1
|
Hares MF, Griffiths BE, Barningham L, Vamos EE, Gregory R, Duncan JS, Oikonomou G, Stewart CJ, Coombes JL. Progression of the faecal microbiome in preweaning dairy calves that develop cryptosporidiosis. Anim Microbiome 2025; 7:3. [PMID: 39762941 PMCID: PMC11706078 DOI: 10.1186/s42523-024-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cryptosporidiosis is a diarrheal disease that commonly affects calves under 6 weeks old. The causative agent, Cryptosporidium parvum, has been associated with the abundance of specific taxa in the faecal microbiome during active infection. However, the long-term impact of these microbiome shifts, and potential effects on calf growth and health have not yet been explored in depth. METHODS Three hundred and forty-six (346) calves from three dairy farms had one faecal swab collected during the first week of life (W1). Thereafter, sampled calves were monitored for diarrhoeal disease and those that suffered a diarrhoea event were tested for C. parvum by lateral flow testing (LFT). Calves that experienced diarrhoea and tested positive for C. parvum by LFT were assigned to the Cryptosporidium-positive (Cp+) group (n = 32). Matched healthy (H) controls with no history of diarrhoea were selected from the remaining cohort (n = 33). The selected subset of calves (n = 65) was observed until weaning, collecting a faecal swab, at approximately Week 5 (W5) and Week 10 (W10) after birth, resulting in a total of 191 samples (W1; n = 65, W5; n = 64, W10; n = 62). 16S rRNA gene amplicon sequencing was performed on all extracted samples. RESULTS Analysis of the longitudinal microbiome showed significant changes in the microbial diversity and composition across all three time-points. Whilst Firmicutes were elevated in the Cp+ group at W5 compared to the H group, no other significant differences were detected between H and Cp+ groups. Whilst the core microbiota showed some taxa were exclusive to each group, the role of these taxa in health and disease has yet to be determined. Antibiotics were also found to have an impact on the relative abundance of some taxa. Though healthy calves received a significantly higher body condition score than Cp+ calves at W5, the difference did not reach significance at W10, suggesting that Cp+ calves may catch up to their healthy counterparts once the infection has resolved. CONCLUSIONS The findings of this study illustrated the changes in the microbial diversity and composition during the preweaning period in dairy calves. The results also indicated that the faecal microbiome is not predictive of cryptosporidiosis and implied that cryptosporidiosis doesn't cause long-term gut dysbiosis. This study furthered our understanding of the parasite-microbiome relationship and its impact on the bovine host.
Collapse
Affiliation(s)
- M F Hares
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK.
| | - B E Griffiths
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - L Barningham
- Centre for Genomic Research, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - E E Vamos
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - R Gregory
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - J S Duncan
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - G Oikonomou
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - C J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - J L Coombes
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
2
|
Lee C, Zaheer R, Thomas K, Poulin-Laprade D, Talbot G, Diarra MS, Van Domselaar G, Zovoilis A, McAllister TA. Comparative metagenomics reveals limited differences in antimicrobial resistance gene abundance across conventional and natural livestock production systems. Can J Microbiol 2025; 71:1-8. [PMID: 40014853 DOI: 10.1139/cjm-2024-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The livestock industry has been a source of concern in terms of antimicrobial resistance (AMR) development and spread, especially from a One Health perspective. Raising livestock without antimicrobials, so called natural (NAT) production, is an increasingly popular practice. This study used metagenomics to compare this practice to conventional (CONV) antimicrobial use (AMU) on the microbiome and resistome in the feces of beef cattle and swine and the cecal contents of broiler chickens. In cattle, Bacteroidetes, Euryarchaeota, and Spirochaetes were more abundant (q < 0.01) in CONV than NAT systems, with no differences (q > 0.05) in bacterial profiles in either swine or chickens. Classes of antimicrobial resistant genes (ARG) were not impacted regardless of AMU in any of the livestock species. However, many tetracycline resistance genes were more abundant in CONV as compared to NAT swine (q < 0.05), but this difference was not observed in cattle or chickens. This study confirmed that elimination of AMU does not necessarily result in an immediate decline in the abundance or diversity of ARGs within a single livestock production cycle.
Collapse
Affiliation(s)
- Catrione Lee
- Department of Biological Sciences, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Krysty Thomas
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Dominic Poulin-Laprade
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 2000 Rue du Collége, Sherbrooke, QC J1M 1Z3, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 2000 Rue du Collége, Sherbrooke, QC J1M 1Z3, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Athanasios Zovoilis
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
3
|
An Evaluation of Nutritional and Therapeutic Factors Affecting Pre-Weaned Calf Health and Welfare, and Direct-Fed Microbials as a Potential Alternative for Promoting Performance—A Review. DAIRY 2022. [DOI: 10.3390/dairy3030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The priority for calf rearing has been to maintain good health and welfare in order to promote and sustain future production. However, there have been numerous reports of undesirable levels of morbidity and mortality amongst pre-weaned calves. This may be mitigated or exacerbated by nutritional management practices. Some areas of concern include colostrum feeding, utilization of waste milk, and restrictive milk feeding regimes. Antibiotics may be prescribed at lethal or sub-inhibitory doses to treat or prevent disease. However, extensive antibiotic use may disrupt the gastrointestinal microbiota and aid in expanding the antibiotic resistant gene pool. In an attempt to reduce the use of antibiotics, there is a demand to find alternative performance enhancers. Direct-fed microbials, also known as probiotics, may comply with this role. A DFM consists of live microorganisms that are biologically active and able to confer health benefits onto the host. Lactic acid bacteria have been the most frequently investigated; however, this field of research has expanded to include spore-forming bacteria and live yeast preparations. This review aims to provide a comprehensive evaluation of the nutritional management strategies that may increase a calf’s susceptibility to morbidity and mortality, the efficacy and sustainability of antibiotics as a tool for managing calf health and welfare, and the potential for DFMs as a supportive strategy for promoting calf wellbeing.
Collapse
|
4
|
Long NS, Wells JE, Berry ED, Legako JF, Woerner DR, Loneragan GH, Broadway PR, Carroll JA, Sanchez NCB, Fernando SC, Bacon CM, Helmuth CL, Smock TM, Manahan JL, Hoffman AA, Hales KE. Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in Salmonella enterica, Escherichia coli and Enterococcus spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle. J Appl Microbiol 2022; 133:1940-1955. [PMID: 35766106 PMCID: PMC9546201 DOI: 10.1111/jam.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. METHODS AND RESULTS Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). CONCLUSIONS Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors.
Collapse
Affiliation(s)
- Nathan S. Long
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - James E. Wells
- USDA‐ARSU.S. Meat Animal Research Center, Clay CenterNebraskaUSA
| | - Elaine D. Berry
- USDA‐ARSU.S. Meat Animal Research Center, Clay CenterNebraskaUSA
| | - Jerrad F. Legako
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Dale R. Woerner
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Guy H. Loneragan
- Texas Tech UniversitySchool of Veterinary MedicineAmarilloTexasUSA
| | | | | | | | - Samodha C. Fernando
- Department of Animal ScienceUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Carley M. Bacon
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Cory L. Helmuth
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Taylor M. Smock
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Jeff L. Manahan
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Ashley A. Hoffman
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| | - Kristin E. Hales
- Department of Animal & Food SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
5
|
Temmerman R, Ghanbari M, Antonissen G, Schatzmayr G, Duchateau L, Haesebrouck F, Garmyn A, Devreese M. Dose-dependent impact of enrofloxacin on broiler chicken gut resistome is mitigated by synbiotic application. Front Microbiol 2022; 13:869538. [PMID: 35992659 PMCID: PMC9386515 DOI: 10.3389/fmicb.2022.869538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone agents are considered critical for human medicine by the World Health Organization (WHO). However, they are often used for the treatment of avian colibacillosis in poultry production, creating considerable concern regarding the potential spread of fluoroquinolone resistance genes from commensals to pathogens. Therefore, there is a need to understand the impact of fluoroquinolone application on the reservoir of ARGs in poultry gut and devise means to circumvent potential resistome expansion. Building upon a recent dose optimization effort, we used shotgun metagenomics to investigate the time-course change in the cecal microbiome and resistome of broiler chickens receiving an optimized dosage [12.5 mg/kg body weight (bw)/day], with or without synbiotic supplementation (PoultryStar®, BIOMIN GmbH), and a high dosage of enrofloxacin (50 mg/kg bw/day). Compared to the high dose treatment, the low (optimized) dose of enrofloxacin caused the most significant perturbations in the cecal microbiota and resistome of the broiler chickens, demonstrated by a lower cecal microbiota diversity while substantially increasing the antibiotic resistance genes (ARGs) resistome diversity. Withdrawal of antibiotics resulted in a pronounced reduction in ARG diversity. Chickens receiving the synbiotic treatment had the lowest diversity and number of enriched ARGs, suggesting an alleviating impact on the burden of the gut resistome. Some Proteobacteria were significantly increased in the cecal metagenome of chickens receiving enrofloxacin and showed a positive association with increased ARG burden. Differential abundance (DA) analysis revealed a significant increase in the abundance of ARGs encoding resistance to macrolides-lincosamides-streptogramins (MLS), aminoglycosides, and tetracyclines over the period of enrofloxacin application, with the optimized dosage application resulting in a twofold higher number of affected ARG compared to high dosage application. Our results provide novel insights into the dose-dependent effects of clinically important enrofloxacin application in shaping the broiler gut resistome, which was mitigated by a synbiotic application. The contribution to ameliorating the adverse effects of antimicrobial agents, that is, lowering the spread of antimicrobial resistance genes, on the poultry and potentially other livestock gastrointestinal microbiomes and resistomes merits further study.
Collapse
Affiliation(s)
- Robin Temmerman
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Luc Duchateau
- Faculty of Veterinary Medicine, Biometrics Research Center, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Liepman RS, Swink JM, Habing GG, Boyaka PN, Caddey B, Costa M, Gomez DE, Toribio RE. Effects of Intravenous Antimicrobial Drugs on the Equine Fecal Microbiome. Animals (Basel) 2022; 12:1013. [PMID: 35454258 PMCID: PMC9030835 DOI: 10.3390/ani12081013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alterations in the gastrointestinal microbiota after antimicrobial therapy in horses can result in loss of colonization resistance and changes in bacterial metabolic function. It is hypothesized that these changes facilitate gastrointestinal inflammation, pathogen expansion and the development of diarrhea. The objectives of this study were to determine the effect of intravenous administration of antimicrobial drugs (ceftiofur, enrofloxacin, oxytetracycline) on equine fecal bacterial communities over time, to investigate whether those changes are detectable after 5 days of treatment and whether they persist over time (30 days). Sixteen horses were randomly assigned into 4 treatment groups: group 1 (enrofloxacin, n = 4); group 2 (ceftiofur sodium, n = 4); group 3 (oxytetracycline, n = 4); group 4 (0.9% saline solution, placebo, n = 4). Antimicrobial therapy was administered for 5 days. Fecal samples were obtained before (day 0) and at 3, 5 and 30 days of the study period. Bacterial DNA was amplified using specific primers to the hypervariable region V1−V3 of the 16S rRNA gene using a 454 FLX-Titanium pyrosequencer. Antimicrobial therapy failed to cause any changes in physical examination parameters, behavior, appetite or fecal output or consistency throughout the study in any horse. There was a significant effect of treatment on alpha diversity indices (richness) over the treatment interval for ceftiofur on days 0 vs. 3 (p < 0.05), but not for other antimicrobials (p > 0.05). Microbial composition was significantly different (p < 0.05) across treatment group and day, but not for interactions between treatment and day, regardless of taxonomic level and beta-diversity distance metric. The most significant antimicrobial effects on relative abundance were noted after intravenous administration of ceftiofur and enrofloxacin. The relative abundance of Fibrobacteres was markedly lower on day 3 compared to other days in the ceftiofur and enrofloxacin treatment groups. There was an increase in Clostridia and Lachnospiraceae from day 0 to days 3 and 5 in ceftiofur and enrofloxacin treated groups. These findings showed the negative effect of antimicrobial drugs on bacterial communities associated with gut health (Fibrobacteres and Lachnospiraceae) and indicate that changes in specific taxa could predispose horses to gastrointestinal inflammation and the development of diarrhea.
Collapse
Affiliation(s)
- Rachel S. Liepman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Jacob M. Swink
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Greg G. Habing
- Department of Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Benjamin Caddey
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, Faculté de Médecine Vétérinaire, University of Montreal, Saint Hyacinthe, QC J2S 2M2, Canada;
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| |
Collapse
|
7
|
Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals (Basel) 2021; 11:ani11113280. [PMID: 34828011 PMCID: PMC8614244 DOI: 10.3390/ani11113280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are major disruptors of the gastrointestinal microbiota, depleting bacterial species beneficial for the host health and favoring the emergence of potential pathogens. Furthermore, the intestine is a reactor of antibiotic resistance emergence, and the presence of antibiotics exacerbates the selection of resistant bacteria that can disseminate in the environment and propagate to further hosts. We reviewed studies analyzing the effect of antibiotics on the intestinal microbiota and antibiotic resistance conducted on animals, focusing on the main food-producing and companion animals. Irrespective of antibiotic classes and animal hosts, therapeutic dosage decreased species diversity and richness favoring the bloom of potential enteropathogens and the selection of antibiotic resistance. These negative effects of antibiotic therapies seem ineluctable but often were mitigated when an antibiotic was administered by parenteral route. Sub-therapeutic dosages caused the augmentation of taxa involved in sugar metabolism, suggesting a link with weight gain. This result should not be interpreted positively, considering that parallel information on antibiotic resistance selection was rarely reported and selection of antibiotic resistance is known to occur also at low antibiotic concentration. However, studies on the effect of antibiotics as growth promoters put the basis for understanding the gut microbiota composition and function in this situation. This knowledge could inspire alternative strategies to antibiotics, such as probiotics, for improving animal performance. This review encompasses the analysis of the main animal hosts and all antibiotic classes, and highlights the future challenges and gaps of knowledge that should be filled. Further studies are necessary for elucidating pharmacodynamics in animals in order to improve therapy duration, antibiotic dosages, and administration routes for mitigating negative effects of antibiotic therapies. Furthermore, this review highlights that studies on aminoglycosides are almost inexistent, and they should be increased, considering that aminoglycosides are the first most commonly used antibiotic family in companion animals. Harmonization of experimental procedures is necessary in this research field. In fact, current studies are based on different experimental set-up varying for antibiotic dosage, regimen, administration, and downstream microbiota analysis. In the future, shotgun metagenomics coupled with long-reads sequencing should become a standard experimental approach enabling to gather comprehensive knowledge on GIM in terms of composition and taxonomic functions, and of ARGs. Decorticating GIM in animals will unveil revolutionary strategies for medication and improvement of animals' health status, with positive consequences on global health.
Collapse
|
8
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
9
|
Bringhenti L, Pallu M, Silva JC, Tomazi T, Tomazi ACCH, Rodrigues MX, Cruzado-Bravo M, Bilby TR, Bicalho RC. Effect of treatment of pneumonia and otitis media with tildipirosin or florfenicol + flunixin meglumine on health and upper respiratory tract microbiota of preweaned Holstein dairy heifers. J Dairy Sci 2021; 104:10291-10309. [PMID: 34099293 DOI: 10.3168/jds.2020-19945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
The objective of this randomized clinical study was to compare the effect of 2 antimicrobial interventions, tildipirosin or florfenicol + flunixin meglumine, used for treatment of pneumonia and extralabel treatment for otitis on health parameters and upper respiratory tract (URT) microbiota of preweaned Holstein calves. Housed preweaned Holstein heifers diagnosed with either otitis or pneumonia were assigned into 1 of 2 treatment groups, receiving a single subcutaneous injection of either 4 mg/kg of tildipirosin (TLD; n = 444) or 40 mg/kg of florfenicol combined with 2.2 mg/kg of a nonsteroidal anti-inflammatory, flunixin meglumine (FLF; n = 442). Calves were enrolled and treated on the day of diagnosis of the first case of pneumonia or otitis. If a calf had a recurrent case, the opposite drug was administered, respecting an interval of 5 d between drug injections. Blood samples for leukocyte counts were collected at 0, 2, 4, and 6 d after treatment, and rectal temperature was measured daily during the 5 d after treatment. Ear scores were observed from calves with otitis. Additionally, swabs of the URT were collected from a subset of 20 calves in each treatment group at d 0, 3, 6, 9, and 11 following enrollment for analysis of URT microbiota through next-generation sequencing of the 16S rRNA gene and quantitative PCR. Swabs were also collected from a comparative group of 20 healthy calves that did not receive any drug. No differences were observed between groups for recurrence risk of either pneumonia (TLD = 32.4%; FLF = 29.7%) or otitis (TLD = 72.7%; FLF = 73.6%). Similarly, no differences were observed for the total number of treatments for pneumonia (TLD = 1.45; FLF = 1.42) or otitis (TLD = 2.96; FLF = 3.07). On the other hand, both drugs reduced rectal temperature, ear scores, and leukocyte counts, with FLF calves having a greater reduction in rectal temperature within 4 d after treatment. Both TLD and FLF reduced the total bacterial load when compared with healthy untreated calves, but no differences were observed between treatment groups. Furthermore, compared with the untreated group, treated calves had lower mean relative abundances (MRA) of the genera Mannheimia, Moraxella, and Pasteurella within 11, 9, and 3 d after treatment, respectively; however, no significant differences were observed between TLD and FLF. On the other hand, MRA of Mycoplasma was not decreased by both treatments compared to untreated animals, and a higher MRA was observed in the TLD group during 11 d after treatment in comparison to FLF and untreated calves. Based on this data, we concluded that both drugs used in the study were effective in reducing rectal temperature, ear scores, leukocyte counts, and MRA of the genera Mannheimia, Pasteurella, and Moraxella in the URT, and calves treated with FLF had a greater reduction in rectal temperature.
Collapse
Affiliation(s)
- L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M Pallu
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - J C Silva
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - T Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - A C C H Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M Cruzado-Bravo
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | | | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
10
|
Bringhenti L, Pallu M, Silva J, Tomazi T, Tomazi AC, Rodrigues MX, Duarte LM, Bilby TR, Bicalho RC. Effect of metaphylactic administration of tildipirosin on the incidence of pneumonia and otitis and on the upper respiratory tract and fecal microbiome of preweaning Holstein calves. J Dairy Sci 2021; 104:6020-6038. [PMID: 33685693 DOI: 10.3168/jds.2020-19572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to evaluate the effect of the metaphylactic use of a semi-synthetic long-acting macrolide (tildipirosin) on the prevention of pneumonia and otitis in preweaning Holstein calves, as well as its effects on the microbiome of their upper respiratory tract (URT) and feces. Newborn healthy Holstein heifers, collectively housed, were randomly allocated to 1 of 2 treatment groups: treatment (TRT; n = 932) or control (CTR; n = 927). Calves in the TRT group received a single subcutaneous injection of 4 mg/kg tildipirosin (Zuprevo, Merck Animal Health) at 7 ± 7 d of life. Calves in the CTR group received no drug injection. All enrolled calves were evaluated from 1 to 63 ± 3 d of life (weaning age) and monitored daily for any adverse health events during this period. Daily physical examination was performed to diagnose pneumonia and otitis, and body weight was measured weekly in all animals. From a randomly selected subset of 217 calves, blood samples for biochemical variables analysis and swabs were collected weekly from the URT and rectum for analysis of the nasal and fecal microbiome, respectively, via next-generation sequencing of the 16S rRNA gene. Total bacterial load was evaluated using quantitative PCR. In addition, another subset of 26 calves was randomly selected and fecal swabs were collected in a more intensive sampling to investigate the short-term effect of tildipirosin administration on the fecal microbiome. We performed general mixed linear models and logistic regression to analyze continuous and binary outcomes, respectively. Tildipirosin metaphylaxis reduced the incidence of otitis (CTR = 47.03%; TRT = 37.55%) and tended to reduce the incidence of pneumonia (CTR = 20.71%; TRT = 17.38%) and the overall mortality risk (CTR = 6.69%; TRT = 4.94%). We observed no significant differences between groups for mortality due to pneumonia (CTR = 0.86%; TRT = 0.97%) or mortality due to otitis (CTR = 2.05%; TRT = 1.39%). Calves in the TRT group had a higher average daily gain than calves in the CTR group. Furthermore, metaphylaxis had no significant effects on the total bacterial load, genus, or phylum analysis of the fecal microbiome from the 2 subset groups. However, for the URT microbiota, we observed a significant decrease in total bacterial load for the TRT group compared to the CTR group 1 week after metaphylactic injection. Tildipirosin metaphylaxis decreased the mean relative abundance of the genera Mannheimia, Moraxella, and Pasteurella but significantly increased the mean relative abundance of Mycoplasma. Although tildipirosin had no positive effect on Mycoplasma, it reduced the mean relative abundance of important pathogenic bacteria in the URT and had positive effects for the control of otitis. The metaphylactic use of tildipirosin can be a suitable strategy for the control of otitis on farms with a high prevalence of this disease.
Collapse
Affiliation(s)
- Leonardo Bringhenti
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Mariana Pallu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Josiane Silva
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Tiago Tomazi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Ana C Tomazi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Marjory X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Livia M Duarte
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | | | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
11
|
Amin N, Seifert J. Dynamic progression of the calf's microbiome and its influence on host health. Comput Struct Biotechnol J 2021; 19:989-1001. [PMID: 33613865 PMCID: PMC7868804 DOI: 10.1016/j.csbj.2021.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The first year of a calf's life is a critical phase as its digestive system and immunity are underdeveloped. A high level of stress caused by separation from mothers, transportation, antibiotic treatments, dietary shifts, and weaning can have long-lasting health effects, which can reduce future production parameters, such as milk yield and reproduction, or even increase the mortality of calves. The early succession of microbes throughout the gastrointestinal tract of neonatal calves follows a sequential pattern of colonisation and is greatly influenced by their physiological state, age, diet, and environmental factors; this leads to the establishment of region- and site-specific microbial communities. This review summarises the current information on the various potential factors that may affect the early life microbial colonisation pattern in the gastrointestinal tract of calves. The possible role of host-microbe interactions in the development and maturation of host gut, immune system, and health are described. Additionally, the possibility of improving the health of calves through gut microbiome modulation and using antimicrobial alternatives is discussed. Finally, the trends, challenges, and limitations of the current research are summarised and prospective directions for future studies are highlighted.
Collapse
Affiliation(s)
- Nida Amin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Genotypic antimicrobial resistance characterization of E. coli from dairy calves at high risk of respiratory disease administered enrofloxacin or tulathromycin. Sci Rep 2020; 10:19327. [PMID: 33168881 PMCID: PMC7653923 DOI: 10.1038/s41598-020-76232-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/26/2020] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to evaluate the longitudinal effect of enrofloxacin or tulathromycin use in calves at high risk of bovine respiratory disease (BRD) on antimicrobial resistance genes and mutation in quinolone resistance-determining regions (QRDR) in fecal E. coli. Calves at high risk of developing BRD were randomly enrolled in one of three groups receiving: (1) enrofloxacin (ENR; n = 22); (2) tulathromycin (TUL; n = 24); or (3) no treatment (CTL; n = 21). Fecal samples were collected at enrollment and at 7, 28, and 56 days after beginning treatment, cultured for Escherichiacoli (EC) and DNA extracted. Isolates were screened for cephalosporin, quinolone and tetracycline resistance genes using PCR. QRDR screening was conducted using Sanger sequencing. The only resistance genes detected were aac(6′)Ib-cr (n = 13), bla-CTX-M (n = 51), bla-TEM (n = 117), tetA (n = 142) and tetB (n = 101). A significantly higher detection of gyrA mutated at position 248 at time points 7 (OR = 11.5; P value = 0.03) and 28 (OR = 9.0; P value = 0.05) was observed in the ENR group when compared to calves in the control group. Our findings support a better understanding of the potential impacts from the use of enrofloxacin in calves on the selection and persistence of resistance.
Collapse
|
13
|
Massot M, Haenni M, Nguyen TT, Madec JY, Mentré F, Denamur E. Temporal dynamics of the fecal microbiota in veal calves in a 6-month field trial. Anim Microbiome 2020; 2:32. [PMID: 33499974 PMCID: PMC7807794 DOI: 10.1186/s42523-020-00052-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Little is known about maturation of calves' gut microbiome in veal farms, in which animals are confined under intensive-farming conditions and the administration of collective antibiotic treatment in feed is common. We conducted a field study on 45 calves starting seven days after their arrival in three veal farms. We collected monthly fecal samples over six months and performed 16S rRNA gene sequencing and quantitative PCR of Escherichia coli to follow the dynamics of their microbiota, including that of their commensal E. coli populations. We used mixed-effect models to characterize the dynamics of α-diversity indices and numbers of E. coli, and searched for an effect of collective antibiotic treatments on the estimated parameters. On two farms, we also searched for associations between recommended daily doses of milk powder and bacterial abundance. RESULTS There was high heterogeneity between calves' microbiota upon their arrival at the farms, followed by an increase in similarity, starting at the first month. From the second month, 16 genera were detected at each sampling in all calves, representing 67.5% (± 9.9) of their microbiota. Shannon diversity index showed a two-phase increase, an inflection occurring at the end of the first month. Calves receiving antibiotics had a lower intercept estimate for Shannon index (- 0.17 CI95%[-0.27; - -0.06], p = 0.003) and a smaller number of E. coli/ gram of feces during the treatment and in the 15 days following it (- 0.37 log10 (E. coli/g) CI95%[- 0.66; - 0.08], p = 0.01) than unexposed calves. There were moderate to strong positive associations between the dose of milk powder and the relative abundances of the genera Megasphaera, Enterococcus, Dialister and Mitsuokella, and the number of E. coli (rs ≥ 0.40; Bonferroni corrected p < 0.05). CONCLUSIONS This observational study shows early convergence of the developing microbiota between veal calves and associations between the dose of milk powder and members of their microbiota. It suggests that administration of collective antibiotic treatment results in a reduction of microbial diversity and size of the E. coli population and highlights the need for additional work to fully understand the impact of antibiotic treatment in the veal industry.
Collapse
Affiliation(s)
- Méril Massot
- Université de Paris, IAME, INSERM, Site Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES, Laboratoire de Lyon, Lyon, France
| | - Thu Thuy Nguyen
- Université de Paris, IAME, INSERM, Site Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES, Laboratoire de Lyon, Lyon, France
| | - France Mentré
- Université de Paris, IAME, INSERM, Site Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
- AP-HP, Hôpital Bichat-Claude Bernard, Département d’Epidémiologie, Biostatistiques et Recherche Clinique, F-75018 Paris, France
| | - Erick Denamur
- Université de Paris, IAME, INSERM, Site Xavier Bichat, 16 rue Henri Huchard, F-75018 Paris, France
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Génétique Moléculaire, F-75018 Paris, France
| |
Collapse
|
14
|
Pereira RV, Altier C, Siler JD, Mann S, Jordan D, Warnick LD. Longitudinal effects of enrofloxacin or tulathromycin use in preweaned calves at high risk of bovine respiratory disease on the shedding of antimicrobial-resistant fecal Escherichia coli. J Dairy Sci 2020; 103:10547-10559. [PMID: 32861496 DOI: 10.3168/jds.2019-17989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Abstract
The objective of this study was to longitudinally quantify Escherichia coli resistant to ciprofloxacin and ceftriaxone in calves treated with enrofloxacin or tulathromycin for the control of bovine respiratory disease (BRD). Dairy calves 2 to 3 wk of age not presenting clinical signs of pneumonia and at high risk of developing BRD were randomly enrolled in 1 of 3 groups receiving the following treatments: (1) single label dose of enrofloxacin (ENR); (2) single label dose of tulathromycin (TUL); or (3) no antimicrobial treatment (control, CTL). Fecal samples were collected immediately before administration of treatment and at d 2, 4, 7, 14, 21, 28, 56, and 112 d after beginning treatment. Samples were used for qualification of E. coli using a selective hydrophobic grid membrane filter (HGMF) master grid. The ENR group had a significantly higher proportion of E. coli resistant to ciprofloxacin compared with CTL and TUL at time points 2, 4, and 7. At time point 28, a significantly higher proportion of E. coli resistant to ciprofloxacin was observed only compared with CTL. The TUL group had a significantly higher proportion of E. coli resistant to ciprofloxacin compared with CTL at time points 2, 4, and 7. None of the treatment groups resulted in a significantly higher proportion of E. coli isolates resistant to ceftriaxone. Our study identified that treatment of calves at high risk of developing BRB with either enrofloxacin or tulathromycin resulted in a consistently higher proportion of ciprofloxacin-resistant E. coli in fecal samples.
Collapse
Affiliation(s)
- R V Pereira
- Department of Population Health and Reproduction, College of Veterinary Medicine, University of California Davis, Davis 95616.
| | - C Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - J D Siler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - D Jordan
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia 2477
| | - L D Warnick
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|