1
|
Bayer K, Taeb M, Koch B, Yoshimura SH, Wombacher R. Dual SLIPT-A Lipid Mimic to Enable Spatiotemporally Defined, Sequential Protein Dimerization. ACS Chem Biol 2025; 20:1038-1047. [PMID: 40234022 PMCID: PMC12090181 DOI: 10.1021/acschembio.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Spatiotemporal control of proteins is crucial for cellular phenomena such as signal integration, propagation, as well as managing crosstalk. In membrane-associated signaling, this regulation is often enabled by lipids, wherein highly dynamic, sequential recruitment of interacting proteins is key to successful signaling. Here, we present dual SLIPT (self-localizing ligand-induced protein translocation), a lipid-analog tool, capable of emulating this lipid-mediated sequential recruitment of any two proteins of interest. Dual SLIPT self-localizes to the inner leaflet of the plasma membrane (PM). There, dual SLIPT presents trimethoprim (TMP) and HaloTag ligand (HTL) to cytosolic proteins of interest (POIs), whereupon POIs fused to the protein tags iK6eDHFR, or to HOB are recruited. A systematic extension of the linkers connecting the two mutually orthogonal headgroups was implemented to overcome the steric clash between the recruited POIs. Using Förster resonance energy transfer (FRET), we verify that the resulting probe is capable of simultaneous binding of both proteins of interest, as well as their dimerization. Dual SLIPT was found to be particularly suitable for use in physiologically relevant concentrations, such as recruitment via tightly regulated, transient lipid species. We further expanded dual SLIPT to the photocontrollable dual SLIPTNVOC, by introducing a photocaging group onto the TMP moiety. Dual SLIPTNVOC enables sequential and spatiotemporally defined dimerization upon blue light irradiation. Thus, dual SLIPTNVOC serves as a close mimic of physiology, enabling interrogation of dynamic cytosol-to-plasma membrane recruitment events and their impact on signaling.
Collapse
Affiliation(s)
- Kristina
V. Bayer
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Heidelberg
Biosciences International Graduate School (HBIGS), Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Maedeh Taeb
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Birgit Koch
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Shige H. Yoshimura
- Graduate
School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Center
for Living Systems Information Science (CeLiSIS), Kyoto University, Kyoto 606-8501, Japan
- Institute
for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Richard Wombacher
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Hwang HJ, Sheard KM, Cox RT. Drosophila Clu ribonucleoprotein particle dynamics rely on the availability of functional Clu and translating ribosomes. J Cell Sci 2025; 138:jcs263730. [PMID: 40302698 DOI: 10.1242/jcs.263730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Drosophila Clu is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm. Unlike stress granules and processing bodies (P-bodies), Clu particles disassemble under nutritional or oxidative stress. However, it is unclear how disrupting protein synthesis affects Clu particle dynamics, especially given that Clu binds mRNA and ribosomes. Here, we capitalize on ex vivo and in vivo imaging of Drosophila female germ cells to determine what domains of Clu are necessary for Clu particle assembly and how manipulating translation affects particle dynamics. Using domain deletion analysis, we identified three domains of Clu essential for particle assembly. We also demonstrated that overexpressing functional Clu led to disassembly of particles. In addition, we inhibited translation using cycloheximide and puromycin. In contrast to P-bodies, cycloheximide treatment did not disassemble Clu particles yet puromycin treatment did. Surprisingly, cycloheximide stabilized particles under oxidative and nutritional stress. These findings demonstrate that Clu particles display novel dynamics in response to altered ribosome activity and support a model where they function as translation hubs whose assembly heavily depends on the dynamic availability of translating ribosomes.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Kelsey M Sheard
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Sun YM, Zhu SX, Chen XT, Pan Q, An Y, Chen TQ, Huang HJ, Pu KJ, Lian JY, Zhao WL, Wang WT, Chen YQ. lncRNAs maintain the functional phase state of nucleolar prion-like protein to facilitate rRNA processing. Mol Cell 2024; 84:4878-4895.e10. [PMID: 39579766 DOI: 10.1016/j.molcel.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/17/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Liquid-to-solid phase transition of proteins with prion-like domains (PLDs) has been associated with neurodegenerative diseases and aging. High protein concentration is one important aspect triggering the transition; however, several prion-like proteins, including fibrillarin (FBL), an important phase-separated protein in the nucleolus for pre-rRNA processing, show relatively high expression levels in certain cells, especially cancer cells, without obvious phase transitions and growth arrest. How cells maintain prion-like protein proteostasis is still unknown. Here, we attempt to answer the question, with FBL as an example. We find that lncRNA DNAJC3-AS1 can buffer the behavior of FBL condensation and maintain the state and function of fibrillar component/dense fibrillar component (FC/DFC) units in human cell lines through two mechanisms, not only facilitating FBL condensation but also inhibiting excessive aggregation by binding multiple PLDs and partially blocking their interactions. We propose that lncRNAs could supply buffered systems to sustain functional phase states of prion-like proteins.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shun-Xin Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Tong Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan An
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Heng-Jing Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke-Jia Pu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun-Yi Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Long Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Schreiber S, Jose J. Förster Resonance Energy Transfer Measurements in Living Bacteria for Interaction Studies of BamA with BamD and Inhibitor Identification. Cells 2024; 13:1858. [PMID: 39594607 PMCID: PMC11592675 DOI: 10.3390/cells13221858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The β-barrel assembly machinery (BAM) is a multimeric protein complex responsible for the folding of outer membrane proteins in gram-negative bacteria. It is essential for cell survival and outer membrane integrity. Therefore, it is of impact in the context of antibiotic resistance and can serve as a target for the development of new antibiotics. The interaction between two of its subunits, BamA and BamD, is essential for its function. Here, a FRET-based assay to quantify the affinity between these two proteins in living bacterial cells is presented. The method was applied to identify two interaction hotspots at the binding interface. BamDY184 was identified to significantly contribute to the binding between both proteins through hydrophobic interactions and hydrogen bonding. Additionally, two salt bridges formed between BamDR94, BamDR97, and BamAE127 contributed substantially to the binding of BamA to BamD as well. Two peptides (RFIRLN and VAEYYTER) that mimic the amino acid sequence of BamD around the identified hotspots were shown to inhibit the interaction between BamA and BamD in a dose-dependent manner in the upper micromolar range. These two peptides can potentially act as antibiotic enhancers. This shows that the BamA-BamD interaction site can be addressed for the design of protein-protein interaction inhibitors. Additionally, the method, as presented in this study, can be used for further functional studies on interactions within the BAM complex.
Collapse
Affiliation(s)
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany;
| |
Collapse
|
6
|
Storer ISR, Sastré-Velásquez LE, Easter T, Mertens B, Dallemulle A, Bottery M, Tank R, Offterdinger M, Bromley MJ, van Rhijn N, Gsaller F. Shining a light on the impact of antifungals on Aspergillus fumigatus subcellular dynamics through fluorescence imaging. Antimicrob Agents Chemother 2024; 68:e0080324. [PMID: 39404344 PMCID: PMC11539212 DOI: 10.1128/aac.00803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Fluorescent proteins (FPs) are indispensable tools used for molecular imaging, single-cell dynamics, imaging in infection models, and more. However, next-generation FPs have yet to be characterized in Aspergillus. Here, we characterize 18 FPs in the pathogenic filamentous fungus Aspergillus fumigatus spanning the visible light spectrum. We report on in vivo FP brightness in hyphal and spore morphotypes and show how a fluoropyrimidine-based selection system can be used to iteratively introduce four distinct FPs enabling the simultaneous visualization of the cell membrane, mitochondria, peroxisomes, and vacuoles. Using this strain, we describe and compare the dynamic responses of organelles to stresses induced by voriconazole, amphotericin B, and the novel antifungal drugs olorofim and manogepix. The expansion to the fluorescent genetic toolbox will overcome boundaries in research applications that involve fluorescence imaging in filamentous fungi.
Collapse
Affiliation(s)
- I. S. R. Storer
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - L. E. Sastré-Velásquez
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Easter
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B. Mertens
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Dallemulle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M. Bottery
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - R. Tank
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - M. Offterdinger
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M. J. Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - N. van Rhijn
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Microbial Evolution Research Manchester, University of Manchester, Manchester, United Kingdom
| | - F. Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Purohit R, Couch T, Rook ML, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. Biophys J 2024; 123:3507-3518. [PMID: 39182166 PMCID: PMC11494525 DOI: 10.1016/j.bpj.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Desensitization is a prominent feature of nearly all ligand-gated ion channels. Acid-sensing ion channels (ASICs) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th β sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. It is unclear if a single linker adopting the downward state is sufficient to desensitize the entire channel, or if all three are needed or some more complex scheme. To accommodate this downward state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tool. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100- to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady-state desensitization curves to more acidic pH values while activation curves and ion selectivity were largely unaffected (except for a left-shifted activation pH50 of L414P). To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two, or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P substitutions only slightly attenuated desensitization, suggesting that conformational changes in the single remaining faster wild-type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where ASIC desensitization requires only a single subunit.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Matthew L Rook
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
8
|
Phillips-Rose LS, Yu CK, West NP, Fraser JA. A Chimeric ORF Fusion Phenotypic Reporter for Cryptococcus neoformans. J Fungi (Basel) 2024; 10:567. [PMID: 39194893 DOI: 10.3390/jof10080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable approach to gaining insight into gene function. Many reporters including lacZ, amdS, and the fluorescent proteins mRuby3 and mNeonGreen have been used across all manners of organisms. Described here is an investigation into the creation of a robust, synthetic, fusion reporter system for Cryptococcus neoformans that combines some of the most useful fluorophores available in this system with the versatility of the counter-selectable nature of amdS. The reporters generated include multiple composition and orientation variants, all of which were investigated for differences in expression. Evaluation of known promoters from the TEF1 and GAL7 genes was undertaken, elucidating novel expression tendencies of these biologically relevant C. neoformans regulators of transcription. Smaller than lacZ but providing multiple useful surrogate phenotypes for interrogation, the fusion ORF serves as a superior whole-cell assay compared to traditional systems. Ultimately, the work described here bolsters the array of relevant genetic tools that may be employed in furthering manipulation and understanding of the WHO fungal priority group pathogen C. neoformans.
Collapse
Affiliation(s)
- Louis S Phillips-Rose
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chendi K Yu
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Wu Z, Du Y, Kirchhausen T, He K. Probing and imaging phospholipid dynamics in live cells. LIFE METABOLISM 2024; 3:loae014. [PMID: 39872507 PMCID: PMC11749120 DOI: 10.1093/lifemeta/loae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 01/30/2025]
Abstract
Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.
Collapse
Affiliation(s)
- Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Mandrou E, Thomason PA, Paschke PI, Paul NR, Tweedy L, Insall RH. A Reliable System for Quantitative G-Protein Activation Imaging in Cancer Cells. Cells 2024; 13:1114. [PMID: 38994966 PMCID: PMC11240385 DOI: 10.3390/cells13131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges. Here, we established a system in live primary mouse pancreatic ductal adenocarcinoma cells, where we can detect the activation of an mNeonGreen-Gαi3-mCherry-Gγ2 biosensor through the lysophosphatidic acid receptor (LPAR) with 2-photon time-correlated single-photon counting (TCSPC) FLIM. This combination gave a superior signal to the commonly used mTurquoise2-mVenus G-protein biosensor. This system has potential as a platform for drug screening, or to answer basic cell biology questions in the field of G-protein signalling.
Collapse
Affiliation(s)
- Elena Mandrou
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
| | | | | | - Nikki R. Paul
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
| | - Luke Tweedy
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert H. Insall
- CRUK Scotland Institute, Garscube Campus, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Division of Cell & Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Purohit R, Couch T, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593312. [PMID: 38798386 PMCID: PMC11118455 DOI: 10.1101/2024.05.09.593312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th beta sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. To accommodate this "downward" state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tools. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity of these slow-desensitizing currents were largely unaffected. To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P mutations only slightly attenuated desensitization, suggesting that conformational changes in the remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where a single subunit is sufficient to desensitize the entire channel.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| |
Collapse
|
12
|
Kohlmann P, Krylov SN, Marchand P, Jose J. FRET Assays for the Identification of C. albicans HSP90-Sba1 and Human HSP90α-p23 Binding Inhibitors. Pharmaceuticals (Basel) 2024; 17:516. [PMID: 38675476 PMCID: PMC11053944 DOI: 10.3390/ph17040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs-HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)-to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90-Sba1 and HSP90α-p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70-120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100-130 nM. For HSP90α-p23, PCI was 180-260 (220 ± 40) nM and ACI was 200-270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5.
Collapse
Affiliation(s)
- Philip Kohlmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| | - Sergey N. Krylov
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France;
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
13
|
Melle C, Hoffmann B, Wiesenburg A, Biskup C. FLIM-FRET-based analysis of S100A11/annexin interactions in living cells. FEBS Open Bio 2024; 14:626-642. [PMID: 38408765 PMCID: PMC10988696 DOI: 10.1002/2211-5463.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Proteins achieve their biological functions in cells by cooperation in protein complexes. In this study, we employed fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurements to investigate protein complexes comprising S100A11 and different members of the annexin (ANX) family, such as ANXA1, ANXA2, ANXA4, ANXA5, and AnxA6, in living cells. Using an S100A11 mutant without the capacity for Ca2+ binding, we found that Ca2+ binding of S100A11 is important for distinct S100A11/ANXA2 complex formation; however, ANXA1-containing complexes were unaffected by this mutant. An increase in the intracellular calcium concentration induced calcium ionophores, which strengthened the ANXA2/S100A11 interaction. Furthermore, we were able to show that S100A11 also interacts with ANXA4 in living cells. The FLIM-FRET approach used here can serve as a tool to analyze interactions between S100A11 and distinct annexins under physiological conditions in living cells.
Collapse
Affiliation(s)
- Christian Melle
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Birgit Hoffmann
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Annett Wiesenburg
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| |
Collapse
|
14
|
Coucke Q, Parveen N, Fernández GS, Qian C, Hofkens J, Debyser Z, Hendrix J. Particle-based phasor-FLIM-FRET resolves protein-protein interactions inside single viral particles. BIOPHYSICAL REPORTS 2023; 3:100122. [PMID: 37649577 PMCID: PMC10463199 DOI: 10.1016/j.bpr.2023.100122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a popular modality to create additional contrast in fluorescence images. By carefully analyzing pixel-based nanosecond lifetime patterns, FLIM allows studying complex molecular populations. At the single-molecule or single-particle level, however, image series often suffer from low signal intensities per pixel, rendering it difficult to quantitatively disentangle different lifetime species, such as during Förster resonance energy transfer (FRET) analysis in the presence of a significant donor-only fraction. In this article we investigate whether an object localization strategy and the phasor approach to FLIM have beneficial effects when carrying out FRET analyses of single particles. Using simulations, we first showed that an average of ∼300 photons, spread over the different pixels encompassing single fluorescing particles and without background, is enough to determine a correct phasor signature (SD < 5% for a 4-ns lifetime). For immobilized single- or double-labeled dsDNA molecules, we next validated that particle-based phasor-FLIM-FRET readily allows estimating fluorescence lifetimes and FRET from single molecules. Thirdly, we applied particle-based phasor-FLIM-FRET to investigate protein-protein interactions in subdiffraction HIV-1 viral particles. To do this, we first quantitatively compared the fluorescence brightness, lifetime, and photostability of different popular fluorescent protein-based FRET probes when genetically fused to the HIV-1 integrase enzyme in viral particles, and conclude that eGFP, mTurquoise2, and mScarlet perform best. Finally, for viral particles coexpressing FRET-donor/acceptor-labeled IN, we determined the absolute FRET efficiency of IN oligomers. Available in a convenient open-source graphical user interface, we believe that particle-based phasor-FLIM-FRET is a promising tool to provide detailed insights in samples suffering from low overall signal intensities.
Collapse
Affiliation(s)
- Quinten Coucke
- Molecular Imaging and Photonics Division, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Nagma Parveen
- Molecular Imaging and Photonics Division, Department of Chemistry, KU Leuven, Leuven, Belgium
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Guillermo Solís Fernández
- Molecular Imaging and Photonics Division, Department of Chemistry, KU Leuven, Leuven, Belgium
- UFIEC, National Institute of Health Carlos III, Madrid, Spain
| | - Chen Qian
- Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science Munich (CIPSM), and Nanosystems Initiative Munich (NIM), Ludwig Maximilians-Universität München, Munich, Germany
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Molecular Imaging and Photonics Division, Department of Chemistry, KU Leuven, Leuven, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| |
Collapse
|
15
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
16
|
Gohil K, Wu SY, Takahashi-Yamashiro K, Shen Y, Campbell RE. Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein. ACS Sens 2023; 8:587-597. [PMID: 36693235 DOI: 10.1021/acssensors.2c01730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are indispensable tools for monitoring biochemical changes in cells. Green and red fluorescent protein-based FRET pairs offer advantages over the classically employed cyan and yellow fluorescent protein pairs, such as better spectral separation, lower phototoxicity, and less autofluorescence. Here, we describe the development of an mScarlet-derived green fluorescent protein (designated as mWatermelon) and its use as a FRET donor to the red fluorescent protein mScarlet-I as a FRET acceptor. We tested the functionality of this FRET pair by engineering biosensors for the detection of protease activity, Ca2+, and K+. Furthermore, we described a strategy to enhance the FRET efficiency of these biosensors by modulating the intramolecular association between mWatermelon and mScarlet-I.
Collapse
Affiliation(s)
- Khyati Gohil
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.,Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Investigating Plant Protein-Protein Interactions Using FRET-FLIM with a Focus on the Actin Cytoskeleton. Methods Mol Biol 2023; 2604:353-366. [PMID: 36773249 DOI: 10.1007/978-1-0716-2867-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The study of protein-protein interactions is fundamental to understanding how actin-dependent processes are controlled through the regulation of actin-binding proteins by their interactors. FRET-FLIM (Förster resonance energy transfer-fluorescence lifetime imaging microscopy) is a sensitive bioimaging method to detect protein-protein interactions in living cells through measurement of FRET, facilitated by the interactions of fluorophore-tagged fusion protein. As a sensitive and noninvasive method for the spatiotemporal visualization of dynamic protein-protein interactions, FRET-FLIM holds several advantages over other methods of protein interaction assays. FRET-FLIM has been widely employed to characterize many plant protein interactions, including interactions between actin-regulatory proteins and their binding partners. As we increasingly understand the plant actin cytoskeleton to coordinate a diverse number of complex functions, the study of actin-regulatory proteins and their interactors becomes increasingly technically challenging. Sophisticated and sensitive in vivo methods such as FRET-FLIM are likely to be crucial to the study of protein-protein interactions as more complex and challenging hypotheses are addressed.
Collapse
|
18
|
Wang X, Teng C, Wei H, Liu S, Xuan H, Peng W, Li Q, Hao H, Lyu Q, Lyu S, Fan Y. Development of a set of novel binary expression vectors for plant gene function analysis and genetic transformation. FRONTIERS IN PLANT SCIENCE 2023; 13:1104905. [PMID: 36714700 PMCID: PMC9877630 DOI: 10.3389/fpls.2022.1104905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
With the advent of multiple omics and Genome-Wide Association Studies (GWAS) technology, genome-scale functional analysis of candidate genes is to be conducted in diverse plant species. Construction of plant binary expression vectors is the prerequisite for gene function analysis. Therefore, it is of significance to develop a set of plant binary expression vectors with highly efficient, inexpensive, and convenient cloning method, and easy-to-use in screening of positive recombinant in Escherichia coli. In this study, we developed a set of plant binary expression vectors, termed pBTR vectors, based on Golden Gate cloning using BsaI restriction site. Foreign DNA fragment of interest (FDI) can be cloned into the destination pBTR by one-step digestion-ligation reaction in a single tube, and even the FDI contains internal BsaI site(s). Markedly, in one digestion-ligation reaction, multiple FDIs (exemplified by cloning four soybean Glyma.02g025400, Glyma.05g201700, Glyma.06g165700, and Glyma.17g095000 genes) can be cloned into the pBTR vector to generate multiple corresponding expression constructs (each expression vector carrying an FDI). In addition, the pBTR vectors carry the visual marker, a brightness monomeric red fluorescent protein mScarlet-I, that can be observed with the unaided eye in screening of positive recombinants without the use of additional reagents/equipment. The reliability of the pBTR vectors was validated in plants by overexpression of AtMyb75/PAP1 in tomato and GUSPlus in soybean roots via Agrobacterium rhizogenes-mediated transformation, promoter activity analysis of AtGCSpro in Arabidopsis via A. tumefaciens-mediated transformation, and protein subcellular localization of the Vitis vinifera VvCEB1opt in tobacco, respectively. These results demonstrated that the pBTR vectors can be used in analysis of gene (over)expression, promoter activity, and protein subcellular localization. These vectors will contribute to speeding up gene function analysis and the process of plant molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shanhua Lyu
- *Correspondence: Shanhua Lyu, ; ; Yinglun Fan,
| | - Yinglun Fan
- *Correspondence: Shanhua Lyu, ; ; Yinglun Fan,
| |
Collapse
|
19
|
Ishizuka Y, Mergiya TF, Baldinotti R, Xu J, Hallin EI, Markússon S, Kursula P, Bramham CR. Development and Validation of Arc Nanobodies: New Tools for Probing Arc Dynamics and Function. Neurochem Res 2022; 47:2656-2666. [PMID: 35307777 PMCID: PMC9463278 DOI: 10.1007/s11064-022-03573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/06/2022]
Abstract
Activity-regulated cytoskeleton-associated (Arc) protein plays key roles in long-term synaptic plasticity, memory, and cognitive flexibility. However, an integral understanding of Arc mechanisms is lacking. Arc is proposed to function as an interaction hub in neuronal dendrites and the nucleus, yet Arc can also form retrovirus-like capsids with proposed roles in intercellular communication. Here, we sought to develop anti-Arc nanobodies (ArcNbs) as new tools for probing Arc dynamics and function. Six ArcNbs representing different clonal lines were selected from immunized alpaca. Immunoblotting with recombinant ArcNbs fused to a small ALFA-epitope tag demonstrated binding to recombinant Arc as well as endogenous Arc from rat cortical tissue. ALFA-tagged ArcNb also provided efficient immunoprecipitation of stimulus-induced Arc after carbachol-treatment of SH-SY5Y neuroblastoma cells and induction of long-term potentiation in the rat dentate gyrus in vivo. Epitope mapping showed that all Nbs recognize the Arc C-terminal region containing the retroviral Gag capsid homology domain, comprised of tandem N- and C-lobes. ArcNbs E5 and H11 selectively bound the N-lobe, which harbors a peptide ligand binding pocket specific to mammals. Four additional ArcNbs bound the region containing the C-lobe and C-terminal tail. For use as genetically encoded fluorescent intrabodies, we show that ArcNbs fused to mScarlet-I are uniformly expressed, without aggregation, in the cytoplasm and nucleus of HEK293FT cells. Finally, mScarlet-I-ArcNb H11 expressed as intrabody selectively bound the N-lobe and enabled co-immunoprecipitation of full-length intracellular Arc. ArcNbs are versatile tools for live-cell labeling and purification of Arc, and interrogation of Arc capsid domain specific functions.
Collapse
Affiliation(s)
- Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway.
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Tadiwos F Mergiya
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Center for Research on the Brain, University of Bergen, Bergen, Norway
| | - Rodolfo Baldinotti
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Center for Research on the Brain, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Sigurbjörn Markússon
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway.
- Mohn Center for Research on the Brain, University of Bergen, Bergen, Norway.
| |
Collapse
|
20
|
Sokolinskaya EL, Putlyaeva LV, Polinovskaya VS, Lukyanov KA. Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro. Int J Mol Sci 2022; 23:ijms23147826. [PMID: 35887174 PMCID: PMC9318946 DOI: 10.3390/ijms23147826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for the real-time detection of PLpro activity in live cells. The first sensor was based on the Förster resonance energy transfer (FRET) between the red fluorescent protein mScarlet as a donor and the biliverdin-binding near-infrared fluorescent protein miRFP670 as an acceptor. A linker with the PLpro recognition site LKGG in between made this FRET pair sensitive to PLpro cleavage. Upon the co-expression of mScarlet-LKGG-miRFP670 and PLpro in HeLa cells, we observed a gradual increase in the donor fluorescence intensity of about 1.5-fold. In the second sensor, both PLpro and its target—green mNeonGreen and red mScarletI fluorescent proteins separated by an LKGG-containing linker—were attached to the endoplasmic reticulum (ER) membrane. Upon cleavage by PLpro, mScarletI diffused from the ER throughout the cell. About a two-fold increase in the nucleus/cytoplasm ratio was observed as a result of the PLpro action. We believe that the new PLpro sensors can potentially be used to detect the earliest stages of SARS-CoV-2 propagation in live cells as well as for the screening of PLpro inhibitors.
Collapse
|
21
|
In vitro single molecule and bulk phase studies reveal the AP-1 transcription factor cFos binds to DNA without its partner cJun. J Biol Chem 2022; 298:102229. [PMID: 35787376 PMCID: PMC9364023 DOI: 10.1016/j.jbc.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The AP-1 transcription factor family crucially regulates progression of the cell cycle, as well as playing roles in proliferation, differentiation, and the stress response. The two best described AP-1 family members, cFos and cJun, are known to dimerize to form a functional AP-1 heterodimer that binds to a consensus response element sequence. Although cJun can also homodimerize and bind to DNA, the canonical view is that cFos cannot bind DNA without heterodimerizing with cJun. Here, we show that cFos can actually bind to DNA in the absence of cJun in vitro. Using dual color single molecule imaging of cFos alone, we directly visualize binding to and movement on DNA. Of all these DNA-bound proteins, detailed analysis suggested 30 to 46% were homodimers. Furthermore, we constructed fluorescent protein fusions of cFos and cJun for Förster resonance energy transfer experiments. These constructs indicated complete dimerization of cJun, but although cFos could dimerize, its extent was reduced. Finally, to provide orthogonal confirmation of cFos binding to DNA, we performed bulk-phase circular dichroism experiments that showed clear structural changes in DNA; these were found to be specific to the AP-1 consensus sequence. Taken together, our results clearly show cFos can interact with DNA both as monomers and dimers independently of its archetypal partner, cJun.
Collapse
|
22
|
Thornton MA, Futia GL, Stockton ME, Ozbay BN, Kilborn K, Restrepo D, Gibson EA, Hughes EG. Characterization of red fluorescent reporters for dual-color in vivo three-photon microscopy. NEUROPHOTONICS 2022; 9:031912. [PMID: 35496497 PMCID: PMC9047442 DOI: 10.1117/1.nph.9.3.031912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Significance: Three-photon (3P) microscopy significantly increases the depth and resolution of in vivo imaging due to decreased scattering and nonlinear optical sectioning. Simultaneous excitation of multiple fluorescent proteins is essential to studying multicellular interactions and dynamics in the intact brain. Aim: We characterized the excitation laser pulses at a range of wavelengths for 3P microscopy, and then explored the application of tdTomato or mScarlet and EGFP for dual-color single-excitation structural 3P imaging deep in the living mouse brain. Approach: We used frequency-resolved optical gating to measure the spectral intensity, phase, and retrieved pulse widths at a range of wavelengths. Then, we performed in vivo single wavelength-excitation 3P imaging in the 1225- to 1360-nm range deep in the mouse cerebral cortex to evaluate the performance of tdTomato or mScarlet in combination with EGFP. Results: We find that tdTomato and mScarlet, expressed in oligodendrocytes and neurons respectively, have a high signal-to-background ratio in the 1300- to 1360-nm range, consistent with enhanced 3P cross-sections. Conclusions: These results suggest that a single excitation wavelength source is advantageous for multiple applications of dual-color brain imaging and highlight the importance of empirical characterization of individual fluorophores for 3P microscopy.
Collapse
Affiliation(s)
- Michael A. Thornton
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Gregory L. Futia
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Michael E. Stockton
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Baris N. Ozbay
- Intelligent Imaging Innovations (3i), Denver, Colorado, United States
| | - Karl Kilborn
- Intelligent Imaging Innovations (3i), Denver, Colorado, United States
| | - Diego Restrepo
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| | - Emily A. Gibson
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Ethan G. Hughes
- University of Colorado Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Neuroscience Program, Aurora, Colorado, United States
| |
Collapse
|
23
|
Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. mSphere 2022; 7:e0013222. [PMID: 35638354 PMCID: PMC9241537 DOI: 10.1128/msphere.00132-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial pathogen Clostridioides difficile causes gastroenteritis by producing toxins and transmits disease by making resistant spores. Toxin and spore production are energy-expensive processes that are regulated by multiple transcription factors in response to many environmental inputs. While toxin and sporulation genes are both induced in only a subset of C. difficile cells, the relationship between these two subpopulations remains unclear. To address whether C. difficile coordinates the generation of these subpopulations, we developed a dual-transcriptional-reporter system that allows toxin and sporulation gene expression to be simultaneously visualized at the single-cell level using chromosomally encoded mScarlet and mNeonGreen fluorescent transcriptional reporters. We then adapted an automated image analysis pipeline to quantify toxin and sporulation gene expression in thousands of individual cells under different medium conditions and in different genetic backgrounds. These analyses revealed that toxin and sporulation gene expression rarely overlap during growth on agar plates, whereas broth culture increases this overlap. Our results suggest that certain growth conditions promote a “division of labor” between transmission and virulence gene expression, highlighting how environmental inputs influence these subpopulations. Our data further suggest that the RstA transcriptional regulator skews the population to activate sporulation genes rather than toxin genes. Given that recent work has revealed population-wide heterogeneity for numerous cellular processes in C. difficile, we anticipate that our dual-reporter system will be broadly useful for determining the overlap between these subpopulations. IMPORTANCEClostridioides difficile is an important nosocomial pathogen that causes severe diarrhea by producing toxins and transmits disease by producing spores. While both processes are crucial for C. difficile disease, only a subset of cells express toxins and/or undergo sporulation. Whether C. difficile coordinates the subset of cells inducing these energy-expensive processes remains unknown. To address this question, we developed a dual-fluorescent-reporter system coupled with an automated image analysis pipeline to rapidly compare the expression of two genes of interest across thousands of cells. Using this system, we discovered that certain growth conditions, particularly growth on agar plates, induce a “division of labor” between toxin and sporulation gene expression. Since C. difficile exhibits phenotypic heterogeneity for numerous vital cellular processes, this novel dual-reporter system will enable future studies aimed at understanding how C. difficile coordinates various subpopulations throughout its infectious disease cycle.
Collapse
|
24
|
Abstract
Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed thanks to machine learning methods and improved computational resources. This greatly facilitates the online adaptation of microscopy experimental plans using real-time information of the observed systems and their environments. Applications in which reactiveness is needed are multifarious. Here we report MicroMator, an open and flexible software for defining and driving reactive microscopy experiments. It provides a Python software environment and an extensible set of modules that greatly facilitate the definition of events with triggers and effects interacting with the experiment. We provide a pedagogic example performing dynamic adaptation of fluorescence illumination on bacteria, and demonstrate MicroMator’s potential via two challenging case studies in yeast to single-cell control and single-cell recombination, both requiring real-time tracking and light targeting at the single-cell level. In microscopy, applications in which reactiveness is needed are multifarious. Here the authors report MicroMator, a Python software package for reactive experiments, which they use for applications requiring real-time tracking and light-targeting at the single-cell level.
Collapse
|
25
|
Pradhan S, Hendricks M. Observing and Quantifying Fluorescent Reporters. Methods Mol Biol 2022; 2468:73-87. [PMID: 35320561 DOI: 10.1007/978-1-0716-2181-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genetically encoded fluorescent reporters take advantage of C. elegans' transparency to allow non-invasive, in vivo observation, and recording of physiological processes in intact animals. Here, we discuss the basic microscope components required to observe, image, and measure fluorescent proteins in live animals for students and researchers who work with C. elegans but have limited experience with fluorescence imaging and analysis.
Collapse
Affiliation(s)
- Sreeparna Pradhan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
26
|
Mujawar A, De A. In Vivo Assessment of Protein-Protein Interactions Using BRET Assay. Methods Mol Biol 2022; 2525:239-257. [PMID: 35836073 DOI: 10.1007/978-1-0716-2473-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins play an important part in almost all life activities and across all organisms. Proteins occasionally act on their own but rather fulfill most of their biological tasks by cooperating with other proteins or ligand molecules. The bioluminescence resonance energy transfer (BRET) assay serves to measure dynamic events such as protein-protein or protein-ligand interactions in vitro or in-vivo. With several inherent attributes such as rapid and fairly sensitive ratio-metric measurements, assessment of interactions irrespective of protein location within the cellular compartment, cost-effectiveness consenting to high-throughput screening compatibility, makes BRET a popular genetic reporter-based assay system for protein-protein interaction (PPI) studies. Based on the Förster principle, BRET allows to judge if the proximity has been achieved between the interacting partners. In recent years, the BRET application has emerged as a significantly versatile assay format by using multiple detection devices such as a plate reader or in-vivo optical imaging platform, or even a bioluminescence microscope has expanded its scope for advancing PPI studies. Beyond the scope of quantitative measurement of PPIs, molecular optical imaging applications based on BRET assay have expanded the scope for screening pharmacological compounds by unifying live cell and in-vivo animal-/plant-based experiments using the same platform technology. In this chapter, we have given intricate methodological details for performing in-vitro and in-vivo BRET experiments, primarily by using donor/acceptor reporter protein combinations.
Collapse
Affiliation(s)
- Aaiyas Mujawar
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India.
| |
Collapse
|
27
|
OsFH3 Encodes a Type II Formin Required for Rice Morphogenesis. Int J Mol Sci 2021; 22:ijms222413250. [PMID: 34948047 PMCID: PMC8706662 DOI: 10.3390/ijms222413250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
The actin cytoskeleton is crucial for plant morphogenesis, and organization of actin filaments (AF) is dynamically regulated by actin-binding proteins. However, the roles of actin-binding proteins, particularly type II formins, in this process remain poorly understood in plants. Here, we report that a type II formin in rice, Oryza sativa formin homolog 3 (OsFH3), acts as a major player to modulate AF dynamics and contributes to rice morphogenesis. osfh3 mutants were semi-dwarf with reduced size of seeds and unchanged responses to light or gravity compared with mutants of osfh5, another type II formin in rice. osfh3 osfh5 mutants were dwarf with more severe developmental defectiveness. Recombinant OsFH3 could nucleate actin, promote AF bundling, and cap the barbed end of AF to prevent elongation and depolymerization, but in the absence of profilin, OsFH3 could inhibit AF elongation. Different from other reported type II formins, OsFH3 could bind, but not bundle, microtubules directly. Furthermore, its N-terminal phosphatase and tensin homolog domain played a key role in modulating OsFH3 localization at intersections of AF and punctate structures of microtubules, which differed from other reported plant formins. Our results, thus, provide insights into the biological function of type II formins in modulating plant morphology by acting on AF dynamics.
Collapse
|
28
|
Miyagi T, Yamanaka Y, Harada Y, Narumi S, Hayamizu Y, Kuroda M, Kanekura K. An improved macromolecular crowding sensor CRONOS for detection of crowding changes in membrane-less organelles under stressed conditions. Biochem Biophys Res Commun 2021; 583:29-34. [PMID: 34717122 DOI: 10.1016/j.bbrc.2021.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Membrane-less organelles (MLOs) formed by liquid-liquid phase separation (LLPS) play pivotal roles in biological processes. During LLPS, proteins and nucleotides are extremely condensed, resulting in changes in their conformation and biological functions. Disturbed LLPS homeostasis in MLOs is thought to associate with fatal diseases such as amyotrophic lateral sclerosis. Therefore, it is important to detect changes in the degree of crowding in MLOs. However, it has not been investigated well due to the lack of an appropriate method. To address this, we developed a genetically encoded macromolecular crowding sensor CRONOS (crowding sensor with mNeonGreen and mScarlet-I) that senses the degree of macromolecular crowding in MLOs using a fluorescence resonance energy transfer (FRET) system. CRONOS is a bright biosensor with a wide dynamic range and successfully detects changes in the macromolecular volume fraction in solution. By fusing to the scaffold protein of each MLO, we delivered CRONOS to MLO of interest and detected previously undescribed differences in the degree of crowding in each MLO. CRONOS also detected changes in the degree of macromolecular crowding in nucleolus induced by environmental stress or inhibition of transcription. These findings suggest that CRONOS can be a useful tool for the determination of molecular crowding and detection of pathological changes in MLOs in live cells.
Collapse
Affiliation(s)
- Tamami Miyagi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yoshiaki Yamanaka
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yuichiro Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
29
|
Zhang D, Redington E, Gong Y. Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins. Commun Biol 2021; 4:924. [PMID: 34326458 PMCID: PMC8322158 DOI: 10.1038/s42003-021-02452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Ratiometric genetically encoded calcium indicators (GECIs) record neural activity with high brightness while mitigating motion-induced artifacts. Recently developed ratiometric GECIs primarily employ cyan and yellow-fluorescent fluorescence resonance energy transfer pairs, and thus fall short in some applications that require deep tissue penetration and resistance to photobleaching. We engineered a set of green-red ratiometric calcium sensors that fused two fluorescent proteins and calcium sensing domain within an alternate configuration. The best performing elements of this palette of sensors, Twitch-GR and Twitch-NR, inherited the superior photophysical properties of their constituent fluorescent proteins. These properties enabled our sensors to outperform existing ratiometric calcium sensors in brightness and photobleaching metrics. In turn, the shot-noise limited signal fidelity of our sensors when reporting action potentials in cultured neurons and in the awake behaving mice was higher than the fidelity of existing sensors. Our sensor enabled a regime of imaging that simultaneously captured neural structure and function down to the deep layers of the mouse cortex.
Collapse
Affiliation(s)
- Diming Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Emily Redington
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Couch T, Berger K, Kneisley DL, McCullock TW, Kammermeier P, Maclean DM. Topography and motion of acid-sensing ion channel intracellular domains. eLife 2021; 10:68955. [PMID: 34292153 PMCID: PMC8341984 DOI: 10.7554/elife.68955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 01/12/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by decreases in extracellular pH. The intracellular N and C terminal tails of ASIC1 influence channel gating, trafficking, and signaling in ischemic cell death. Despite several X-ray and cryo-EM structures of the extracellular and transmembrane segments of ASIC1, these important intracellular tails remain unresolved. Here, we describe the coarse topography of the chicken ASIC1 intracellular domains determined by fluorescence resonance energy transfer (FRET), measured using either fluorescent lifetime imaging or patch clamp fluorometry. We find the C terminal tail projects into the cytosol by approximately 35 Å and that the N and C tails from the same subunits are closer than adjacent subunits. Using pH-insensitive fluorescent proteins, we fail to detect any relative movement between the N and C tails upon extracellular acidification but do observe axial motions of the membrane proximal segments toward the plasma membrane. Taken together, our study furnishes a coarse topographic map of the ASIC intracellular domains while providing directionality and context to intracellular conformational changes induced by extracellular acidification.
Collapse
Affiliation(s)
- Tyler Couch
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, Reno, United States
| | - Kyle Berger
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| | - Dana L Kneisley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| | - Tyler W McCullock
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, Reno, United States
| | - Paul Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| | - David M Maclean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, United States
| |
Collapse
|
31
|
Efremova MV, Bodea SV, Sigmund F, Semkina A, Westmeyer GG, Abakumov MA. Genetically Encoded Self-Assembling Iron Oxide Nanoparticles as a Possible Platform for Cancer-Cell Tracking. Pharmaceutics 2021; 13:pharmaceutics13030397. [PMID: 33809789 PMCID: PMC8002387 DOI: 10.3390/pharmaceutics13030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
The study of growth and possible metastasis in animal models of tumors would benefit from reliable cell labels for noninvasive whole-organism imaging techniques such as magnetic resonance imaging. Genetically encoded cell-tracking reporters have the advantage that they are contrast-selective for viable cells with intact protein expression machinery. Besides, these reporters do not suffer from dilution during cell division. Encapsulins, which are bacterial protein nanocompartments, can serve as genetically controlled labels for multimodal detection of cells. Such nanocompartments can host various guest molecules inside their lumen. These include, for example, fluorescent proteins or enzymes with ferroxidase activity leading to biomineralization of iron oxide inside the encapsulin nanoshell. The aim of this work was to implement heterologous expression of encapsulin systems from Quasibacillus thermotolerans using the fluorescent reporter protein mScarlet-I and ferroxidase IMEF in the human hepatocellular carcinoma cell line HepG2. The successful expression of self-assembled encapsulin nanocompartments with functional cargo proteins was confirmed by fluorescence microscopy and transmission electron microscopy. Also, coexpression of encapsulin nanoshells, ferroxidase cargo, and iron transporter led to an increase in T2-weighted contrast in magnetic resonance imaging of HepG2 cells. The results demonstrate that the encapsulin cargo system from Q. thermotolerans may be suitable for multimodal imaging of cancer cells and could contribute to further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria V. Efremova
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| | - Silviu-Vasile Bodea
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Felix Sigmund
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Gil G. Westmeyer
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| |
Collapse
|
32
|
Sherwood LJ, Hayhurst A. Toolkit for Quickly Generating and Characterizing Molecular Probes Specific for SARS-CoV-2 Nucleocapsid as a Primer for Future Coronavirus Pandemic Preparedness. ACS Synth Biol 2021; 10:379-390. [PMID: 33534552 PMCID: PMC7875338 DOI: 10.1021/acssynbio.0c00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/31/2022]
Abstract
Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from E. coli, to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC50 in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and in silico immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.
Collapse
Affiliation(s)
- Laura Jo Sherwood
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Andrew Hayhurst
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
33
|
Doh JK, Tobin SJ, Beatty KE. MiniVIPER Is a Peptide Tag for Imaging and Translocating Proteins in Cells. Biochemistry 2020; 59:3051-3059. [PMID: 32786411 DOI: 10.1021/acs.biochem.0c00526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microscopy allows researchers to interrogate proteins within a cellular context. To deliver protein-specific contrast, we developed a new class of genetically encoded peptide tags called versatile interacting peptide (VIP) tags. VIP tags deliver a reporter to a target protein via the formation of a heterodimer between the peptide tag and an exogenously added probe peptide. We report herein a new VIP tag named MiniVIPER, which is comprised of a MiniE-MiniR heterodimer. We first demonstrated the selectivity of MiniVIPER by labeling three cellular targets: transferrin receptor 1 (TfR1), histone protein H2B, and the mitochondrial protein TOMM20. We showed that either MiniE or MiniR could serve as the genetically encoded tag. Next, we demonstrated MiniVIPER's versatility by generating five spectrally distinct probe peptides to label tagged TfR1 on live cells. Lastly, we demonstrated two new applications for VIP tags. First, we used MiniVIPER in combination with another VIP tag, VIPER, to selectively label two different proteins in a single cell (e.g., TfR1 with H2B or TOMM20). Second, we used MiniVIPER to translocate a fluorescent protein to the nucleus through in situ dimerization of mCherry with H2B-mEmerald. In summary, MiniVIPER is a new peptide tag that enables multitarget imaging and artificial dimerization of proteins in cells.
Collapse
Affiliation(s)
- Julia K Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Savannah J Tobin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kimberly E Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|