1
|
Zhou J, Yang X, Hu Y, Li S. Epidemiological and osteoarticular involvement sites' characteristics of multiple osteoarticular tuberculosis: a scoping review. Epidemiol Infect 2025; 153:e26. [PMID: 39834064 PMCID: PMC11869084 DOI: 10.1017/s095026882400150x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 01/22/2025] Open
Abstract
Multiple osteoarticular tuberculosis (MOT) represents an uncommon yet severe form of tuberculosis, characterized by a lack of systematic analysis and comprehension. Our objective was to delineate MOT's epidemiological characteristics and establish a scientific foundation for prevention and treatment. We conducted searches across eight databases to identify relevant articles. Pearson's chi-square test (Fisher's exact test) and Bonferroni method were employed to assess osteoarticular involvement among patients of varying age and gender (α = 0.05). The study comprised 98 articles, encompassing 151 cases from 22 countries, with China and India collectively contributing 67.55% of cases. MOT predominantly affected individuals aged 0-30 years (58.94%). Pulmonary tuberculosis was evident in 16.55% of cases, with spinal involvement prevalent (57.62%). Significant differences were noted in trunk, spine, thoracic, and lumbar vertebrae involvement, as well as type I lesions across age groups, increasing with age. Moreover, significant differences were observed in upper limb bone involvement and type II lesions across age groups, decreasing with age. Gender differences were not significant. MOT primarily manifests in China and India, predominantly among younger individuals, indicating age-related variations in osteoarticular involvement. Enhanced clinical awareness is crucial for accurate MOT diagnosis, mitigating missed diagnoses and misdiagnoses.
Collapse
Affiliation(s)
- Jian Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Xuanjie Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yong Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Shijun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| |
Collapse
|
2
|
Wang Q, Barilar I, Minin VM, Modongo C, Moonan PK, Finlay A, Boyd R, Oeltmann JE, Molefi TL, Zetola NM, Brewer TF, Niemann S, Shin SS. Phylodynamic analysis reveals disparate transmission dynamics of Mycobacterium tuberculosis-complex lineages in Botswana. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.31.24316225. [PMID: 39763523 PMCID: PMC11703314 DOI: 10.1101/2024.10.31.24316225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Tuberculosis epidemics have traditionally been conceptualized as arising from a single uniform pathogen. However, Mycobacterium tuberculosis-complex (Mtbc), the pathogen causing tuberculosis in humans, encompasses multiple lineages exhibiting genetic and phenotypic diversity that may be responsible for heterogeneity in TB transmission. We analysed a population-based dataset of 1,354 Mtbc whole-genome sequences collected over four years in Botswana, a country with high HIV and tuberculosis burden. We identified Lineage 4 (L4) as the most prevalent (87.4%), followed by L1 (6.4%), L2 (5.3%), and L3 (0.9%). Within L4, multiple sublineages were identified, with L4.3.4 being the predominant sublineage. Phylodynamic analysis revealed L4.3.4 expanded steadily from late 1800s to early 2000s. Conversely, L1, L4.4, and L4.3.2 showed population trajectories closely aligned with the HIV epidemic. Meanwhile, L2 saw rapid expansion throughout most of the 20th century but declined sharply in early 1990s. Additionally, pairwise genome comparison of Mtbc highlighted differences in clustering proportions due to recent transmission at the sublineage level. These findings emphasize the diverse transmission dynamics of strains of different Mtbc lineages and highlight the potential for phylodynamic analysis of routine sequences to refine our understanding of lineage-specific behaviors.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| | - Ivan Barilar
- Molecular Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany
| | - Volodymyr M Minin
- Department of Statistics, University of California Irvine, Irvine, CA, USA
| | | | - Patrick K Moonan
- Division of Global HIV and Tuberculosis, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alyssa Finlay
- Division of Tuberculosis Elimination, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rosanna Boyd
- Division of Tuberculosis Elimination, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E Oeltmann
- Division of Global HIV and Tuberculosis, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tuduetso L Molefi
- National TB Program, Botswana Ministry of Health, Gaborone, Botswana
| | | | - Timothy F Brewer
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefan Niemann
- Molecular Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Sanghyuk S Shin
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Shafipour M, Mohammadzadeh A, Mahmoodi P, Dehghanpour M, Ghaemi EA. Distribution of lineages and type II toxin-antitoxin systems among rifampin-resistant Mycobacterium Tuberculosis Isolates. PLoS One 2024; 19:e0309292. [PMID: 39446830 PMCID: PMC11500941 DOI: 10.1371/journal.pone.0309292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Type II toxin-antitoxin systems such as mazEF3, vapBC3, and relJK play a role in antibiotic resistance and tolerance. Among the different known TA systems, mazEF3, vapBC3, and relJK, which are type II systems, have specific roles in drug resistance. Therefore, the aim of this study was to investigate the mutations in these genes in sensitive and resistant isolates of Mycobacterium tuberculosis. Thirty-two rifampin-resistant and 121 rifampin-sensitive M. tuberculosis isolates were collected from various regions of Iran. Lineage typing was performed using the ASO-PCR method. Mutations in the rpoB gene were analyzed in all isolates by MAS-PCR. Furthermore, mutations in the mazEF3, relJK, and vapBC3 genes of the type II toxin system were assessed through PCR sequencing. These sequences were analyzed using COBALT and SnapGene 2017, and submitted to the GenBank database. Among the 153 M. tuberculosis samples, lineages 4, 3 and 2 were the most common. Lineage 2 had the highest rate of rifampin resistance. Mutations in rpoB531 were the most frequent in resistant isolates. Examination of the toxin-antitoxin system showed that rifampin-resistant isolates belonging to lineage 3 had mutations in either the toxin or antitoxin parts of all three TA systems. A mutation in nucleotide 195 (codon 65) of mazF3 leading to an amino acid change from threonine to isoleucine was detected in all rifampin-resistant isolates. M. tuberculosis isolates belonging to lineage 2 exhibited the highest rifampin resistance in our study. Identifying the mutation in mazF3 in all rifampin-resistant isolates can highlight the significance of this mutation in the development of drug resistance in M. tuberculosis. Expanding the sample size in future studies can help develop a new method for identifying resistant isolates.
Collapse
Affiliation(s)
- Maryam Shafipour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Dehghanpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Fuchs I, Losev Y, Mor Z, Rubinstein M, Polyakov M, Wagner T, Gobay T, Bayene E, Mula G, Kaidar-Shwartz H, Dveyrin Z, Rorman E, Kaliner E, Perl SH. Multidisciplinary Effort Leading to Effective Tuberculosis Community Outbreak Containment in Israel. Microorganisms 2024; 12:1592. [PMID: 39203435 PMCID: PMC11356750 DOI: 10.3390/microorganisms12081592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB) is the second-most prevalent cause of mortality resulting from infectious diseases worldwide. It is caused by bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). In Israel, TB incidence is low, acknowledged by the WHO as being in a pre-elimination phase. Most cases occur among immigrants from high TB incidence regions like the Horn of Africa and the former Soviet Union (FSU), with occasional outbreaks. The outbreak described in this report occurred between 2018 and 2024, increasing the incidence rate of TB in the region. Control of this outbreak posed challenges due to factors including a diverse population (including Ethiopian immigrants, Israeli-born citizens, and immigrants from other countries), economic and social barriers, and hesitancy to disclose information. The unique multidisciplinary team formed to address these challenges, involving the local TB clinic, district health ministry, health maintenance organization (HMO) infectious disease consultant, neighborhood clinic, and National Mycobacterium Reference Laboratory (NMRL), achieved effective treatment and containment. Whole genome sequencing (WGS) proved pivotal in unraveling patient connections during the outbreak. It pinpointed those patients overlooked in initial field investigations, established connections between patients across different health departments, and uncovered the existence of two distinct clusters with separate transmission chains within the same neighborhood. This study underscores collaborative efforts across sectors that successfully contained a challenging outbreak.
Collapse
Affiliation(s)
- Inbal Fuchs
- Clalit Health Services, Central District, Rishon LeTsiyon 7528809, Israel; (I.F.); (E.B.); (G.M.)
| | - Yelena Losev
- National Mycobacterium Reference Center, Ministry of Health, Tel Aviv 6810416, Israel; (Y.L.); (H.K.-S.)
| | - Zohar Mor
- Department of Tuberculosis and AIDS, Ministry of Health, Jerusalem 9438317, Israel; (Z.M.); (T.W.)
| | - Mor Rubinstein
- National Public Health Laboratories, Ministry of Health, Tel Aviv 6810416, Israel; (M.R.); (Z.D.)
| | - Marina Polyakov
- Central District Department of Health, Ministry of Health, Ramla 7243003, Israel; (M.P.); (T.G.); (E.K.)
| | - Tali Wagner
- Department of Tuberculosis and AIDS, Ministry of Health, Jerusalem 9438317, Israel; (Z.M.); (T.W.)
| | - Tamar Gobay
- Central District Department of Health, Ministry of Health, Ramla 7243003, Israel; (M.P.); (T.G.); (E.K.)
| | - Ester Bayene
- Clalit Health Services, Central District, Rishon LeTsiyon 7528809, Israel; (I.F.); (E.B.); (G.M.)
| | - Gila Mula
- Clalit Health Services, Central District, Rishon LeTsiyon 7528809, Israel; (I.F.); (E.B.); (G.M.)
| | - Hasia Kaidar-Shwartz
- National Mycobacterium Reference Center, Ministry of Health, Tel Aviv 6810416, Israel; (Y.L.); (H.K.-S.)
| | - Zeev Dveyrin
- National Public Health Laboratories, Ministry of Health, Tel Aviv 6810416, Israel; (M.R.); (Z.D.)
| | - Efrat Rorman
- Ministry of Health Laboratories Department, Ministry of Health, Jerusalem 9134302, Israel;
| | - Ehud Kaliner
- Central District Department of Health, Ministry of Health, Ramla 7243003, Israel; (M.P.); (T.G.); (E.K.)
| | - Sivan Haia Perl
- Department of Tuberculosis and AIDS, Ministry of Health, Jerusalem 9438317, Israel; (Z.M.); (T.W.)
| |
Collapse
|
5
|
Borji S, Kooti S, Ramazanzadeh R, Kadivarian S, Atashi S, Mohajeri P. Antimicrobial resistance profile and prevalence of Mycobacterium tuberculosis complex in Western Iran using spoligotyping method. J Clin Tuberc Other Mycobact Dis 2024; 36:100467. [PMID: 39184015 PMCID: PMC11342116 DOI: 10.1016/j.jctube.2024.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease with multiple manifestations and gradual progression that remains a major health problem and a leading cause of death worldwide. In recent years, a number of DNA fingerprinting techniques have been developed to identify strains of the Mycobacterium tuberculosis (MTB) complex. Spoligotyping is one of the first PCR-based genotyping methods. Information on the number and identification of common strains among MTB complex samples in clinical samples from Kermanshah city is needed to develop more effective therapeutic strategies. This is a descriptive cross-sectional study of 41 sample patients with TB referred to Kermanshah Tuberculosis Centre between December 2021 and June 2022, including sputum, aspiration, urine, etc. First, the susceptibility of the developed bacteria to culture media was compared with that of isoniazid using the proportional method, and rifampin was determined according to the standard protocol. Demographic data of patients referred to the Centre for the Control of Lung Diseases were also recorded. In the next step, spoligotyping was carried out using the standard method and each strain pattern was recorded as an OCTAL code and compared with the information available at the World Bank on spoligotyping and its strains. Forty-one patients with pulmonary TB were tested using spoligotyping. Four MTB strains were identified, including H4, CAS, T1 and H1. The H4 strain also had the highest frequency with 16 samples (39%) among the MTB complex strains isolated using spoligotyping. The highest frequency of strains isolated using spoligotyping was associated with the H4 strain. It can be concluded that spoligotyping is very cost effective, simple, repeatable and highly sensitive.
Collapse
Affiliation(s)
- Soroush Borji
- Student Research Committee, Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Kooti
- Environment Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rashid Ramazanzadeh
- Department of Microbiology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepide Kadivarian
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Atashi
- West Tuberculosis Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Mohajeri
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Gröschel MI, Pérez-Llanos FJ, Diel R, Vargas R, Escuyer V, Musser K, Trieu L, Meissner JS, Knorr J, Klinkenberg D, Kouw P, Homolka S, Samek W, Mathema B, van Soolingen D, Niemann S, Ahuja SD, Farhat MR. Differential rates of Mycobacterium tuberculosis transmission associate with host-pathogen sympatry. Nat Microbiol 2024:10.1038/s41564-024-01758-y. [PMID: 39090390 DOI: 10.1038/s41564-024-01758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Several human-adapted Mycobacterium tuberculosis complex (Mtbc) lineages exhibit a restricted geographical distribution globally. These lineages are hypothesized to transmit more effectively among sympatric hosts, that is, those that share the same geographical area, though this is yet to be confirmed while controlling for exposure, social networks and disease risk after exposure. Using pathogen genomic and contact tracing data from 2,279 tuberculosis cases linked to 12,749 contacts from three low-incidence cities, we show that geographically restricted Mtbc lineages were less transmissible than lineages that have a widespread global distribution. Allopatric host-pathogen exposure, in which the restricted pathogen and host are from non-overlapping areas, had a 38% decrease in the odds of infection among contacts compared with sympatric exposures. We measure tenfold lower uptake of geographically restricted lineage 6 strains compared with widespread lineage 4 strains in allopatric macrophage infections. We conclude that Mtbc strain-human long-term coexistence has resulted in differential transmissibility of Mtbc lineages and that this differs by human population.
Collapse
Affiliation(s)
- Matthias I Gröschel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Francy J Pérez-Llanos
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- West German Genome Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, The University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Roland Diel
- Institute for Epidemiology, University Medical Hospital Schleswig-Holstein, Kiel, Germany
- Lungenclinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Escuyer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kimberlee Musser
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Lisa Trieu
- New York City Department of Health and Mental Hygiene, New York, NY, USA
| | | | - Jillian Knorr
- New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Don Klinkenberg
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter Kouw
- Department of Tuberculosis, Public Health Service, Amsterdam, The Netherlands
| | - Susanne Homolka
- Diagnostic Mycobacteriology, National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Wojciech Samek
- Department of Electrical Engineering and Computer Science, Technical University Berlin, Berlin, Germany
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Barun Mathema
- Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Dick van Soolingen
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Shama Desai Ahuja
- New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Getahun M, Beyene D, Mollalign H, Diriba G, Tesfaye E, Yenew B, Taddess M, Sinshaw W, Ameni G. Population structure and spatial distribution of Mycobacterium tuberculosis in Ethiopia. Sci Rep 2024; 14:10455. [PMID: 38714745 PMCID: PMC11076284 DOI: 10.1038/s41598-024-59435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
Ethiopia is one of the countries with a high tuberculosis (TB) burden, yet little is known about the spatial distribution of Mycobacterium tuberculosis (Mtb) lineages. This study identifies the spoligotyping of 1735 archived Mtb isolates from the National Drug Resistance Survey, collected between November 2011 and June 2013, to investigate Mtb population structure and spatial distribution. Spoligotype International Types (SITs) and lineages were retrieved from online databases. The distribution of lineages was evaluated using Fisher's exact test and logistic regression models. The Global Moran's Index and Getis-Ord Gi statistic were utilized to identify hotspot areas. Our results showed that spoligotypes could be interpreted and led to 4 lineages and 283 spoligotype patterns in 91% of the isolates, including 4% of those with multidrug/rifampicin resistance (MDR/RR) TB. The identified Mtb lineages were lineage 1 (1.8%), lineage 3 (25.9%), lineage 4 (70.6%) and lineage 7 (1.6%). The proportion of lineages 3 and 4 varied by regions, with lineage 3 being significantly greater than lineage 4 in reports from Gambella (AOR = 4.37, P < 0.001) and Tigray (AOR = 3.44, P = 0.001) and lineage 4 being significantly higher in Southern Nations Nationalities and Peoples Region (AOR = 1.97, P = 0.026) than lineage 3. Hotspots for lineage 1 were located in eastern Ethiopia, while a lineage 7 hotspot was identified in northern and western Ethiopia. The five prevalent spoligotypes, which were SIT149, SIT53, SIT25, SIT37 and SIT26 account for 42.8% of all isolates under investigation, while SIT149, SIT53 and SIT21 account for 52-57.8% of drug-resistant TB cases. TB and drug resistant TB are mainly caused by lineages 3 and 4, and significant proportions of the prevalent spoligotypes also influence drug-resistant TB and the total TB burden. Regional variations in lineages may result from both local and cross-border spread.
Collapse
Affiliation(s)
- Muluwork Getahun
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia.
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hilina Mollalign
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Getu Diriba
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Ephrem Tesfaye
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Bazezew Yenew
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Mengistu Taddess
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Waganeh Sinshaw
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Li Y, Li Y, Wang T, Li Y, Tao N, Kong X, Zhang Y, Han Q, Liu Y, Li H. Multidrug-resistant Mycobacterium tuberculosis transmission in Shandong, China. Medicine (Baltimore) 2024; 103:e37617. [PMID: 38518003 PMCID: PMC10956945 DOI: 10.1097/md.0000000000037617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has imposed a significant economic and health burden worldwide, notably in China. Using whole genome sequence, we sought to understand the mutation and transmission of MDR-TB in Shandong. A retrospective study of patients diagnosed with pulmonary tuberculosis in Shandong from 2009 to 2018 was conducted. To explore transmission patterns, we performed whole genome sequencing on MDR-TB isolates, identified genomic clusters, and assessed the drug resistance of TB isolates. Our study analyzed 167 isolates of MDR-TB, finding that 100 were clustered. The predominant lineage among MDR-TB isolates was lineage 2, specifically with a notable 88.6% belonging to lineage 2.2.1. Lineage 4 constituted a smaller proportion, accounting for 4.2% of the isolates. We discovered that Shandong has a significant clustering percentage for MDR-TB, with Jining having the highest percentage among all Shandong cities. The clustering percentages of MDR-TB, pre-extensively drug-resistant tuberculosis, and extensively drug-resistant tuberculosis were 59.9%, 66.0%, and 71.4%, respectively, and the clustering percentages increased with the expansion of the anti-TB spectrum. Isolates from genomic clusters 1 and 3 belonged to lineage 2.2.1 and showed signs of cross-regional transmission. The distribution of rrs A1401G and katG S315T mutations in lineage 2.2.1 and 2.2.2 strains differed significantly (P < .05). MDR-TB isolates with rpoB I480V, embA-12C > T, and rrs A1401G mutations showed a higher likelihood of clustering (P < .05). Our findings indicate a significant problem of local transmission of MDR-TB in Shandong, China. Beijing lineage isolates and some drug-resistant mutations account for the MDR-TB transmission in Shandong.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tingting Wang
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yameng Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglong Kong
- Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yuzhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qilin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huaichen Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Senelle G, Sahal MR, La K, Billard-Pomares T, Marin J, Mougari F, Bridier-Nahmias A, Carbonnelle E, Cambau E, Refrégier G, Guyeux C, Sola C. Towards the reconstruction of a global TB history using a new pipeline "TB-Annotator". Tuberculosis (Edinb) 2023; 143S:102376. [PMID: 38012933 DOI: 10.1016/j.tube.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 11/29/2023]
Abstract
Mycobacterium tuberculosis complex (MTBC) has a population structure consisting of 9 human and animal lineages. The genomic diversity within these lineages is a pathogenesis factor that affects virulence, transmissibility, host response, and antibiotic resistance. Hence it is important to develop improved information systems for tracking and understanding the spreading and evolution of genomes. We present results obtained thanks to a new informatics platform for computational biology of MTBC, that uses a convenience sample from public/private SRAs, designated as TB-Annotator. Version 1 was a first interactive graphic-based web tool based on 15,901 representative genomes. Version 2, still interactive, is a more sophisticated database, developed using the Snakemake Workflow Management System (WMS) that allows an unsupervised global and scalable analysis of the content of the USA National Center for Biotechnology Information Short Read Archives database. This platform analyzes nucleotide variants, the presence/absence of genes, known regions of difference and detect new deletions, the insertion sites of mobile genetic elements, and allows phylogenetic trees to be built, imported in a graphical interface and interactively analyzed between the data and the tree. The objective of TB-Annotator is triple: detect recent epidemiological links, reconstruct distant phylogeographical histories as well as perform more complex phenotypic/genotypic Genome-Wide Association Studies (GWAS). In this paper, we compare the various taxonomic SNPs-based labels and hierarchies previously described in recent reference papers for L1, and present a comparative analysis that allows identification of alias and thus provides the basis of a future unifying naming scheme for L1 sublineages. We present a global phylogenetic tree built with RAxML-NG, and one on L2; at the time of writing, we characterized about 200 sublineages, with many new ones; a detail tree for Modern L2 and a hierarchical scheme allowing to facilitate L2 lineage assignment are also presented.
Collapse
Affiliation(s)
- Gaetan Senelle
- FEMTO-ST Institute, UMR 6174, CNRS-Université Bourgogne Franche-Comté (UBFC), France
| | - Muhammed Rabiu Sahal
- Université Paris-Saclay, 91190, Gif-sur-Yvette, France; Université Paris-Cité, IAME, UMR 1137, INSERM, Paris, France
| | - Kevin La
- Université Paris-Cité, IAME, UMR 1137, INSERM, Paris, France; AP-HP, GHU Nord site Bichat, Service de mycobactériologie spécialisée et de référence, Paris, France
| | - Typhaine Billard-Pomares
- Service de microbiologie clinique, Hôpital Avicenne, 93017, Bobigny, France; Université Paris 13, IAME, Inserm, 93017, Bobigny, France
| | - Julie Marin
- Service de microbiologie clinique, Hôpital Avicenne, 93017, Bobigny, France; Université Paris 13, IAME, Inserm, 93017, Bobigny, France
| | - Faiza Mougari
- Université Paris-Cité, IAME, UMR 1137, INSERM, Paris, France; AP-HP, GHU Nord site Bichat, Service de mycobactériologie spécialisée et de référence, Paris, France
| | | | - Etienne Carbonnelle
- Université Paris-Cité, IAME, UMR 1137, INSERM, Paris, France; Service de microbiologie clinique, Hôpital Avicenne, 93017, Bobigny, France; Université Paris 13, IAME, Inserm, 93017, Bobigny, France
| | - Emmanuelle Cambau
- Université Paris-Cité, IAME, UMR 1137, INSERM, Paris, France; AP-HP, GHU Nord site Bichat, Service de mycobactériologie spécialisée et de référence, Paris, France
| | - Guislaine Refrégier
- Université Paris-Saclay, 91190, Gif-sur-Yvette, France; Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, UMR ESE, 91405, Orsay, France
| | - Christophe Guyeux
- FEMTO-ST Institute, UMR 6174, CNRS-Université Bourgogne Franche-Comté (UBFC), France
| | - Christophe Sola
- Université Paris-Saclay, 91190, Gif-sur-Yvette, France; Université Paris-Cité, IAME, UMR 1137, INSERM, Paris, France.
| |
Collapse
|
10
|
Losev Y, Rubinstein M, Nissan I, Haviv P, Barsky Y, Volinsky M, Bar-Giora G, Zouher T, Hamawi M, Valenci GZ, Kutikov I, Shwartz HK, Dveyrin Z, Chemtob D, Rorman E. Genomic, phenotypic and demographic characterization of Mycobacterium tuberculosis in Israel in 2021. Front Cell Infect Microbiol 2023; 13:1196904. [PMID: 37928179 PMCID: PMC10622789 DOI: 10.3389/fcimb.2023.1196904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
According to World Health Organization WHO, Tuberculosis (TB) is the second cause of death from infectious disease worldwide. During 2021, 10.6 million people were infected with TB, and 1.6 million people died. TB is caused by pathogens belonging to the Mycobacterium tuberculosis complex (MTBC), mainly by Mycobacterium tuberculosis (M.tb). Members of this complex are acid-fast bacilli, which can cause intrapulmonary and extra pulmonary TB, and can be divided into various lineages, based on genomic markers. The main public health threat comes from drug resistant M.tb strains, which are responsible for about 25% of TB death and treatment failure worldwide. Treating drug resistant TB patients significantly raises the costs of TB treatment. This study provides an overview of the demographic and drug susceptibility characteristics of newly diagnosed TB patients in Israel in 2021. The State of Israel has a very low level of TB endemicity and is at a pre-elimination phase. Notably, only 11.7% of the newly diagnosed TB patients were born in Israel. In this report, of the 154 new laboratory-confirmed TB patients, 66.7% had pulmonary TB, while 16% had extrapulmonary TB. Males accounted for 52% of the patients, with the most prevalent age group being 21-40. Most patients were citizens of Israel (53.9%), while 37.7% had no Israeli citizenship. Among non-citizens, there was a predominance of males and patients aged 21-40. The susceptibility profile showed a high resistance rate to streptomycin (18.2%) and to a lower extent to isoniazid (13.6%), pyrazinamide (8.4%), rifampicin (7.8%), and ethambutol (3.2%). Only 2 cases of XDR-TB and 10 MDR-TB strains were detected in Israel in 2021, with both XDR strains and 5 out of 10 MDR strains belonging to the Beijing lineage. Most of Beijing isolates were resistant to at least one tested drug. Genomic sequencing of 134 out of 156 strains and bioinformatics analysis using the MTBseq program and WHO mutation catalogue shows a good match with only 9 discrepancies between phenotypic and genotypic susceptibility profiles in first line drugs. The most common lineage is Delhi-Cas (23%) followed by the Beijing lineage (17%). Most patients from the Delhi-Cas lineage were born in Africa, while patients with Beijing isolates were born in different countries. Minimum spanning tree analysis identified 15 clusters. The study highlights the need for ongoing surveillance of TB using molecular and phenotypic tools to further decreasing the spreading level of the disease and develop effective treatment strategies.
Collapse
Affiliation(s)
- Yelena Losev
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Mor Rubinstein
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Israel Nissan
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Paz Haviv
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Yohi Barsky
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Martha Volinsky
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Gefen Bar-Giora
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Tamara Zouher
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Mazal Hamawi
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Gal Zizelski Valenci
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Ina Kutikov
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Hasia Kaidar Shwartz
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Daniel Chemtob
- Department of Tuberculosis (TB) and AIDS and National TB Program Manager, Ministry of Health, Jerusalem, Israel
- Hebrew University-Hadassah Faculty of Medicine, School of Public Health and Community Medicine, Jerusalem, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| |
Collapse
|
11
|
Jawed A, Tharwani ZH, Siddiqui A, Masood W, Qamar K, Islam Z, Jawed A, Shah M, Adnan A, Essar MY, Rackimuthu S, Head MG. Better understanding extrapulmonary tuberculosis: A scoping review of public health impact in Pakistan, Afghanistan, India, and Bangladesh. Health Sci Rep 2023; 6:e1357. [PMID: 37359409 PMCID: PMC10287908 DOI: 10.1002/hsr2.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Background and Aims South Asian countries, including Pakistan, Afghanistan, India, and Bangladesh, have a high prevalence of pulmonary and extra-pulmonary tuberculosis (EPTB). This prevalence is influenced by various risk factors such as ethnicity, nutrition, socioeconomic disparities, high out-of-pocket healthcare expenses, and specific Mycobacterium Tuberculosis (TB) lineages. The COVID-19 pandemic has likely hindered access to healthcare and led to under-reporting of EPTB cases nationally and internationally. This rapid review aimed to summarize the literature on the prevalence and disease outcomes of EPTB in the mentioned countries, compare the situations across countries, and provide recommendations for future action. Methods The review utilized PubMed and Google Scholar databases to search for literature on EPTB in South Asian countries. The search string included keywords related to different forms of EPTB and the countries of interest while excluding pulmonary tuberculosis. Results The results showed that both TB, including drug-resistant TB, and EPTB are prevalent and burdensome in South Asia. In Pakistan, pleural TB was the most commonly reported form of EPTB, followed by lymph node TB, abdominal TB, osteoarticular TB, Central Nervous System TB, and miliary TB. In India, lymph node TB(LNTB) was more common among EPTB cases. Bangladesh reported a high prevalence of EPTB involving lymph node, pleura, and abdomen, while Afghanistan had a higher prevalence of forms such as LNTB and tuberculous meningitis. Conclusion In conclusion, the prevalence of EPTB in Pakistan, Afghanistan, India, and Bangladesh is alarmingly high and negatively impacts population health. Effective measures are needed for treatment and management of this condition, along with addressing current and future challenges. Strengthening the evidence base through surveillance and research is crucial to understand the patterns and significant factors related to EPTB, requiring investment in these areas.
Collapse
Affiliation(s)
- Areesha Jawed
- Department of MedicineDow Medical CollegeKarachiPakistan
| | | | | | - Waniyah Masood
- Department of MedicineDow Medical CollegeKarachiPakistan
| | - Khulud Qamar
- Department of MedicineDow Medical CollegeKarachiPakistan
| | - Zarmina Islam
- Department of MedicineDow Medical CollegeKarachiPakistan
| | - Aleeza Jawed
- The Ziauddin Medical UniversityKarachiSindhPakistan
| | - Muzhgan Shah
- Bolan University of Medical and Health SciencesQuettaPakistan
| | | | | | | | - Michael G. Head
- Clinical Informatics Research Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
12
|
Faye LM, Hosu MC, Vasaikar S, Dippenaar A, Oostvogels S, Warren RM, Apalata T. Spatial Distribution of Drug-Resistant Mycobacterium tuberculosis Infections in Rural Eastern Cape Province of South Africa. Pathogens 2023; 12:pathogens12030475. [PMID: 36986397 PMCID: PMC10059723 DOI: 10.3390/pathogens12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Tuberculosis (TB), an infectious airborne disease caused by Mycobacterium tuberculosis (Mtb), is a serious public health threat reported as the leading cause of morbidity and mortality worldwide. South Africa is a high-TB-burden country with TB being the highest infectious disease killer. This study investigated the distribution of Mtb mutations and spoligotypes in rural Eastern Cape Province. The Mtb isolates included were 1157 from DR-TB patients and analysed by LPA followed by spoligotyping of 441 isolates. The distribution of mutations and spoligotypes was done by spatial analysis. The rpoB gene had the highest number of mutations. The distribution of rpoB and katG mutations was more prevalent in four healthcare facilities, inhA mutations were more prevalent in three healthcare facilities, and heteroresistant isolates were more prevalent in five healthcare facilities. The Mtb was genetically diverse with Beijing more prevalent and largely distributed. Spatial analysis and mapping of gene mutations and spoligotypes revealed a better picture of distribution.
Collapse
Affiliation(s)
- Lindiwe M Faye
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| | - Mojisola C Hosu
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| | - Sandeep Vasaikar
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, BE-2000 Antwerp, Belgium
| | - Selien Oostvogels
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, BE-2000 Antwerp, Belgium
| | - Rob M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Teke Apalata
- Department of Laboratory Medicine and Pathology, Walter Sisulu University and National Health Laboratory Services (NHLS), Private Bag X5117, Mthatha 5099, South Africa
| |
Collapse
|
13
|
Conceição EC, da Conceição ML, Marcon DJ, Loubser J, Andrade GL, da Silva SP, Cruz ACR, Sharma A, Suffys P, Lima KVB. Genomic Diversity of the Rarely Observed Genotype of the Mycobacterium tuberculosis Central Asian (CAS) Lineage 3 from North Brazil. Microorganisms 2023; 11:microorganisms11010132. [PMID: 36677424 PMCID: PMC9862801 DOI: 10.3390/microorganisms11010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) Central Asian Strain (CAS) Lineage 3 (L3) genotype is predominantly found in East-Africa, Central-Asia, Western-Asia, and South-Asia; however, a new spoligotyping CAS/SIT2545 was found in northern regions of Brazil. We aimed to characterize and describe the genetic diversity and perform a phylogenetic assessment of this novel genotype. We performed 24-MIRU-VNTR loci and Whole-genome sequencing (WGS) of six Brazilian isolates previously spoligotyped. The libraries were prepared using a Nextera-XT kit and sequenced in a NextSeq 550 Illumina instrument. We performed lineage assignment and genomic characterization. From publicly available genomes of Mtb L3 and other lineages, we created a robust dataset to run the MTBSeq pipeline and perform a phylogenetic analysis. MIRU-VNTR and WGS confirmed CAS/SIT2545 belongs to L3. Out of 1691 genomes, 1350 (79.83%) passed in quality control (genomic coverage > 95%). Strain 431 differed in 52 single nucleotide variants (SNV), confirming it does not belong to the same transmission chain. The eight genomes from a global dataset clustered closer to Brazilian strains differed in >52 SNVs. We hypothesized L3 and L1 were introduced in Brazilian Northern in the same historical event; however, there is a need for additional studies exploring the genetic diversity of Mtb Brazilian Northern.
Collapse
Affiliation(s)
- Emilyn Costa Conceição
- Department of Science and Innovation—National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town P.O. Box 241, South Africa
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
- Correspondence:
| | | | - Davi Josué Marcon
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Johannes Loubser
- Department of Science and Innovation—National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town P.O. Box 241, South Africa
| | - Gabrielly Leite Andrade
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
- Departamento de Medicina, Centro Universitário do Pará—CESUPA, Belém 66613-903, PA, Brazil
| | - Sandro Patroca da Silva
- Seção de Arbovírus e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
| | - Ana Cecília Ribeiro Cruz
- Seção de Arbovírus e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
- Programa de Pós-graduação Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém 66087-670, PA, Brazil
| | - Abhinav Sharma
- Faculty of Engineering and Technology, Liverpool John Moores University (LJMU), Liverpool L35UX, UK
- Seqera Labs, 08005 Bacelona, Spain
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactéria, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Karla Valéria Batista Lima
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
- Programa de Pós-graduação Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém 66087-670, PA, Brazil
| |
Collapse
|
14
|
Gaballah A, Ghazal A, Almiry R, Hussein S, Emad R, El-Sherbini E. Fingerprinting of Mycobacterium tuberculosis isolates by MIRU-VNTR genotyping and detection of isoniazid resistance by real-time PCR. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Tuberculosis (TB) is a great public health problem in developing countries such as Egypt. Genotyping of
Mycobacterium tuberculosis
isolates has a prominent role in the field of TB prevention.
Aim. This study aimed to evaluate real-time PCR using Minor Groove Binder (MGB) probes and to identify circulating lineages/sub-lineages of
M. tuberculosis
and their transmission patterns.
Hypothesis. We hypothesize that MIRU-VNTR technique is efficient in identifying circulating
M. tuberculosis
lineages in Egypt.
Methodology. Fifty sputum specimens positive for acid-fast bacilli were included. Isoniazid (INH) resistance was detected using the 1 % proportion method. Real-time PCR using MGB-probes was used for simultaneous detection of TB infection and INH resistance. Partial sequencing of the katG gene was used to confirm INH resistance results. A standard 15 Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (15-MIRU-VNTR) approach was used for genotyping through the MIRU-VNTRplus online platform.
Results. Only seven specimens showed phenotypic resistance to INH.
M. tuberculosis
was detected in all samples, while a mutation in the katG gene codon 315 was detected only in five samples, which were also phenotypically INH-resistant. Sequencing of the katG gene showed codon 315 mutation genotypically and phenotypically in the five INH-resistant isolates. Molecular genotyping of
M. tuberculosis
isolates revealed that the majority of isolates (26/50, 52 %) belonged to the S family of lineage_4. A low clustering rate (2 %) was observed among our isolates. According to the Hunter-Gaston Discriminatory Index (HGDI), 11 MIRU-VNTR loci were highly or moderately discriminative, while four loci were less polymorphic.
Conclusion. MIRU-VNTR genotyping revealed a low clustering rate with a low recent transmission rate of
M. tuberculosis
strains in Alexandria, Egypt.
Collapse
Affiliation(s)
- Ahmed Gaballah
- Department of Microbiology, Medical Research Institute, Alexandria University, Egypt
| | - Abeer Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Egypt
| | - Reda Almiry
- Department of Clinical Pathology, Alexandria Armed Forces Hospital, Alexandria, Egypt
| | - Somaya Hussein
- Elmamoura Chest Hospital, Egyptian Ministry of Health, Alexandria, Egypt
| | - Rasha Emad
- Alexandria Main University Hospital, Alexandria University, Alexandria, Egypt
| | - Eglal El-Sherbini
- Department of Microbiology, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
15
|
Al-Mutairi NM, Ahmad S, Mokaddas E, Al-Hajoj S. First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Kuwait and evaluation of REBA MTB-MDR assay for rapid detection of MDR-TB. PLoS One 2022; 17:e0276487. [PMID: 36264939 PMCID: PMC9584360 DOI: 10.1371/journal.pone.0276487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Early detection of Mycobacterium tuberculosis (Mtb) in clinical specimens, its susceptibility to anti-TB drugs and disruption of infection transmission to new hosts are essential components for global tuberculosis (TB) control efforts. This study investigated major Mtb genotypes circulating in Kuwait and evaluated the performance of REBA MTB-MDR (REBA) test in comparison to GenoType MTBDRplus (gMTBDR+) assay for rapid detection of resistance of Mtb to isoniazid and rifampicin (MDR-TB). M. tuberculosis isolates (n = 256) originating predominantly from expatriate patients during a 6-month period were tested by spoligotyping and a dendrogram was created by UPGMA using MIRU-VNTRplus software. Phenotypic drug susceptibility testing (DST) was performed by MGIT 960 system. Genotypic DST for isoniazid and rifampicin was done by REBA and gMTBDR+ assays. Spoligotyping assigned 188 (73.4%) isolates to specific spoligotype international type (SIT) while 68 isolates exhibited orphan patterns. All major M. tuberculosis lineages were detected and EAI, CAS and Beijing families were predominant. Phylogenetic tree showed 131 patterns with 105 isolates exhibiting a unique pattern while 151 isolates clustered in 26 patterns. Fifteen isolates were resistant to one/more drugs. REBA and gMTBDR+ detected isoniazid resistance in 11/12 and 10/12 and rifampicin resistance in 4/5 and 4/5 resistant isolates, respectively. The diversity of SIT patterns are highly suggestive of infection of most expatriate patients with unique Mtb strains, likely acquired in their native countries before their arrival in Kuwait. Both, REBA and gMTBDR+ assays performed similarly for detection of resistance of Mtb to isoniazid and rifampicin for rapid detection of MDR-TB.
Collapse
Affiliation(s)
- Noura M. Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- * E-mail: ,
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Special Hospital and Research Center (KFSH & RC), Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Worku G, Gumi B, Mohammedbirhan B, Girma M, Sileshi H, Hailu M, Wondimu A, Ashagre W, Tschopp R, Carruth L, Ameni G. Molecular epidemiology of tuberculosis in the Somali region, eastern Ethiopia. Front Med (Lausanne) 2022; 9:960590. [PMID: 36313999 PMCID: PMC9614095 DOI: 10.3389/fmed.2022.960590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Tuberculosis (TB) is one of the leading causes of morbidity and mortality in low-income countries like Ethiopia. However, because of the limited laboratory infrastructure there is a shortage of comprehensive data on the genotypes of clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) complex (MTBC) in peripheral regions of Ethiopia. The objective of this study was to characterize MTBC isolates in the Somali region of eastern Ethiopia. Methods A cross-sectional study was conducted in three health institutions between October 2018 and December 2019 in the capital of Somali region. A total of 323 MTBC isolates (249 from pulmonary TB and 74 from extrapulmonary TB) were analyzed using regions of difference 9 (RD 9)-based polymerase chain reaction (PCR) and spoligotyping. Results Of the 323 MTBC isolates, 99.7% (95% CI: 99.1–100%) were M. tuberculosis while the remaining one isolate was M. bovis based on RD 9-based PCR. Spoligotyping identified 71 spoligotype patterns; 61 shared types and 10 orphans. A majority of the isolates were grouped in shared types while the remaining grouped in orphans. The M. tuberculosis lineages identified in this study were lineage 1, 2, 3, 4, and 7 with the percentages of 7.4, 2.2, 28.2, 60.4, and 0.6%, respectively. Most (87.9%) of the isolates were classified in clustered spoligotypes while the remaining 12.1% isolates were singletons. The predominant clustered spoligotypes identified were SIT 149, SIT 21, SIT 26, SIT 53, and SIT 52, each consisting of 17.6, 13.3, 8.4, 7.4, and 5%, respectively. Lineage 3 and lineage 4, as well as the age group (15–24), were associated significantly with clustering. Conclusion The MTBC isolated from TB patients in Somali region were highly diverse, with considerable spoligotype clustering which suggests active TB transmission. In addition, the Beijing spoligotype was isolated in relatively higher frequency than the frequencies of its isolation from the other regions of Ethiopia warranting the attention of the TB Control Program of the Somali region.
Collapse
Affiliation(s)
- Getnet Worku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia,Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Binyam Mohammedbirhan
- Department of Pathology, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | - Musse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henok Sileshi
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | - Michael Hailu
- National Tuberculosis Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amanuel Wondimu
- National Tuberculosis Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Wondimu Ashagre
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rea Tschopp
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Lauren Carruth
- School of International Studies, American University, Washington, DC, United States
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Gobena Ameni
| |
Collapse
|
17
|
Al Mahrouqi S, Gadalla A, Al Azri S, Al-Hamidhi S, Al-Jardani A, Balkhair A, Al-fahdi A, Al Balushi L, Al Zadjali S, Al Marhoubi AMN, Babiker HA. Drug resistant Mycobacterium tuberculosis in Oman: resistance-conferring mutations and lineage diversity. PeerJ 2022; 10:e13645. [PMID: 35919400 PMCID: PMC9339217 DOI: 10.7717/peerj.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background The Sultanate of Oman is country a low TB-incidence, with less than seven cases per 105 population detected in 2020. Recent years have witnessed a persistence in TB cases, with sustained incidence rate among expatriates and limited reduction among Omanis. This pattern suggests transmission from the migrant population. The present study examined the genetic profile and drug resistance-conferring mutations in Mycobacterium tuberculosis collected from Omanis and expatriates to recognise possible causes of disease transmission. Methods We examined M. tuberculosis cultured positive samples, collected from Omanis (n = 1,344) and expatriates (n = 1,203) between 2009 and 2018. These isolates had a known in vitro susceptibility profile to first line anti-TB, Streptomycin (SM), Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) and Pyrazinamide (PZA). The diversity of the isolates was assessed by spacer oligo-typing (spoligotyping). Drug resistance-conferring mutations resulted from full-length sequence of nine genes (katG, inhA, ahpc, rpoB, rpsL, rrs, embB, embC, pncA) and their phenotypic relationship were analysed. Results In total, 341/2192 (13.4%), M. tuberculosis strains showed resistance to any drug, comprising mono-resistance (MR) (242, 71%), poly-resistance (PR) (40, 11.7%) and multi-drug resistance (MDR) (59, 17.3%). The overall rate of resistance among Omanis and expatriates was similar; however, MDR and PZAR were significantly higher among Omanis, while INHR was greater among expatriates. Mutations rpsL K43R and rpoB S450L were linked to Streptomycin (SMR) and Rifampicin resistance (RIFR) respectively. Whereas, katG S315T and inhA -C15T/G-17T were associated with Isoniazid resistance (INHR). The resistance patterns (mono-resistant, poly-resistant and MDR) and drug resistance-conferring mutations were found in different spoligo-lineages. rpsL K43R, katG S315T and rpoB S450L mutations were significantly higher in Beijing strains. Conclusions Diverse drug resistant M. tuberculosis strains exist in Oman, with drug resistance-conferring mutations widespread in multiple spoligo-lineages, indicative of a large resistance reservoir. Beijing's M. tuberculosis lineage was associated with MDR, and multiple drug resistance-conferring mutations, favouring the hypothesis of migration as a possible source of resistant lineages in Oman.
Collapse
Affiliation(s)
- Sara Al Mahrouqi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | - Amal Gadalla
- Division of Population Medicine, School of Medicine, College of Biomedical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Saleh Al Azri
- Central Public Health Laboratories, MOH, Muscat, Oman
| | - Salama Al-Hamidhi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | | | - Abdullah Balkhair
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | - Amira Al-fahdi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | | | | | | | - Hamza A. Babiker
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, Savari M. Genetic diversity of drug-resistant Mycobacterium tuberculosis clinical isolates from Khuzestan province, Iran. AMB Express 2022; 12:85. [PMID: 35789443 PMCID: PMC9253214 DOI: 10.1186/s13568-022-01425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
The emergence of drug-resistant strains of the Mycobacterium tuberculosis (MTB) has challenged tuberculosis control programs. So far, few studies using the 24-locus mycobacterial interspersed repetitive unit variable number tandem repeats (MIRU-VNTR) have investigated the genetic diversity of MTB in Iran. This study aimed to determine the genetic diversity of MTB isolates resistant to first-line anti-tuberculosis drugs using 24-locus MIRU-VNTR in southwestern Iran. Out of 6620 MTB clinical isolates, 29 resistant isolates to one or more isoniazid, rifampin, and ethambutol were detected using drug susceptibility testing by the proportional method. The manual 24-locus MIRU-VNTR was used to determine the MTB resistant isolates’ phylogenetic relationship. MIRU-VNTRplus web application tools were applied to analyze the associated data. Using 24-locus MIRU-VNTR, 13.8% of isolates (n = 4) were distributed in two clusters, and the remaining 86.2% (n = 25) showed a unique pattern. Four clonal complexes were observed in the minimum spanning tree based on the double-locus variant. Most isolates belonged to Delhi/CAS (34.5%, 10/29) and NEW-1 (24.1%, 7/29) sub-lineages, followed by EAI and LAM with a frequency of 6.9% (2/29) and 3.5% (1/29), respectively. Eight isolates (27.6%) did not match any genotype in the database. The 24-locus MIRU-VNTR showed a high discriminatory power; however, the 15-locus and 12-locus set analyses were more discriminative. Our study revealed a high degree of genetic diversity among drug-resistant MTB isolates, which could be interpreted as the low rate of person-to-person transmission in this region. The 15-locus MIRU-VNTR would be recommended for preliminary genotyping of drug-resistant MTB.
Collapse
Affiliation(s)
- Pejman Bakhtiyariniya
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Iranian Study Group on Microbial Drug Resistance, Tehran, Iran.
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Gisch N, Utpatel C, Gronbach LM, Kohl TA, Schombel U, Malm S, Dobos KM, Hesser DC, Diel R, Götsch U, Gerdes S, Shuaib YA, Ntinginya NE, Khosa C, Viegas S, Kerubo G, Ali S, Al-Hajoj SA, Ndung'u PW, Rachow A, Hoelscher M, Maurer FP, Schwudke D, Niemann S, Reiling N, Homolka S. Sub-Lineage Specific Phenolic Glycolipid Patterns in the Mycobacterium tuberculosis Complex Lineage 1. Front Microbiol 2022; 13:832054. [PMID: 35350619 PMCID: PMC8957993 DOI: 10.3389/fmicb.2022.832054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
“Ancestral” Mycobacterium tuberculosis complex (MTBC) strains of Lineage 1 (L1, East African Indian) are a prominent tuberculosis (TB) cause in countries around the Indian Ocean. However, the pathobiology of L1 strains is insufficiently characterized. Here, we used whole genome sequencing (WGS) of 312 L1 strains from 43 countries to perform a characterization of the global L1 population structure and correlate this to the analysis of the synthesis of phenolic glycolipids (PGL) – known MTBC polyketide-derived virulence factors. Our results reveal the presence of eight major L1 sub-lineages, whose members have specific mutation signatures in PGL biosynthesis genes, e.g., pks15/1 or glycosyltransferases Rv2962c and/or Rv2958c. Sub-lineage specific PGL production was studied by NMR-based lipid profiling and strains with a completely abolished phenolphthiocerol dimycoserosate biosynthesis showed in average a more prominent growth in human macrophages. In conclusion, our results show a diverse population structure of L1 strains that is associated with the presence of specific PGL types. This includes the occurrence of mycoside B in one sub-lineage, representing the first description of a PGL in an M. tuberculosis lineage other than L2. Such differences may be important for the evolution of L1 strains, e.g., allowing adaption to different human populations.
Collapse
Affiliation(s)
- Nicolas Gisch
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lisa M Gronbach
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Danny C Hesser
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roland Diel
- Lung Clinic Grosshansdorf, Airway Disease Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Udo Götsch
- Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| | - Silke Gerdes
- Municipal Health Authority Hannover, Hanover, Germany
| | - Yassir A Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.,WHO-Supranational Reference Laboratory of Tuberculosis, Institute of Microbiology and Laboratory Medicine (IML Red), Gauting, Germany
| | - Nyanda E Ntinginya
- National Institute for Medical Research Tanzania - Mbeya Medical Research Center, Mbeya, Tanzania
| | - Celso Khosa
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Glennah Kerubo
- Department of Medical Microbiology and Parasitology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Solomon Ali
- Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sahal A Al-Hajoj
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Perpetual W Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian P Maurer
- National and WHO Supranational Reference Centre for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Norbert Reiling
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Microbial Interface Biology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
20
|
Molecular Epidemiology and Genetic Diversity of Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Microbiol Spectr 2022; 10:e0184821. [PMID: 35196788 PMCID: PMC8865560 DOI: 10.1128/spectrum.01848-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the number of multidrug-resistant (MDR) tuberculosis (TB) cases is high overall, a major gap exists in our understanding of the molecular characteristics and transmission dynamics of the MDR Mycobacterium tuberculosis isolates circulating in Bangladesh. The present study aims to characterize the MDR-TB isolates of Bangladesh and to investigate the mode of transmission. A total of 544 MDR-TB isolates were obtained from a nationwide drug-resistant TB surveillance study conducted between October 2011 and March 2017 covering all geographic divisions of Bangladesh. The isolates were characterized using TbD1 deletion analysis, spoligotyping, and mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing. Deletion analysis showed that 440 (80.9%) isolates were the modern type, while the remainder were the ancestral type. The largest circulating lineage was the Beijing type, comprising 208 isolates (38.2%), followed by T, EAI, and LAM with 93 (17.1%), 58 (10.7%), and 52 (9.5%) isolates, respectively. Combined MIRU-VNTR and spoligotyping analysis demonstrated that the majority of the clustered isolates were of the Beijing and T1 lineages. The overall rate of recent transmission was estimated at 33.8%. In conclusion, the MDR M. tuberculosis isolates circulating in Bangladesh are mostly of the modern virulent type. The Beijing and T lineages are the predominant types and most of the transmission of MDR-TB can be attributed to them. The findings also suggest that, along with the remarkable transmission, the emergence of MDR-TB in Bangladesh is largely due to acquired resistance. Rapid and accurate diagnosis and successful treatment will be crucial for controlling MDR-TB in Bangladesh. IMPORTANCE Multidrug-resistant TB is considered to be the major threat to tuberculosis control activities worldwide, including in Bangladesh. Despite the fact that the number of MDR-TB cases is high, a major gap exists in our understanding of the molecular epidemiology of the MDR-TB isolates in Bangladesh. In our study, we characterized and classified the MDR-TB isolates circulating in Bangladesh and investigated their mode of transmission. Our results demonstrated that the MDR M. tuberculosis isolates circulating in Bangladesh are mostly of the modern virulent type. The Beijing and T lineages are the predominant types and are implicated in the majority of MDR-TB transmission. Our findings reveal that, along with the remarkable transmission, the emergence of MDR-TB in Bangladesh is largely due to acquired resistance, which may be due to nonadherence to treatment or inadequate treatment of TB patients. Rapid diagnosis and adherence to an appropriate treatment regimen are therefore crucial to controlling MDR-TB in Bangladesh.
Collapse
|
21
|
Suppli CH, Norman A, Folkvardsen DB, Gissel TN, Weinreich UM, Koch A, Wejse C, Lillebaek T. First outbreak of multi-drug resistant tuberculosis (MDR-TB) in Denmark involving six Danish-born cases. Int J Infect Dis 2022; 117:258-263. [PMID: 35158061 DOI: 10.1016/j.ijid.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Denmark is a tuberculosis (TB) and multi-drug resistant (MDR) TB low-incidence country at 5 and 0.05 cases per 100.000 population, respectively. Until 2018, transmission of MDR-TB was nonexistent except for few pairwise related family-cases. In this study we describe the first MDR-TB outbreak in Denmark. METHODS Based on genotyping of all Mycobacterium tuberculosis (Mtb) culture-positive cases in Denmark spanning three decades, six molecular- and epidemiologically linked Danish-born cases were identified as the first cluster of MDR-TB in Denmark. The primary case was diagnosed posthumously in 2010 followed by five epidemiologically linked cases from 2018 through 2019. RESULTS AND CONCLUSION Through a combination of routine Mtb genotyping and clinical epidemiological surveillance data, we identified the first Danish MDR-TB outbreak spanning 10 years and were able to disclose the specific transmission pathways in detail guiding the outbreak investigations. The occurrence of an MDR-TB outbreak in a resource rich TB low incidence setting like Denmark, highlights the importance of a collaborative control system combining classical contact tracing; timely identification of drug resistant TB through rapid diagnostics; and a close collaboration between clinicians, classical- and molecular epidemiologists for the benefit of TB control.
Collapse
Affiliation(s)
- Camilla Hiul Suppli
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Dorte Bek Folkvardsen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Tina Nørregaard Gissel
- Department of Internal Medicine, Region Hospital Viborg, Heibergs Alle 4F, DK-8800 Viborg, Denmark
| | - Ulla Møller Weinreich
- Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Mølleparkvej 4, DK-9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Søndre Skovvej 15, DK-9000 Aalborg, Denmark
| | - Anders Koch
- Global Health Section, Department of Public Health, University of Copenhagen Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark; Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark; Department of Infectious Diseases, Rigshospitalet University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Christian Wejse
- GloHAU, Center for Global Health, Dept of Public Health, Aarhus University, Bartholins Allé 2, DK-8000 Aarhus C, Denmark; Dept of Infectious Diseases, Institute for Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut Artillerivej 5, DK-2300 Copenhagen, Denmark; Global Health Section, Department of Public Health, University of Copenhagen Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| |
Collapse
|
22
|
Freschi L, Vargas R, Husain A, Kamal SMM, Skrahina A, Tahseen S, Ismail N, Barbova A, Niemann S, Cirillo DM, Dean AS, Zignol M, Farhat MR. Population structure, biogeography and transmissibility of Mycobacterium tuberculosis. Nat Commun 2021; 12:6099. [PMID: 34671035 PMCID: PMC8528816 DOI: 10.1038/s41467-021-26248-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/06/2021] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis is a clonal pathogen proposed to have co-evolved with its human host for millennia, yet our understanding of its genomic diversity and biogeography remains incomplete. Here we use a combination of phylogenetics and dimensionality reduction to reevaluate the population structure of M. tuberculosis, providing an in-depth analysis of the ancient Indo-Oceanic Lineage 1 and the modern Central Asian Lineage 3, and expanding our understanding of Lineages 2 and 4. We assess sub-lineages using genomic sequences from 4939 pan-susceptible strains, and find 30 new genetically distinct clades that we validate in a dataset of 4645 independent isolates. We find a consistent geographically restricted or unrestricted pattern for 20 groups, including three groups of Lineage 1. The distribution of terminal branch lengths across the M. tuberculosis phylogeny supports the hypothesis of a higher transmissibility of Lineages 2 and 4, in comparison with Lineages 3 and 1, on a global scale. We define an expanded barcode of 95 single nucleotide substitutions that allows rapid identification of 69 M. tuberculosis sub-lineages and 26 additional internal groups. Our results paint a higher resolution picture of the M. tuberculosis phylogeny and biogeography.
Collapse
Affiliation(s)
- Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ashaque Husain
- Directorate General of Health Services, Ministry of Health and Family Welfare, Dhaka, Bangladesh
| | - S M Mostofa Kamal
- Department of Pathology and Microbiology, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh
| | - Alena Skrahina
- Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Sabira Tahseen
- National Reference Laboratory, National Tuberculosis Control Programme, Islamabad, Pakistan
| | - Nazir Ismail
- National Institute for Communicable Diseases, Sandringham, South Africa
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Anna Barbova
- Central Reference Laboratory on Tuberculosis Microbiological Diagnostics, Ministry of Health, Kiev, Ukraine
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Borstel Research Centre, Borstel, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna S Dean
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Matteo Zignol
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
23
|
Dusthackeer A, Kumar A, Mohanvel SK, Mahizhaveni B, Shivakumar S, Raghavi S, Azhagendran S, Vetrivel S, Rao VG, Yadav R, Paluru V, Purthy AJ, Hussain T, Kashyap V, Devi KR, Krishnan AKI, Anand P, Das P, Bansal AK, Das M, Kaur H, Raghunath D, Mondal R, Thomas BE. Mycobacterium tuberculosis strain lineage in mixed tribal population across India and Andaman Nicobar Island. World J Microbiol Biotechnol 2021; 37:192. [PMID: 34637049 DOI: 10.1007/s11274-021-03164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
In India, the tribal population constitutes almost 8.6% of the nation's total population. Despite their large presence, there are only a few reports available on Mycobacterium tuberculosis (M. tb) strain prevalence in Indian tribal communities considering the mobile nature of this population and also the influence of the mainstream populations they coexist within many areas for their livelihood. This study attempts to provide critical information pertaining to the TB strain diversity, its public health implications, and distribution among the tribal population in eleven Indian states and Andaman & Nicobar (A&N) Island. The study employed a population-based molecular approach. Clinical isolates were received from 66 villages (10 states and Island) and these villages were selected by implying situation analysis. A total of 78 M. tb clinical isolates were received from 10 different states and A&N Island. Among these, 16 different strains were observed by spoligotyping technique. The major M. tb strains spoligotype belong to the Beijing, CAS1_DELHI, and EAI5 family of M. tb strains followed by EAI1_SOM, EAI6_BGD1, LAM3, LAM6, LAM9, T1, T2, U strains. Drug-susceptibility testing (DST) results showed almost 15.4% of clinical isolates found to be resistant to isoniazid (INH) or rifampicin (RMP) + INH. Predominant multidrug-resistant (MDR-TB) isolates seem to be Beijing strain. Beijing, CAS1_DELHI, EAI3_IND, and EAI5 were the principal strains infecting mixed tribal populations across India. Despite the small sample size, this study has demonstrated higher diversity among the TB strains with significant MDR-TB findings. Prevalence of Beijing MDR-TB strains in Central, Southern, Eastern India and A&N Island indicates the transmission of the TB strains.
Collapse
Affiliation(s)
- Azger Dusthackeer
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India.
| | - Ashok Kumar
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | | | - B Mahizhaveni
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Shivakumar
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Raghavi
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Azhagendran
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Vetrivel
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - Vikas Gangadhar Rao
- Division of Communicable Diseases, Indian Council of Medical Research-National Institute for Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Rajiv Yadav
- Division of Communicable Diseases, Indian Council of Medical Research-National Institute for Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Vijayachari Paluru
- Clinical Microbiology, Indian Council of Medical Research-Regional Medical Research Centre, Port Blair, Andaman and Nicobar Island, 744101, India
| | - Anil Jacob Purthy
- Department of Community Medicine, Pondicherry Institute of Medical Sciences, Puducherry, 605014, India
| | - Tahziba Hussain
- Department of Immunology, Indian Council of Medical Research-Regional Medical Research Centre, Bhubaneshwar, Odisha, 721023, India
| | - Vivek Kashyap
- Department of Preventive and Social Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, 834009, India
| | - K Rekha Devi
- ICMR - Regional Medical Research Centre, N. E. Region, Diburgah, Assam, 786 001, India
| | - Anil Kumar Indira Krishnan
- School of Public Health, SRM Medical College Research Centre, Kancheepuram (Dt), Kattankulathur, Tamil Nadu, 603203, India
| | - Praveen Anand
- Desert Medicine Research Centre (ICMR), New Pali Road, Jodhpur, Rajasthan, 342005, India
| | - Pradeep Das
- ICMR - Rajendra Memorial Research of Medical Science (RMRIMS), Agamkuan, Patna, Bihar, 800007, India
| | - Avi Kumar Bansal
- Department of Epidemiology/Public Health, ICMR-National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Tajganj, Agra, 282001, India
| | - Madhuchhanda Das
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, 110016, India
| | - Harpreet Kaur
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, 110016, India
| | - D Raghunath
- Tribal TB ICMR Task Force, Indian Council of Medical Research, New Delhi, 110016, India
| | - Rajesh Mondal
- ICMR - Bhopal Memorial Hospital & Research Centre, Bhopal, India.
| | - Beena E Thomas
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| |
Collapse
|
24
|
Negrete-Paz AM, Vázquez-Marrufo G, Vázquez-Garcidueñas MS. Whole-genome comparative analysis at the lineage/sublineage level discloses relationships between Mycobacterium tuberculosis genotype and clinical phenotype. PeerJ 2021; 9:e12128. [PMID: 34589306 PMCID: PMC8434806 DOI: 10.7717/peerj.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background Human tuberculosis (TB) caused by members of the Mycobacterium tuberculosis complex (MTBC) is the main cause of death among infectious diseases worldwide. Pulmonary TB (PTB) is the most common clinical phenotype of the disease, but some patients develop an extrapulmonary (EPTB) phenotype in which any organ or tissue can be affected. MTBC species include nine phylogenetic lineages, with some appearing globally and others being geographically restricted. EPTB can or not have pulmonary involvement, challenging its diagnosis when lungs are not implicated, thus causing an inadequate treatment. Finding evidence of a specific M. tuberculosis genetic background associated with EPTB is epidemiologically relevant due to the virulent and multidrug-resistant strains isolated from such cases. Until now, the studies conducted to establish associations between M. tuberculosis lineages and PTB/EPTB phenotypes have shown inconsistent results, which are attributed to the strain predominance from specific M. tuberculosis lineages/sublineages in the samples analyzed and the use of low-resolution phylogenetic tools that have impaired sublineage discrimination abilities. The present work elucidates the relationships between the MTBC strain lineages/sublineages and the clinical phenotypes of the disease as well as the antibiotic resistance of the strains. Methods To avoid biases, we retrieved the raw genomic reads (RGRs) of all (n = 245) the M. tuberculosis strains worldwide causing EPTB available in databases and an equally representative sample of the RGRs (n = 245) of PTB strains. A multiple alignment was constructed, and a robust maximum likelihood phylogeny based on single-nucleotide polymorphisms was generated, allowing effective strain lineage/sublineage assignment. Results A significant Odds Ratio (OR range: 1.8–8.1) association was found between EPTB and the 1.1.1, 1.2.1, 4.1.2.1 and ancestral Beijing sublineages. Additionally, a significant association between PTB with 4.3.1, 4.3.3, and 4.5 and Asian African 2 and Europe/Russia B0/W148 modern Beijing sublineages was found. We also observed a significant association of Lineage 3 strains with multidrug resistance (OR 3.8; 95% CI [1.1–13.6]), as well as between modern Beijing sublineages and antibiotic resistance (OR 4.3; 3.8–8.6). In this work, it was found that intralineage diversity can drive differences in the immune response that triggers the PTB/EPTB phenotype.
Collapse
Affiliation(s)
- Andrea Monserrat Negrete-Paz
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, Mexico
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
25
|
Saati AA, Khurram M, Faidah H, Haseeb A, Iriti M. A Saudi Arabian Public Health Perspective of Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10042. [PMID: 34639342 PMCID: PMC8508237 DOI: 10.3390/ijerph181910042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022]
Abstract
Tuberculosis is a global health challenge due to its spreading potential. The Kingdom of Saudi Arabia (KSA) faces a challenge in the spread of tuberculosis from migrant workers, but the foremost threat is the huge number of pilgrims who travel to visit sacred sites of the Islamic world located in the holy cities of Makkah and Al Madina. Pilgrims visit throughout the year but especially in the months of Ramadan and Zul-Hijah. The rise of resistance in Mycobacterium tuberculosis is an established global phenomenon that makes such large congregations likely hotspots in the dissemination and spread of disease at a global level. Although very stringent and effective measures exist, the threat remains due to the ever-changing dynamics of this highly pathogenic disease. This overview primarily highlights the current public health challenges posed by this disease to the Saudi health system, which needs to be highlighted not only to the concerned authorities of KSA, but also to the concerned global quarters since the pilgrims and migrants come from all parts of the world with a majority coming from high tuberculosis-burdened countries.
Collapse
Affiliation(s)
- Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Muhammad Khurram
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), Università degli Studi di Napoli “Federico II”, 80055 Portici, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| |
Collapse
|
26
|
Shuaib YA, Khalil EA, Wieler LH, Schaible UE, Bakheit MA, Mohamed-Noor SE, Abdalla MA, Kerubo G, Andres S, Hillemann D, Richter E, Kranzer K, Niemann S, Merker M. Mycobacterium tuberculosis Complex Lineage 3 as Causative Agent of Pulmonary Tuberculosis, Eastern Sudan 1. Emerg Infect Dis 2021; 26:427-436. [PMID: 32091355 PMCID: PMC7045825 DOI: 10.3201/eid2603.191145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathogen-based factors associated with tuberculosis (TB) in eastern Sudan are not well defined. We investigated genetic diversity, drug resistance, and possible transmission clusters of Mycobacterium tuberculosis complex (MTBC) strains by using a genomic epidemiology approach. We collected 383 sputum specimens at 3 hospitals in 2014 and 2016 from patients with symptoms suggestive of TB; of these, 171 grew MTBC strains. Whole-genome sequencing could be performed on 166 MTBC strains; phylogenetic classification revealed that most (73.4%; n = 122) belonged to lineage 3 (L3). Genome-based cluster analysis showed that 76 strains (45.9%) were grouped into 29 molecular clusters, comprising 2–8 strains/patients. Of the strains investigated, 9.0% (15/166) were multidrug resistant (MDR); 10 MDR MTBC strains were linked to 1 large MDR transmission network. Our findings indicate that L3 strains are the main causative agent of TB in eastern Sudan; MDR TB is caused mainly by transmission of MDR L3 strains.
Collapse
|
27
|
Menardo F, Rutaihwa LK, Zwyer M, Borrell S, Comas I, Conceição EC, Coscolla M, Cox H, Joloba M, Dou HY, Feldmann J, Fenner L, Fyfe J, Gao Q, García de Viedma D, Garcia-Basteiro AL, Gygli SM, Hella J, Hiza H, Jugheli L, Kamwela L, Kato-Maeda M, Liu Q, Ley SD, Loiseau C, Mahasirimongkol S, Malla B, Palittapongarnpim P, Rakotosamimanana N, Rasolofo V, Reinhard M, Reither K, Sasamalo M, Silva Duarte R, Sola C, Suffys P, Batista Lima KV, Yeboah-Manu D, Beisel C, Brites D, Gagneux S. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim. F1000Res 2021; 10:60. [PMID: 33732436 PMCID: PMC7921886 DOI: 10.12688/f1000research.28318.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics. For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Liliana K Rutaihwa
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Michaela Zwyer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, Valencia, Spain
| | - Emilyn Costa Conceição
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Helen Cox
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Zhunan, Taiwan
| | - Julia Feldmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lukas Fenner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Qian Gao
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Darío García de Viedma
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, Madrid, Spain.,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto L Garcia-Basteiro
- Barcelona Institute for Global Health, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Sebastian M Gygli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jerry Hella
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hellen Hiza
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lujeko Kamwela
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Qingyun Liu
- Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Serej D Ley
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Chloe Loiseau
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Surakameth Mahasirimongkol
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | - Bijaya Malla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Prasit Palittapongarnpim
- Department of Microbiology, Mahidol University, Bangkok, Thailand.,National Science and Technology Development Agency, Bangkok, Thailand
| | | | | | - Miriam Reinhard
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Klaus Reither
- University of Basel, Basel, Switzerland.,Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Mohamed Sasamalo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Rafael Silva Duarte
- Instituto de Microbiologia, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christophe Sola
- Université Paris-Saclay, Paris, France.,INSERM-Université de Paris, Paris, France
| | - Philip Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Karla Valeria Batista Lima
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil.,Instituto Evandro Chagas, Ananindeua, Brazil
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Hadifar S, Fateh A, Pourbarkhordar V, Siadat SD, Mostafaei S, Vaziri F. Variation in Mycobacterium tuberculosis population structure in Iran: a systemic review and meta-analysis. BMC Infect Dis 2021; 21:2. [PMID: 33397308 PMCID: PMC7784266 DOI: 10.1186/s12879-020-05639-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Acquiring comprehensive insight into the dynamics of Mycobacterium tuberculosis (Mtb) population structure is an essential step to adopt effective tuberculosis (TB) control strategies and improve therapeutic methods and vaccines. Accordingly, we performed this systematic review and meta-analysis to determine the overall prevalence of Mtb genotypes/ sublineages in Iran. METHODS We carried out a comprehensive literature search using the international databases of MEDLINE and Scopus as well as Iranian databases. Articles published until April 2020 were selected based on the PRISMA flow diagram. The overall prevalence of the Mtb genotypes/sublineage in Iran was determined using the random effects or fixed effect model. The metafor R package and MedCalc software were employed for performing this meta-analysis. RESULTS We identified 34 studies for inclusion in this study, containing 8329 clinical samples. Based on the pooled prevalence of the Mtb genotypes, NEW1 (21.94, 95% CI: 16.41-28.05%), CAS (19.21, 95% CI: 14.95-23.86%), EAI (12.95, 95% CI: 7.58-19.47%), and T (12.16, 95% CI: 9.18-15.50%) were characterized as the dominant circulating genotypes in Iran. West African (L 5/6), Cameroon, TUR and H37Rv were identified as genotypes with the lowest prevalence in Iran (< 2%). The highest pooled prevalence rates of multidrug-resistant strains were related to Beijing (2.52, 95% CI) and CAS (1.21, 95% CI). CONCLUSIONS This systematic review showed that Mtb populations are genetically diverse in Iran, and further studies are needed to gain a better insight into the national diversity of Mtb populations and their drug resistance pattern.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Pourbarkhordar
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Epidemiology and Biostatistics Unit, Rheumatology Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Centre (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
Ejo M, Torrea G, Uwizeye C, Kassa M, Girma Y, Bekele T, Ademe Y, Diro E, Gehre F, Rigouts L, de Jong BC. Genetic diversity of the Mycobacterium tuberculosis complex strains from newly diagnosed tuberculosis patients in Northwest Ethiopia reveals a predominance of East-African-Indian and Euro-American lineages. Int J Infect Dis 2020; 103:72-80. [PMID: 33189940 DOI: 10.1016/j.ijid.2020.11.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study described the population structure of M. tuberculosis complex (MTBc) strains among patients with pulmonary or lymph node tuberculosis (TB) in Northwest Ethiopia and tested the performance of culture isolation and MPT64-based speciation for Lineage 7 (L7). METHODS Patients were recruited between April 2017 and June 2019 in North Gondar, Ethiopia. The MPT64 assay was used to confirm MTBc, and spoligotyping was used to characterize mycobacterial lineages. Line probe assay (LPA) was used to detect resistance to rifampicin and isoniazid. RESULTS Among 274 MTBc genotyped isolates, there were five MTBc lineages: L1-L4 and L7 were identified, with predominant East-African-Indian (L3) (53.6%) and Euro-American (L4) (40.1%) strains, and low prevalence (2.6%) of Ethiopia L7. The genotypes were similarly distributed between pulmonary and lymph node TB, and all lineages were equally isolated by culture and recognized as MTBc by the MPT64 assay. Additionally, LPA showed that 259 (94.5%) MTBc were susceptible to both rifampicin and isoniazid, and one (0.4%) was multi-drug resistant (resistant to both rifampicin and isoniazid). CONCLUSION These findings show that TB in North Gondar, Ethiopia, is mainly caused by L3 and L4 strains, with low rates of L7, confirmed as MTBc by MPT64 assay and with limited resistance to rifampicin and isoniazid.
Collapse
Affiliation(s)
- Mebrat Ejo
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; University of Gondar, Gondar, Ethiopia; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | - Meseret Kassa
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Yilak Girma
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Tiruzer Bekele
- Department of Pathology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yilkal Ademe
- Department of Pathology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ermias Diro
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Florian Gehre
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; East African Community Secretariat (EAC), Arusha, Tanzania
| | - Leen Rigouts
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
30
|
Brönnimann LC, Zimmerli S, Garweg JG. Neues zur Therapie der okulären Tuberkulose. Ophthalmologe 2020; 117:1080-1086. [DOI: 10.1007/s00347-020-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|