkowski A, Waleron M, Alfaro JA, Pesquita C. The Immunopeptidomics Ontology (ImPO). Database (Oxford) 2024; 2024:baae014. [PMID: 38857186 PMCID: PMC11164101 DOI: 10.1093/database/baae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
The adaptive immune response plays a vital role in eliminating infected and aberrant cells from the body. This process hinges on the presentation of short peptides by major histocompatibility complex Class I molecules on the cell surface. Immunopeptidomics, the study of peptides displayed on cells, delves into the wide variety of these peptides. Understanding the mechanisms behind antigen processing and presentation is crucial for effectively evaluating cancer immunotherapies. As an emerging domain, immunopeptidomics currently lacks standardization-there is neither an established terminology nor formally defined semantics-a critical concern considering the complexity, heterogeneity, and growing volume of data involved in immunopeptidomics studies. Additionally, there is a disconnection between how the proteomics community delivers the information about antigen presentation and its uptake by the clinical genomics community. Considering the significant relevance of immunopeptidomics in cancer, this shortcoming must be addressed to bridge the gap between research and clinical practice. In this work, we detail the development of the ImmunoPeptidomics Ontology, ImPO, the first effort at standardizing the terminology and semantics in the domain. ImPO aims to encapsulate and systematize data generated by immunopeptidomics experimental processes and bioinformatics analysis. ImPO establishes cross-references to 24 relevant ontologies, including the National Cancer Institute Thesaurus, Mondo Disease Ontology, Logical Observation Identifier Names and Codes and Experimental Factor Ontology. Although ImPO was developed using expert knowledge to characterize a large and representative data collection, it may be readily used to encode other datasets within the domain. Ultimately, ImPO facilitates data integration and analysis, enabling querying, inference and knowledge generation and importantly bridging the gap between the clinical proteomics and genomics communities. As the field of immunogenomics uses protein-level immunopeptidomics data, we expect ImPO to play a key role in supporting a rich and standardized description of the large-scale data that emerging high-throughput technologies are expected to bring in the near future. Ontology URL: https://zenodo.org/record/10237571 Project GitHub: https://github.com/liseda-lab/ImPO/blob/main/ImPO.owl.
Collapse
Affiliation(s)
- Daniel Faria
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol, 9, Lisboa 1000-029, Portugal
| | - Patrícia Eugénio
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Marta Contreiras Silva
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Laura Balbi
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdańsk 80-822, Poland
| | - Ashwin Adrian Kallor
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdańsk 80-822, Poland
| | - Susana Nunes
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Aleksander Palkowski
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdańsk 80-822, Poland
| | - Michal Waleron
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdańsk 80-822, Poland
| | - Javier A Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdańsk 80-822, Poland
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia, BC V8P 5C2, Canada
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
- The Canadian Association for Responsible AI in Medicine, Victoria, Canada
| | - Catia Pesquita
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| |
Collapse
|
6
|
Leung WK, Torres Chavez AG, French-Kim M, Shafer P, Mamonkin M, Hill LC, Kuvalekar M, Velazquez Y, Watanabe A, Watanabe N, Hoyos V, Lulla P, Leen AM. Targeting IDH2R140Q and other neoantigens in acute myeloid leukemia. Blood 2024; 143:1726-1737. [PMID: 38241630 PMCID: PMC11103096 DOI: 10.1182/blood.2023021979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT For patients with high-risk or relapsed/refractory acute myeloid leukemia (AML), allogeneic stem cell transplantation (allo-HSCT) and the graft-versus-leukemia effect mediated by donor T cells, offer the best chance of long-term remission. However, the concurrent transfer of alloreactive T cells can lead to graft-versus-host disease that is associated with transplant-related morbidity and mortality. Furthermore, ∼60% of patients will ultimately relapse after allo-HSCT, thus, underscoring the need for novel therapeutic strategies that are safe and effective. In this study, we explored the feasibility of immunotherapeutically targeting neoantigens, which arise from recurrent nonsynonymous mutations in AML and thus represent attractive targets because they are exclusively present on the tumor. Focusing on 14 recurrent driver mutations across 8 genes found in AML, we investigated their immunogenicity in 23 individuals with diverse HLA profiles. We demonstrate the immunogenicity of AML neoantigens, with 17 of 23 (74%) reactive donors screened mounting a response. The most immunodominant neoantigens were IDH2R140Q (n = 11 of 17 responders), IDH1R132H (n = 7 of 17), and FLT3D835Y (n = 6 of 17). In-depth studies of IDH2R140Q-specific T cells revealed the presence of reactive CD4+ and CD8+ T cells capable of recognizing distinct mutant-specific epitopes restricted to different HLA alleles. These neo-T cells could selectively recognize and kill HLA-matched AML targets endogenously expressing IDH2R140Q both in vitro and in vivo. Overall, our findings support the clinical translation of neoantigen-specific T cells to treat relapsed/refractory AML.
Collapse
Affiliation(s)
- Wingchi K. Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Alejandro G. Torres Chavez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Matthew French-Kim
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - LaQuisa C. Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
7
|
Minegishi Y, Haga Y, Ueda K. Emerging potential of immunopeptidomics by mass spectrometry in cancer immunotherapy. Cancer Sci 2024; 115:1048-1059. [PMID: 38382459 PMCID: PMC11007014 DOI: 10.1111/cas.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
With significant advances in analytical technologies, research in the field of cancer immunotherapy, such as adoptive T cell therapy, cancer vaccine, and immune checkpoint blockade (ICB), is currently gaining tremendous momentum. Since the efficacy of cancer immunotherapy is recognized only by a minority of patients, more potent tumor-specific antigens (TSAs, also known as neoantigens) and predictive markers for treatment response are of great interest. In cancer immunity, immunopeptides, presented by human leukocyte antigen (HLA) class I, play a role as initiating mediators of immunogenicity. The latest advancement in the interdisciplinary multiomics approach has rapidly enlightened us about the identity of the "dark matter" of cancer and the associated immunopeptides. In this field, mass spectrometry (MS) is a viable option to select because of the naturally processed and actually presented TSA candidates in order to grasp the whole picture of the immunopeptidome. In the past few years the search space has been enlarged by the multiomics approach, the sensitivity of mass spectrometers has been improved, and deep/machine-learning-supported peptide search algorithms have taken immunopeptidomics to the next level. In this review, along with the introduction of key technical advancements in immunopeptidomics, the potential and further directions of immunopeptidomics will be reviewed from the perspective of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
8
|
Falini B, Dillon R. Criteria for Diagnosis and Molecular Monitoring of NPM1-Mutated AML. Blood Cancer Discov 2024; 5:8-20. [PMID: 37917833 PMCID: PMC10772525 DOI: 10.1158/2643-3230.bcd-23-0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
NPM1-mutated acute myeloid leukemia (AML) represents the largest molecular subgroup of adult AML. NPM1-mutated AML is recognizable by molecular techniques and immunohistochemistry, which, when combined, can solve difficult diagnostic problems (including identification of myeloid sarcoma and NPM1 mutations outside exon 12). According to updated 2022 European LeukemiaNet (ELN) guidelines, determining the mutational status of NPM1 (and FLT3) is a mandatory step for the genetic-based risk stratification of AML. Monitoring of measurable residual disease (MRD) by qRT-PCR, combined with ELN risk stratification, can guide therapeutic decisions at the post-remission stage. Here, we review the criteria for appropriate diagnosis and molecular monitoring of NPM1-mutated AML. SIGNIFICANCE NPM1-mutated AML represents a distinct entity in the 2022 International Consensus Classification and 5th edition of World Health Organization classifications of myeloid neoplasms. The correct diagnosis of NPM1-mutated AML and its distinction from other AML entities is extremely important because it has clinical implications for the management of AML patients, such as genetic-based risk stratification according to 2022 ELN. Monitoring of MRD by qRT-PCR, combined with ELN risk stratification, can guide therapeutic decisions at the post-remission stage, e.g., whether or not to perform allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
| |
Collapse
|
9
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O'Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. J Immunother Cancer 2023; 11:e006889. [PMID: 37775115 PMCID: PMC10546156 DOI: 10.1136/jitc-2023-006889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Certain phosphorylated peptides are differentially presented by major histocompatibility complex (MHC) molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their non-phosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, HLA-A*11:01, HLA-C*07:01, and HLA-C*07:02. METHODS We isolated peptide-MHC complexes by immunoprecipitation from 11 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics data sets to assemble a curated set of phosphopeptides presented by 96 samples spanning 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. RESULTS We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their non-phosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B-pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and HLA-A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the non-phosphorylated peptide was co-presented, HLA-A*03:01 or HLA-C*07:01 phosphopeptides were repeatedly non-immunogenic, requiring use of allogeneic T cells to induce phosphopeptide-specific T cells. CONCLUSIONS Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Martin G Klatt
- Department of Hematology, Oncology and Tumor Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Berlin Institute of Health at Charité -Universitätsmedizin Berlin, BIH Biomedical 13 Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Department of Pediatrics, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David A Scheinberg
- Department of Pediatrics, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Narayan R, Niroula A, Wang T, Kuxhausen M, He M, Meyer E, Chen YB, Bhatt VR, Beitinjaneh A, Nishihori T, Sharma A, Brown VI, Kamoun M, Diaz MA, Abid MB, Askar M, Kanakry CG, Gragert L, Bolon YT, Marsh SGE, Gadalla SM, Paczesny S, Spellman S, Lee SJ. HLA Class I Genotype Is Associated with Relapse Risk after Allogeneic Stem Cell Transplantation for NPM1-Mutated Acute Myeloid Leukemia. Transplant Cell Ther 2023; 29:452.e1-452.e11. [PMID: 36997024 PMCID: PMC10330307 DOI: 10.1016/j.jtct.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Mutation-bearing peptide ligands from mutated nucleophosmin-1 (NPM1) protein have been empirically found to be presented by HLA class I in acute myeloid leukemia (AML). We hypothesized that HLA genotype may impact allogeneic hematopoietic stem cell transplantation (allo-HCT) outcomes in NPM1-mutated AML owing to differences in antigen presentation. We evaluated the effect of the variable of predicted strong binding to mutated NPM1 peptides using HLA class I genotypes from matched donor-recipient pairs on transplant recipients' overall survival (OS) and disease-free survival (DFS) as part of the primary objectives and cumulative incidence of relapse and nonrelapse mortality (NRM) as part of secondary objectives. Baseline and outcome data reported to the Center for International Blood and Marrow Transplant Research from a study cohort of adult patients (n = 1020) with NPM1-mutated de novo AML in first (71%) or second (29%) complete remission undergoing 8/8 matched related (18%) or matched unrelated (82%) allo-HCT were analyzed retrospectively. Class I alleles from donor-recipient pairs were analyzed for predicted strong HLA binding to mutated NPM1 using netMHCpan 4.0. A total of 429 (42%) donor-recipient pairs were classified as having predicted strong-binding HLA alleles (SBHAs) to mutated NPM1. In multivariable analyses adjusting for clinical covariates, the presence of predicted SBHAs was associated with a lower risk of relapse (hazard ratio [HR], .72; 95% confidence interval [CI], .55 to .94; P = .015). OS (HR, .81; 95% CI, .67 to .98; P = .028) and DFS (HR, .84; 95% CI, .69 to 1.01; P = .070) showed a suggestion of better outcomes if predicted SBHAs were present but did not meet the prespecified P value of <.025. NRM did not differ (HR, 1.04; P = .740). These hypothesis-generating data support further exploration of HLA genotype-neoantigen interactions in the allo-HCT context.
Collapse
Affiliation(s)
- Rupa Narayan
- Massachusetts General Hospital, Boston, Massachusetts.
| | - Abhishek Niroula
- Broad Institute, Cambridge, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | | | - Yi-Bin Chen
- Massachusetts General Hospital, Boston, Massachusetts
| | - Vijaya Raj Bhatt
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, University of Miami Hospital and Clinics, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Taiga Nishihori
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Valerie I Brown
- Penn State Children's Hospital, Hershey, Pennsylvania; Penn State University College of Medicine, Hershey, Pennsylvania
| | - Malek Kamoun
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Miguel A Diaz
- Department of Hematology/Oncology, Hospital Infantil Universitario Niño Jesus, Madrid, Spain
| | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology and Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Medhat Askar
- Baylor University Medical Center, Dallas, Texas; Memorial Sloan Kettering Cancer Center, New York, New York; National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Christopher G Kanakry
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Loren Gragert
- Tulane University School of Medicine, New Orleans, Louisiana
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Steven G E Marsh
- Anthony Nolan Research Institute, London, United Kingdom; Cancer Institute, University College London, London, United Kingdom
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, Clinical Genetics Branch, National Cancer Institute, Rockville, Maryland
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
11
|
Bedran G, Gasser HC, Weke K, Wang T, Bedran D, Laird A, Battail C, Zanzotto FM, Pesquita C, Axelson H, Rajan A, Harrison DJ, Palkowski A, Pawlik M, Parys M, O'Neill JR, Brennan PM, Symeonides SN, Goodlett DR, Litchfield K, Fahraeus R, Hupp TR, Kote S, Alfaro JA. The Immunopeptidome from a Genomic Perspective: Establishing the Noncanonical Landscape of MHC Class I-Associated Peptides. Cancer Immunol Res 2023; 11:747-762. [PMID: 36961404 PMCID: PMC10236148 DOI: 10.1158/2326-6066.cir-22-0621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tumor antigens can emerge through multiple mechanisms, including translation of noncoding genomic regions. This noncanonical category of tumor antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry (MS) to enable the discovery of noncanonical MHC class I-associated peptides (ncMAP) from noncoding regions. Considering that the emergence of tumor antigens can also involve posttranslational modifications (PTM), we included an open search component in our pipeline. Leveraging the wealth of MS-based immunopeptidomics, we analyzed data from 26 MHC class I immunopeptidomic studies across 11 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant PTMs, using spectral matching and controlled their FDR to 1%. The noncanonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 55%. The data reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine development.
Collapse
Affiliation(s)
- Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Kenneth Weke
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Tongjie Wang
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominika Bedran
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Alexander Laird
- Urology Department, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Christophe Battail
- CEA, Grenoble Alpes University, INSERM, IRIG, Biosciences and Bioengineering for Health Laboratory (BGE) - UA13 INSERM-CEA-UGA, Grenoble, France
| | | | - Catia Pesquita
- LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ajitha Rajan
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Aleksander Palkowski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Maciej Pawlik
- Academic Computer Centre CYFRONET, AGH University of Science and Technology, Cracow, Poland
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan N. Symeonides
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- University of Victoria Genome BC Proteome Centre, Victoria, Canada
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Paris, France
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
12
|
Jadi O, Tang H, Olsen K, Vensko S, Zhu Q, Wang Y, Haiman CA, Pooler L, Sheng X, Brock G, Webb A, Pasquini MC, McCarthy PL, Spellman SR, Hahn T, Vincent B, Armistead P, Sucheston-Campbell LE. Associations of minor histocompatibility antigens with outcomes following allogeneic hematopoietic cell transplantation. Am J Hematol 2023; 98:940-950. [PMID: 37052167 PMCID: PMC10368187 DOI: 10.1002/ajh.26925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
The role of minor histocompatibility antigens (mHAs) in mediating graft versus leukemia and graft versus host disease (GvHD) following allogeneic hematopoietic cell transplantation (alloHCT) is recognized but not well-characterized. By implementing improved methods for mHA prediction in two large patient cohorts, this study aimed to comprehensively explore the role of mHAs in alloHCT by analyzing whether (1) the number of predicted mHAs, or (2) individual mHAs are associated with clinical outcomes. The study population consisted of 2249 donor-recipient pairs treated for acute myeloid leukemia and myelodysplastic syndrome with alloHCT. A Cox proportional hazard model showed that patients with a class I mHA count greater than the population median had an increased hazard of GvHD mortality (hazard ratio [HR] = 1.39, 95% confidence interval [CI] = 1.01, 1.77, p = .046). Competing risk analyses identified the class I mHAs DLRCKYISL (GSTP), WEHGPTSLL (CRISPLD2), and STSPTTNVL (SERPINF2) were associated with increased GVHD mortality (HR = 2.84, 95% CI = 1.52, 5.31, p = .01), decreased leukemia-free survival (LFS) (HR = 1.94, 95% CI = 1.27, 2.95, p = .044), and increased disease-related mortality (DRM) (HR = 2.32, 95% CI = 1.5, 3.6, p = .008), respectively. One class II mHA YQEIAAIPSAGRERQ (TACC2) was associated with increased risk of treatment-related mortality (TRM) (HR = 3.05, 95% CI = 1.75, 5.31, p = .02). WEHGPTSLL and STSPTTNVL were both present within HLA haplotype B*40:01-C*03:04 and showed a positive dose-response relationship with increased all-cause mortality and DRM and decreased LFS, indicating these two mHAs contribute to the risk of mortality in an additive manner. Our study reports the first large-scale investigation of the associations of predicted mHA peptides with clinical outcomes following alloHCT.
Collapse
Affiliation(s)
- Othmane Jadi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC
| | - Hancong Tang
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Kelly Olsen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yiwen Wang
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Loreall Pooler
- The Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Xin Sheng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Marcelo C. Pasquini
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Philip L McCarthy
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN
| | - Theresa Hahn
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Benjamin Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC
| | - Paul Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH
- College of Veterinary Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
13
|
Patel SS. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiology 2023; 91:18-29. [PMID: 36944324 PMCID: PMC10857804 DOI: 10.1159/000530253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
14
|
Lin Q, Peng Y, Wen Y, Li X, Du D, Dai W, Tian W, Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:262-279. [PMID: 36895440 PMCID: PMC9989677 DOI: 10.3762/bjnano.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiong Li
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Donglian Du
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weibin Dai
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
15
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O’Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527552. [PMID: 36798179 PMCID: PMC9934604 DOI: 10.1101/2023.02.08.527552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Certain phosphorylated peptides are differentially presented by MHC molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their nonphosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, -A*11:01, -C*07:01, and - C*07:02. Methods We isolated peptide-MHC complexes by immunoprecipitation from 10 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics datasets to assemble a curated set of phosphopeptides presented by 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. Results We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their nonphosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B- pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and -A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the nonphosphorylated peptide was co-presented, HLA-A*03:01 or -C*07:01 phosphopeptides were repeatedly nonimmunogenic, requiring use of allogeneic T cells to induce phosphopeptide- specific T cells. Conclusions Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences. What is already known on this topic - Phosphorylated peptides presented by the common HLA alleles A*02:01 and B*07:02 are differentially expressed by multiple tumor types, exhibit structural fitness due to phosphorylation, and are targets of healthy donor T cell surveillance, but it is not clear, however, whether such features apply to phosphopeptides presented by other common HLA alleles. What this study adds - We investigated the tumor presentation, binding, structural features, and immunogenicity of phosphopeptides to the prevalent alleles A*03:01, A*11:01, C*07:01, and C*07:02, selected on the basis of their presentation by malignant cells but not normal cells. We found tumor antigens derived from genetic dependencies in lymphomas and leukemias that bind HLA-A3, -A11, -C7 molecules. While we could detect circulating T cell responses in healthy individuals to A*02:01 and A*11:01 phosphopeptides, we did not find such responses to A*03:01 or C*07:01 phosphopeptides, except when utilizing allogeneic donor T cells, indicating that these phosphopeptides may not be immunogenic in an autologous setting but can still be targeted by other means. How this study might affect research, practice or policy - An expanded patient population expressing alleles other than A*02:01 can be addressed through the development of immunotherapies specific for phosphopeptides profiled in the present work, provided the nuances we describe between alleles are taken into consideration.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité- University Medicine Berlin, Berlin, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
| | - Richard J. O’Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
16
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
17
|
Woll PS, Yoshizato T, Hellström‐Lindberg E, Fioretos T, Ebert BL, Jacobsen SEW. Targeting stem cells in myelodysplastic syndromes and acute myeloid leukemia. J Intern Med 2022; 292:262-277. [PMID: 35822488 PMCID: PMC9544124 DOI: 10.1111/joim.13535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The genetic architecture of cancer has been delineated through advances in high-throughput next-generation sequencing, where the sequential acquisition of recurrent driver mutations initially targeted towards normal cells ultimately leads to malignant transformation. Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic malignancies frequently initiated by mutations in the normal hematopoietic stem cell compartment leading to the establishment of leukemic stem cells. Although the genetic characterization of MDS and AML has led to identification of new therapeutic targets and development of new promising therapeutic strategies, disease progression, relapse, and treatment-related mortality remain a major challenge in MDS and AML. The selective persistence of rare leukemic stem cells following therapy-induced remission implies unique resistance mechanisms of leukemic stem cells towards conventional therapeutic strategies and that leukemic stem cells represent the cellular origin of relapse. Therefore, targeted surveillance of leukemic stem cells following therapy should, in the future, allow better prediction of relapse and disease progression, but is currently challenged by our restricted ability to distinguish leukemic stem cells from other leukemic cells and residual normal cells. To advance current and new clinical strategies for the treatment of MDS and AML, there is a need to improve our understanding and characterization of MDS and AML stem cells at the cellular, molecular, and genetic levels. Such work has already led to the identification of promising new candidate leukemic stem cell molecular targets that can now be exploited in preclinical and clinical therapeutic strategies, towards more efficient and specific elimination of leukemic stem cells.
Collapse
Affiliation(s)
- Petter S. Woll
- Department of Medicine HuddingeCenter for Hematology and Regenerative MedicineKarolinska InstitutetStockholmSweden
| | - Tetsuichi Yoshizato
- Department of Medicine HuddingeCenter for Hematology and Regenerative MedicineKarolinska InstitutetStockholmSweden
| | - Eva Hellström‐Lindberg
- Department of Medicine HuddingeCenter for Hematology and Regenerative MedicineKarolinska InstitutetStockholmSweden
- Department of HematologyKarolinska University HospitalStockholmSweden
| | - Thoas Fioretos
- Division of Clinical GeneticsDepartment of Laboratory MedicineLund UniversityLundSweden
- Division of Laboratory MedicineDepartment of Clinical Genetics and PathologyLundSweden
| | - Benjamin L. Ebert
- Department of Medical OncologyDana–Farber Cancer InstituteBostonMassachusettsUSA
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteBostonMassachusettsUSA
| | - Sten Eirik W. Jacobsen
- Department of Medicine HuddingeCenter for Hematology and Regenerative MedicineKarolinska InstitutetStockholmSweden
- Department of HematologyKarolinska University HospitalStockholmSweden
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
18
|
Kuželová K, Brodská B, Marková J, Petráčková M, Schetelig J, Ransdorfová Š, Gašová Z, Šálek C. NPM1 and DNMT3A mutations are associated with distinct blast immunophenotype in acute myeloid leukemia. Oncoimmunology 2022; 11:2073050. [PMID: 35558161 PMCID: PMC9090295 DOI: 10.1080/2162402x.2022.2073050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immune system is important for elimination of residual leukemic cells during acute myeloid leukemia (AML) therapy. Anti-leukemia immune response can be inhibited by various mechanisms leading to immune evasion and disease relapse. Selected markers of immune escape were analyzed on AML cells from leukapheresis at diagnosis (N = 53). Hierarchical clustering of AML immunophenotypes yielded distinct genetic clusters. In the absence of DNMT3A mutation, NPM1 mutation was associated with decreased HLA expression and low levels of other markers (CLIP, PD-L1, TIM-3). Analysis of an independent cohort confirmed decreased levels of HLA transcripts in patients with NPM1 mutation. Samples with combined NPM1 and DNMT3A mutations had high CLIP surface amount suggesting reduced antigen presentation. TIM-3 transcript correlated not only with TIM-3 surface protein but also with CLIP and PD-L1. In our cohort, high levels of TIM-3/PD-L1/CLIP were associated with lower survival. Our results suggest that AML genotype is related to blast immunophenotype, and that high TIM-3 transcript levels in AML blasts could be a marker of immune escape. Cellular pathways regulating resistance to the immune system might contribute to the predicted response to standard therapy of patients in specific AML subgroups and should be targeted to improve AML treatment.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,CONTACT Kateřina Kuželová Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Petráčková
- Department of Gene Immunotherapy Research, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Johannes Schetelig
- Medical Clinic I, Division Hematology, Cell Therapy, and Medical Oncology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gašová
- Department of Apheresis, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Non-Mutated Nucleophosmin 1 Is Recognized by the CD8+ T Lymphocytes of an AML Patient after the Transplantation of Hematopoietic Stem Cells from an HLA-Haploidentical Donor. Curr Oncol 2022; 29:2928-2934. [PMID: 35621629 PMCID: PMC9140185 DOI: 10.3390/curroncol29050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Our study describes an AML patient whose leukemia cells carried the NPM1c+ mutation, and who was the recipient of allogeneic HSCT from a haploidentical donor. The patient raised a robust allorestricted CD8+ T cell response directed against the NPM1wt protein. Favourably, the response against NPM1wt was not accompanied by side effects such as GvHD. Moreover, the induction of a high NPM1wt specific response coincided with the decrease in NPM1c+ transcripts detected, implying a beneficial graft versus leukemia effect. On the basis of these results, we suppose that TCRs from allorestricted NPM1wt-specific T cells are worth studying in other recipients of grafts from haploidentical donors as a possible tool for TCR gene therapy. Abstract Nucleophosmin (NPM1, B23) is a multifunctional phosphoprotein expressed in all tissues. The protein is mainly localized in nucleoli. In hematological malignancies, NPM1 belongs to commonly altered genes. Its mutation, always heterozygous, leads to the re-localization of the NPM1 protein from the nucleolus to the cytoplasm (NPM1c+). NPM1c+ is found in 30% of acute myeloid leukemia (AML). Our study showed that an AML patient, whose leukemia cells carried the NPM1c+ mutation and who was the recipient of allogeneic HSCT from a haploidentical donor, raised a robust allorestricted CD8+ T cell response directed against the NPM1wt protein. Favourably, the response against NPM1wt was not accompanied by side effects such as GvHD. Moreover, the induction of a high NPM1wt-specific response coincided with the decrease in NPM1c+ transcripts detected, implying a beneficial graft versus leukemia effect. On the basis of these results, we suppose that TCRs from allorestricted NPM1wt-specific T cells are worth studying in other recipients of grafts from haploidentical donors as a possible tool for TCR gene therapy.
Collapse
|
20
|
Becker JP, Riemer AB. The Importance of Being Presented: Target Validation by Immunopeptidomics for Epitope-Specific Immunotherapies. Front Immunol 2022; 13:883989. [PMID: 35464395 PMCID: PMC9018990 DOI: 10.3389/fimmu.2022.883989] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Presentation of tumor-specific or tumor-associated peptides by HLA class I molecules to CD8+ T cells is the foundation of epitope-centric cancer immunotherapies. While often in silico HLA binding predictions or in vitro immunogenicity assays are utilized to select candidates, mass spectrometry-based immunopeptidomics is currently the only method providing a direct proof of actual cell surface presentation. Despite much progress in the last decade, identification of such HLA-presented peptides remains challenging. Here we review typical workflows and current developments in the field of immunopeptidomics, highlight the challenges which remain to be solved and emphasize the importance of direct target validation for clinical immunotherapy development.
Collapse
Affiliation(s)
- Jonas P. Becker
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika B. Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Bollineni RC, Tran TT, Lund-Johansen F, Olweus J. Chasing neoantigens; invite naïve T cells to the party. Curr Opin Immunol 2022; 75:102172. [DOI: 10.1016/j.coi.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
|
22
|
Increasing Role of Targeted Immunotherapies in the Treatment of AML. Int J Mol Sci 2022; 23:ijms23063304. [PMID: 35328721 PMCID: PMC8953556 DOI: 10.3390/ijms23063304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The standard of care in medically and physically fit patients is intensive induction therapy. The majority of these intensively treated patients achieve a complete remission. However, a high number of these patients will experience relapse. In patients older than 60 years, the results are even worse. Therefore, new therapeutic approaches are desperately needed. One promising approach in high-risk leukemia to prevent relapse is the induction of the immune system simultaneously or after reduction of the initial tumor burden. Different immunotherapeutic approaches such as allogenic stem cell transplantation or donor lymphocyte infusions are already standard therapies, but other options for AML treatment are in the pipeline. Moreover, the therapeutic landscape in AML is rapidly changing, and in the last years, a number of immunogenic targets structures eligible for specific therapy, risk assessment or evaluation of disease course were determined. For example, leukemia-associated antigens (LAA) showed to be critical as biomarkers of disease state and survival, as well as markers of minimal residual disease (MRD). Yet many mechanisms and properties are still insufficiently understood, which also represents a great potential for this form of therapy. Therefore, targeted therapy as immunotherapy could turn into an efficient tool to clear residual disease, improve the outcome of AML patients and reduce the relapse risk. In this review, established but also emerging immunotherapeutic approaches for AML patients will be discussed.
Collapse
|
23
|
Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D, Wagener FD, Voillet V, Martin L, Gottardo R, Bielas J, McElrath JM, Stirewalt DL, Pogosova-Agadjanyan EL, Yeung CC, Pierce RH, Egan DN, Bar M, Hendrie PC, Kinsella S, Vakil A, Butler J, Chaffee M, Linton J, McAfee MS, Hunter DS, Bleakley M, Rongvaux A, Van den Eynde BJ, Chapuis AG, Greenberg PD. Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med 2022; 14:eabg8070. [PMID: 35138909 DOI: 10.1126/scitranslmed.abg8070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (β1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing β1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.
Collapse
Affiliation(s)
- Miranda C Lahman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelly G Paulson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, 1200 Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Denise Buenrostro
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Felecia D Wagener
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Lauren Martin
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason Bielas
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julie M McElrath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | | | - Cecilia C Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Robert H Pierce
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Daniel N Egan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Paul C Hendrie
- University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aesha Vakil
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonathan Linton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan S McAfee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel S Hunter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marie Bleakley
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Anthony Rongvaux
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| | - Benoit J Van den Eynde
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Aude G Chapuis
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| |
Collapse
|
24
|
Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol Cell Proteomics 2022; 21:100204. [DOI: 10.1016/j.mcpro.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
|
25
|
Lin WY, Fordham SE, Hungate E, Sunter NJ, Elstob C, Xu Y, Park C, Quante A, Strauch K, Gieger C, Skol A, Rahman T, Sucheston-Campbell L, Wang J, Hahn T, Clay-Gilmour AI, Jones GL, Marr HJ, Jackson GH, Menne T, Collin M, Ivey A, Hills RK, Burnett AK, Russell NH, Fitzgibbon J, Larson RA, Le Beau MM, Stock W, Heidenreich O, Alharbi A, Allsup DJ, Houlston RS, Norden J, Dickinson AM, Douglas E, Lendrem C, Daly AK, Palm L, Piechocki K, Jeffries S, Bornhäuser M, Röllig C, Altmann H, Ruhnke L, Kunadt D, Wagenführ L, Cordell HJ, Darlay R, Andersen MK, Fontana MC, Martinelli G, Marconi G, Sanz MA, Cervera J, Gómez-Seguí I, Cluzeau T, Moreilhon C, Raynaud S, Sill H, Voso MT, Lo-Coco F, Dombret H, Cheok M, Preudhomme C, Gale RE, Linch D, Gaal-Wesinger J, Masszi A, Nowak D, Hofmann WK, Gilkes A, Porkka K, Milosevic Feenstra JD, Kralovics R, Grimwade D, Meggendorfer M, Haferlach T, Krizsán S, Bödör C, Stölzel F, Onel K, Allan JM. Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. Nat Commun 2021; 12:6233. [PMID: 34716350 PMCID: PMC8556284 DOI: 10.1038/s41467-021-26551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric Hungate
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Nicola J Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaobo Xu
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Quante
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Konstantin Strauch
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Christian Gieger
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Andrew Skol
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Junke Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Theresa Hahn
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Alyssa I Clay-Gilmour
- Arnold School of Public Health, Department of Epidemiology & Biostatistics, University of South Carolina, Greenville, USA
| | - Gail L Jones
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Helen J Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Graham H Jackson
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Tobias Menne
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Mathew Collin
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College Medical School, London, UK
| | - Robert K Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alan K Burnett
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| | - Nigel H Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard A Larson
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Michelle M Le Beau
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Wendy Stock
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David J Allsup
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jean Norden
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth Douglas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Clare Lendrem
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Palm
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Kim Piechocki
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Sally Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Martin Bornhäuser
- Department of Haematological Medicine, The Rayne Institute, King's College London, London, UK
- National Center for Tumor Diseases NCT, Partner site Dresden, Dresden, Germany
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mette K Andersen
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Maria C Fontana
- Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Miguel A Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José Cervera
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Inés Gómez-Seguí
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Cluzeau
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Chimène Moreilhon
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Sophie Raynaud
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Maria Teresa Voso
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Francesco Lo-Coco
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Hervé Dombret
- Hôpital Saint-Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Meyling Cheok
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Claude Preudhomme
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, UK
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Julia Gaal-Wesinger
- 1st Department of Internal Medicine, Semmewleis University, Budapest, Hungary
| | - Andras Masszi
- 3rd Department of Internal Medicine, Semmewleis University, Budapest, Hungary
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Amanda Gilkes
- Department of Haematology, University of Cardiff, Cardiff, UK
| | - Kimmo Porkka
- Helsinki University Hospital Comprehensive Cancer Center, Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College Medical School, London, UK
| | | | | | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
26
|
An HLA-A*11:01-Binding Neoantigen from Mutated NPM1 as Target for TCR Gene Therapy in AML. Cancers (Basel) 2021; 13:cancers13215390. [PMID: 34771556 PMCID: PMC8582585 DOI: 10.3390/cancers13215390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an aggressive hematological malignancy with poor prognosis. For AML relapses after chemotherapy, new and effective therapies are needed. In 30–35% of AMLs, a frameshift mutation in the nucleophosmin 1 gene (dNPM1) creates potential neoantigens that are attractive targets for immunotherapy. We previously isolated a T-cell receptor (TCR) that targets an HLA-A*02:01-binding dNPM1 neoantigen on primary AML. Here, we investigated whether AVEEVSLRK is another dNPM1 neoantigen that can be targeted by TCR gene transfer. We isolated various T-cells, cloned the HLA-A*11:01-restricted TCR from one T-cell clone and, upon transfer to CD8 cells, demonstrated targeting of dNPM1 primary AMLs in vitro. However, the TCR failed to mediate an anti-tumor effect in immunodeficient mice engrafted with dNPM1 OCI-AML3 cells. Our results demonstrate that AVEEVSLRK is an HLA-A*11:01-binding neoantigen on dNPM1 AML. Whether the isolated TCR is of sufficient affinity to treat patients remains uncertain. Abstract Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.
Collapse
|
27
|
Neoantigen-Specific T-Cell Immune Responses: The Paradigm of NPM1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22179159. [PMID: 34502069 PMCID: PMC8431540 DOI: 10.3390/ijms22179159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.
Collapse
|
28
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 2021; 136:1707-1721. [PMID: 32609823 DOI: 10.1182/blood.2019004226] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
Collapse
|
30
|
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Targeting public neoantigens for cancer immunotherapy. NATURE CANCER 2021; 2:487-497. [PMID: 34676374 PMCID: PMC8525885 DOI: 10.1038/s43018-021-00210-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Collapse
Affiliation(s)
- Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
31
|
Becker JP, Helm D, Rettel M, Stein F, Hernandez-Sanchez A, Urban K, Gebert J, Kloor M, Neu-Yilik G, von Knebel Doeberitz M, Hentze MW, Kulozik AE. NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. iScience 2021; 24:102389. [PMID: 33981976 PMCID: PMC8082087 DOI: 10.1016/j.isci.2021.102389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Jonas P. Becker
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Dominic Helm
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Urban
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Gebert
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Kloor
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Olsson N, Heberling ML, Zhang L, Jhunjhunwala S, Phung QT, Lin S, Anania VG, Lill JR, Elias JE. An Integrated Genomic, Proteomic, and Immunopeptidomic Approach to Discover Treatment-Induced Neoantigens. Front Immunol 2021; 12:662443. [PMID: 33936100 PMCID: PMC8082494 DOI: 10.3389/fimmu.2021.662443] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
All nucleated mammalian cells express major histocompatibility complex (MHC) proteins that present peptides on cell surfaces for immune surveillance. These MHC-presented peptides (pMHC) are necessary for directing T-cell responses against cells harboring non-self antigens derived from pathogens or from somatic mutations. Alterations in tumor-specific antigen repertoires - particularly novel MHC presentation of mutation-bearing peptides (neoantigens) - can be potent targets of anti-tumor immune responses. Here we employed an integrated genomic and proteomic antigen discovery strategy aimed at measuring how interferon gamma (IFN-γ) alters antigen presentation, using a human lymphoma cell line, GRANTA-519. IFN-γ treatment resulted in 126 differentially expressed proteins (2% of all quantified proteins), which included components of antigen presentation machinery and interferon signaling pathways, and MHC molecules themselves. In addition, several proteasome subunits were found to be modulated, consistent with previous reports of immunoproteasome induction by IFN-γ exposure. This finding suggests that a modest proteomic response to IFN-γ could create larger alteration to cells' antigen/epitope repertoires. Accordingly, MHC immunoprecipitation followed by mass spectrometric analysis of eluted peptide repertoires revealed exclusive signatures of IFN-γ induction, with 951 unique peptides reproducibly presented by MHC-I and 582 presented by MHC-II. Furthermore, an additional set of pMHCs including several candidate neoantigens, distinguished control and the IFN-γ samples by their altered relative abundances. Accordingly, we developed a classification system to distinguish peptides which are differentially presented due to altered expression from novel peptides resulting from changes in antigen processing. Taken together, these data demonstrate that IFN-γ can re-shape antigen repertoires by identity and by abundance. Extending this approach to models with greater clinical relevance could help develop strategies by which immunopeptide repertoires are intentionally reshaped to improve endogenous or vaccine-induced anti-tumor immune responses and potentially anti-viral immune responses.
Collapse
Affiliation(s)
- Niclas Olsson
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Marlene L. Heberling
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Lichao Zhang
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, United States
| | - Suchit Jhunjhunwala
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, United States
| | - Qui T. Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, United States
- Department of OMNI Biomarker Development, Genentech, South San Francisco, CA, United States
| | - Sarah Lin
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, United States
| | - Veronica G. Anania
- Department of OMNI Biomarker Development, Genentech, South San Francisco, CA, United States
| | - Jennie R. Lill
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, United States
| | - Joshua E. Elias
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, Stanford, CA, United States
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Nucleophosmin (NPM1) mutations are encountered in myeloid neoplasia and are present in ~ 30% of de novo acute myeloid leukemia cases. This review summarizes features of mutant NPM1-related disease, with a particular emphasis on recent discoveries relevant to disease monitoring, prognostication, and therapeutic intervention. RECENT FINDINGS Recent studies have shown that HOX/MEIS gene overexpression is central to the survival of NPM1-mutated cells. Two distinct classes of small molecule drugs, BH3 mimetics and menin-MLL interaction inhibitors, have demonstrated exquisite leukemic cell toxicity in preclinical AML models associated with HOX/MEIS overexpression, and the former of these has shown efficacy in older treatment-naïve NPM1-mutated AML patients. The results of ongoing clinical trials further investigating these compounds will be of particular importance and may alter the clinical management of patients with NPM1-mutated myeloid neoplasms. Significant scientific advancements over the last decade, including improved sequencing and disease monitoring techniques, have fostered a much deeper understanding of mutant NPM1 disease biology, prognostication, and opportunities for therapeutic intervention. These discoveries have led to the development of clinical assays that permit the detection and monitoring of mutant NPM1 and have paved the way for future investigation of targeted therapeutics using emerging cutting-edge techniques.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Weill Cornell Medical College, New York, NY, USA
| | - Michael J Kluk
- Division of Hematopathology, Weill Cornell Medical College, New York, NY, USA
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Bader 126.2, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
35
|
Biernacki MA, Foster KA, Woodward KB, Coon ME, Cummings C, Cunningham TM, Dossa RG, Brault M, Stokke J, Olsen TM, Gardner K, Estey E, Meshinchi S, Rongvaux A, Bleakley M. CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J Clin Invest 2020; 130:5127-5141. [PMID: 32831296 PMCID: PMC7524498 DOI: 10.1172/jci137723] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins created from recurrent fusion genes like CBFB-MYH11 are prevalent in acute myeloid leukemia (AML), often necessary for leukemogenesis, persistent throughout the disease course, and highly leukemia specific, making them attractive neoantigen targets for immunotherapy. A nonameric peptide derived from a prevalent CBFB-MYH11 fusion protein was found to be immunogenic in HLA-B*40:01+ donors. High-avidity CD8+ T cell clones isolated from healthy donors killed CBFB-MYH11+ HLA-B*40:01+ AML cell lines and primary human AML samples in vitro. CBFB-MYH11-specific T cells also controlled CBFB-MYH11+ HLA-B*40:01+ AML in vivo in a patient-derived murine xenograft model. High-avidity CBFB-MYH11 epitope-specific T cell receptors (TCRs) transduced into CD8+ T cells conferred antileukemic activity in vitro. Our data indicate that the CBFB-MYH11 fusion neoantigen is naturally presented on AML blasts and enables T cell recognition and killing of AML. We provide proof of principle for immunologically targeting AML-initiating fusions and demonstrate that targeting neoantigens has clinical relevance even in low-mutational frequency cancers like fusion-driven AML. This work also represents a first critical step toward the development of TCR T cell immunotherapy targeting fusion gene-driven AML.
Collapse
Affiliation(s)
- Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine
| | - Kimberly A. Foster
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kyle B. Woodward
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael E. Coon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Carrie Cummings
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tanya M. Cunningham
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robson G. Dossa
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Brault
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jamie Stokke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| | - Tayla M. Olsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Elihu Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| | - Anthony Rongvaux
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| |
Collapse
|
36
|
In-depth mining of the immunopeptidome of an acute myeloid leukemia cell line using complementary ligand enrichment and data acquisition strategies. Mol Immunol 2020; 123:7-17. [PMID: 32387766 DOI: 10.1016/j.molimm.2020.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
The identification of T cell epitopes derived from tumour specific antigens remains a significant challenge for the development of peptide-based vaccines and immunotherapies. The use of mass spectrometry-based approaches (immunopeptidomics) can provide powerful new avenues for the identification of such epitopes. In this study we report the use of complementary peptide antigen enrichment methods and a comprehensive mass spectrometric acquisition strategy to provide in-depth immunopeptidome data for the THP-1 cell line, a cell line used widely as a model of human leukaemia. To accomplish this, we combined robust experimental workflows that incorporated ultrafiltration or off-line reversed phase chromatography to enrich peptide ligand as well as a multifaceted data acquisition strategy using an Orbitrap Fusion LC-MS instrument. Using the combined datasets from the two ligand enrichment methods we gained significant depth in immunopeptidome coverage by identifying a total of 41,816 HLA class I peptides from THP-1 cells, including a significant number of peptides derived from different oncogenes or over expressed proteins associated with cancer. The physicochemical properties of the HLA-bound peptides dictated their recovery using the two ligand enrichment approaches and their distribution across the different precursor charge states considered in the data acquisition strategy. The data highlight the complementarity of the two enrichment procedures, and in cases where sample is not limiting, suggest that the combination of both approaches will yield the most comprehensive immunopeptidome information.
Collapse
|
37
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Roerden M, Nelde A, Walz JS. Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy? Front Immunol 2019; 10:3004. [PMID: 31921218 PMCID: PMC6934135 DOI: 10.3389/fimmu.2019.03004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neoantigens derive from non-synonymous somatic mutations in malignant cells. Recognition of neoantigens presented via human leukocyte antigen (HLA) molecules on the tumor cell surface by T cells holds promise to enable highly specific and effective anti-cancer immune responses and thus neoantigens provide an exceptionally attractive target for immunotherapy. While genome sequencing approaches already enable the reliable identification of somatic mutations in tumor samples, the identification of mutation-derived, naturally HLA-presented neoepitopes as targets for immunotherapy remains challenging, particularly in low mutational burden cancer entities, including hematological malignancies. Several approaches have been utilized to identify neoepitopes from primary tumor samples. Besides whole genome sequencing with subsequent in silico prediction of potential mutation-derived HLA ligands, mass spectrometry (MS) allows for the only unbiased identification of naturally presented mutation-derived HLA ligands. The feasibility of characterizing and targeting these novel antigens has recently been demonstrated in acute myeloid leukemia (AML). Several immunogenic, HLA-presented peptides derived from mutated Nucleophosmin 1 (NPM1) were identified, allowing for the generation of T-cell receptor-transduced NPM1mut-specific T cells with anti-leukemic activity in a xenograft mouse model. Neoantigen-specific T-cell responses have also been identified for peptides derived from mutated isocitrate dehydrogenase (IDHmut), and specific T-cell responses could be induced by IDHmut peptide vaccination. In this review, we give a comprehensive overview on known neoantigens in hematological malignancies, present possible prediction and discovery tools and discuss their role as targets for immunotherapy approaches.
Collapse
Affiliation(s)
- Malte Roerden
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|