1
|
Knapp RA, Wilber MQ, Joseph MB, Smith TC, Grasso RL. Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease. Nat Commun 2024; 15:9436. [PMID: 39543126 PMCID: PMC11564713 DOI: 10.1038/s41467-024-53608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and most R. sierrae populations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.
Collapse
Affiliation(s)
- Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA.
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA.
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Maxwell B Joseph
- Earth Lab, University of Colorado, Boulder, CO, 80303, USA
- Planet, San Francisco, CA, 94107, USA
| | - Thomas C Smith
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA
- Earth Research Institute, University of California, Santa Barbara, CA, 93106-3060, USA
| | - Robert L Grasso
- Resources Management and Science Division, Yosemite National Park, El Portal, CA, 95318, USA
| |
Collapse
|
2
|
Johnson PTJ, Malawauw RJ, Piaskowy J, Calhoun DM, Kohl Z, ter Horst LJV, Zelmer DA. Emergence of black spot syndrome in Caribbean reefs: a century of fish collections reveal long-term increases in Scaphanocephalus infection. Proc Biol Sci 2024; 291:20242065. [PMID: 39532135 PMCID: PMC11557228 DOI: 10.1098/rspb.2024.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Despite evidence that certain diseases of marine wildlife are increasing, long-term infection data are often lacking. Archived samples of hosts from natural history collections offer a powerful tool for evaluating temporal changes in parasitism. Using vouchered fish collections from the Southern Caribbean, we investigated long-term (1905-2022) shifts in infections by the trematode Scaphanocephalus spp., which causes black spot syndrome (BSS) in reef fishes. Examination of 190 museum-preserved fishes from Curaçao and Bonaire revealed that Scaphanocephalus infections are not new, with histologically confirmed detections from as early as 1948. However, Scaphanocephalus was rare among archival surgeonfish and parrotfishes, with an infection prevalence of <10% and an average abundance of 0.25 metacercariae per fish. Contemporary collections of 258 ocean surgeonfish and parrotfishes (7 species) supported a 7-fold higher prevalence (71%) and a 49-fold higher abundance (12.1). These findings offer evidence that infections by Scaphanocephalus spp. have increased substantially over the past century and underscore the value of biological repositories in the study of emerging parasites within marine ecosystems. We emphasize the need for additional research to evaluate the geographical extent of BSS emergence, test proposed hypotheses related to shifts in host density or environmental characteristics and assess the consequences for affected species.
Collapse
Affiliation(s)
| | - Rémon J. Malawauw
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Julia Piaskowy
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dana M. Calhoun
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Zachary Kohl
- Department of Biology, Chemeketa Community College, Salem, OR, USA
| | - Lars J. V. ter Horst
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Derek A. Zelmer
- Department of Biological, Environmental and Earth Sciences, University of South Carolina Aiken, Aiken, SC, USA
| |
Collapse
|
3
|
Byrne AQ. What Can Frogs Teach Us about Resilience? Adaptive Renewal in Amphibian and Academic Ecosystems. Integr Comp Biol 2024; 64:795-806. [PMID: 38821517 DOI: 10.1093/icb/icae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Examples of resilience in nature give us hope amid a growing biodiversity crisis. While resilience has many definitions across disciplines, here I discuss resilience as the ability to continue to adapt and persist. Naturally, as biologists, we seek to uncover the underlying mechanisms that can help us explain the secrets of resilience across scales, from individuals to species to ecosystems and beyond. Perhaps we also ponder what the secrets to resilience are in our own lives, in our own research practices, and academic communities. In this paper, I highlight insights gained through studies of amphibian resilience following a global disease outbreak to uncover shared patterns and processes linked to resilience across amphibian communities. I also reflect on how classical resilience heuristics could be more broadly applied to these processes and to our own academic communities. Focusing on the amphibian systems that I have worked in-the Golden Frogs of Panama (Atelopus zeteki/varius) and the Mountain Yellow-Legged Frogs of California (Rana muscosa/sierrae)-I highlight shared and unique characteristics of resilience across scales and systems and discuss how these relate to adaptive renewal cycles. Reflecting on this work and previous resilience scholarship, I also offer my own thoughts about academia and consider what lessons we could take from mapping our own adaptive trajectories and addressing threats to our own community resilience.
Collapse
Affiliation(s)
- Allison Q Byrne
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J, Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG, Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL, Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. Chytrid infections exhibit historical spread and contemporary seasonality in a declining stream-breeding frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231270. [PMID: 38298390 PMCID: PMC10827429 DOI: 10.1098/rsos.231270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis (Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints from R. boylii museum specimens (collected 1897-2005) and field samples (2005-2021) spanning 9° of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes. We detected eight high-prevalence geographical clusters through time that span the species' geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end of the dry season. Through a holistic assessment of relationships between infection risk, geographical context and time, we identify the locations and time periods where Bd mitigation and monitoring will be critical for conservation of this imperilled species.
Collapse
Affiliation(s)
- A. M. Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - R. A. Peek
- California Department of Fish and Wildlife, West Sacramento, CA, USA
| | - A. J. Adams
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - I. D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - M. E. De León
- Genome Center, University of California, Davis, CA, USA
| | - M. J. Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - J. Bettaso
- Six Rivers National Forest, Lower Trinity Ranger District, USDA Forest Service, P.O. Box 68, Willow Creek, CA, USA
| | | | - A. Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - D. A. Grear
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - B. J. Halstead
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - P. G. Johnson
- Pinnacles National Park, National Park Service, Paicines, CA, USA
| | - P. M. Kleeman
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - M. S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA
| | - C. W. Koppl
- Plumas National Forest, USDA Forest Service, Quincy, CA, USA
| | | | | | - J. Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - K. L. Pope
- Pacific Southwest Research Station, USDA Forest Service, Arcata, CA, USA
| | - V. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - M. Westphal
- Central Coast Field Office, United States Bureau of Land Management, Marina, CA, USA
| | - K. Wiseman
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - S. J. Kupferberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Ghose SL, Yap TA, Byrne AQ, Sulaeman H, Rosenblum EB, Chan-Alvarado A, Chaukulkar S, Greenbaum E, Koo MS, Kouete MT, Lutz K, McAloose D, Moyer AJ, Parra E, Portik DM, Rockney H, Zink AG, Blackburn DC, Vredenburg VT. Continent-wide recent emergence of a global pathogen in African amphibians. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1069490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
IntroductionEmerging infectious diseases are increasingly recognized as a global threat to wildlife. Pandemics in amphibians, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have resulted in biodiversity loss at a global scale. Genomic data suggest a complex evolutionary history of Bd lineages that vary in pathogenicity. Africa harbors a significant proportion of global amphibian biodiversity, and multiple Bd lineages are known to occur there; yet, despite the decline of many host species, there are currently no described Bd-epizootics. Here, we describe the historical and recent biogeographical spread of Bd and assess its risk to amphibians across the continent of Africa.MethodsWe provide a 165-year view of host-pathogen interactions by (i) employing a Bd assay to test 4,623 specimens (collected 1908–2013); (ii) compiling 12,297 published Bd records (collected 1852–2017); (iii) comparing the frequency of Bd-infected amphibians through time by both country and region; (iv) genotyping Bd lineages; (v) histologically identifying evidence of chytridiomycosis, and (vi) using a habitat suitability model to assess future Bd risk.ResultsWe found a pattern of Bd emergence beginning largely at the turn of the century. From 1852–1999, we found low Bd prevalence (3.2% overall) and limited geographic spread, but after 2000 we documented a sharp increase in prevalence (18.7% overall), wider geographic spread, and multiple Bd lineages that may be responsible for emergence in different regions. We found that Bd risk to amphibians was highest in much of eastern, central, and western Africa.DiscussionOur study documents a largely overlooked yet significant increase in a fungal pathogen that could pose a threat to amphibians across an entire continent. We emphasize the need to bridge historical and contemporary datasets to better describe and predict host-pathogen dynamics over larger temporal scales.
Collapse
|
6
|
Wilber MQ, Knapp RA, Smith TC, Briggs CJ. Host density has limited effects on pathogen invasion, disease-induced declines and within-host infection dynamics across a landscape of disease. J Anim Ecol 2022; 91:2451-2464. [PMID: 36285540 DOI: 10.1111/1365-2656.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
1. Host density is hypothesized to be a major driver of variability in the responses and outcomes of wildlife populations following pathogen invasion. While the effects of host density on pathogen transmission have been extensively studied, these studies are dominated by theoretical analyses and small-scale experiments. This focus leads to an incomplete picture regarding how host density drives observed variability in disease outcomes in the field. 2. Here, we leveraged a dataset of hundreds of replicate amphibian populations that varied by orders of magnitude in host density. We used these data to test the effects of host density on three outcomes following the arrival of the amphibian-killing fungal pathogen Batrachochytrium dendrobatidis (Bd): the probability that Bd successfully invaded a host population and led to a pathogen outbreak, the magnitude of the host population-level decline following an outbreak and within-host infection dynamics that drive population-level outcomes in amphibian-pathogen systems. 3. Based on previous small-scale transmission experiments, we expected that populations with higher densities would be more likely to experience Bd outbreaks and would suffer larger proportional declines following outbreaks. To test these predictions, we developed and fitted a Hidden Markov Model that accounted for imperfectly observed disease outbreak states in the amphibian populations we surveyed. 4. Contrary to our predictions, we found minimal effects of host density on the probability of successful Bd invasion, the magnitude of population decline following Bd invasion and the dynamics of within-host infection intensity. Environmental conditions, such as summer temperature, winter severity and the presence of pathogen reservoirs, were more predictive of variability in disease outcomes. 5. Our results highlight the limitations of extrapolating findings from small-scale transmission experiments to observed disease trajectories in the field and provide strong evidence that variability in host density does not necessarily drive variability in host population responses following pathogen arrival. In an applied context, we show that feedbacks between host density and disease will not necessarily affect the success of reintroduction efforts in amphibian-Bd systems of conservation concern.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Roland A Knapp
- Earth Research Institute, University of California, Santa Barbara, California, USA
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, USA
| | - Thomas C Smith
- Earth Research Institute, University of California, Santa Barbara, California, USA
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, USA
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
7
|
Schmeller DS, Cheng T, Shelton J, Lin CF, Chan-Alvarado A, Bernardo-Cravo A, Zoccarato L, Ding TS, Lin YP, Swei A, Fisher MC, Vredenburg VT, Loyau A. Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan). Sci Rep 2022; 12:16456. [PMID: 36180528 PMCID: PMC9525630 DOI: 10.1038/s41598-022-20547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that the origins of the panzootic amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are in Asia. In Taiwan, an island hotspot of high amphibian diversity, no amphibian mass mortality events linked to Bd or Bsal have been reported. We conducted a multi-year study across this subtropical island, sampling 2517 individuals from 30 species at 34 field sites, between 2010 and 2017, and including 171 museum samples collected between 1981 and 2009. We analyzed the skin microbiome of 153 samples (6 species) from 2017 in order to assess any association between the amphibian skin microbiome and the probability of infection amongst different host species. We did not detect Bsal in our samples, but found widespread infection by Bd across central and northern Taiwan, both taxonomically and spatially. Museum samples show that Bd has been present in Taiwan since at least 1990. Host species, geography (elevation), climatic conditions and microbial richness were all associated with the prevalence of infection. Host life-history traits, skin microbiome composition and phylogeny were associated with lower prevalence of infection for high altitude species. Overall, we observed low prevalence and burden of infection in host populations, suggesting that Bd is enzootic in Taiwan where it causes subclinical infections. While amphibian species in Taiwan are currently threatened by habitat loss, our study indicates that Bd is in an endemic equilibrium with the populations and species we investigated. However, ongoing surveillance of the infection is warranted, as changing environmental conditions may disturb the currently stable equilibrium.
Collapse
Affiliation(s)
- Dirk S Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Tina Cheng
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Bat Conservation International, Washington, DC, USA
| | - Jennifer Shelton
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, Jiji, Nantou, Taiwan, ROC
| | - Alan Chan-Alvarado
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Adriana Bernardo-Cravo
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Luca Zoccarato
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Tzung-Su Ding
- School of Forestry and Resource Conservation, National Taiwan University, Taipei City, 106, Taiwan, ROC
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Andrea Swei
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany.
| |
Collapse
|
8
|
Cowgill M, Zink AG, Sparagon W, Yap TA, Sulaeman H, Koo MS, Vredenburg VT. Social Behavior, Community Composition, Pathogen Strain, and Host Symbionts Influence Fungal Disease Dynamics in Salamanders. Front Vet Sci 2021; 8:742288. [PMID: 34938792 PMCID: PMC8687744 DOI: 10.3389/fvets.2021.742288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
The emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae, and the arboreal salamander, Aneides lugubris. We (1) conduct a retrospective Bd-infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920–1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% (B. luciae and A. lugubris, respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014–2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd-caused mortality (88 and 71% for B. luciae and A. lugubris, respectively). Our GLM revealed that Bd-infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics.
Collapse
Affiliation(s)
- Mae Cowgill
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Wesley Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, UUniversity of Hawai'i at Mānoa, HI, United States
| | - Tiffany A Yap
- Center for Biological Diversity, Oakland, CA, United States
| | - Hasan Sulaeman
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Koo MS, Vredenburg VT, Deck JB, Olson DH, Ronnenberg KL, Wake DB. Tracking, Synthesizing, and Sharing Global Batrachochytrium Data at AmphibianDisease.org. Front Vet Sci 2021; 8:728232. [PMID: 34692807 PMCID: PMC8527349 DOI: 10.3389/fvets.2021.728232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd-Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data (Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal. Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal (https://amphibiandisease.org) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd-Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories.
Collapse
Affiliation(s)
- Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States.,Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - John B Deck
- Berkeley Natural History Museums, University of California, Berkeley, Berkeley, CA, United States
| | - Deanna H Olson
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - Kathryn L Ronnenberg
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - David B Wake
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
10
|
Ellison S, Knapp R, Vredenburg V. Longitudinal patterns in the skin microbiome of wild, individually marked frogs from the Sierra Nevada, California. ISME COMMUNICATIONS 2021; 1:45. [PMID: 37938625 PMCID: PMC9723788 DOI: 10.1038/s43705-021-00047-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 05/29/2023]
Abstract
The amphibian skin microbiome has been the focus of numerous studies because of the protective effects that some bacteria provide against the pathogenic fungus Batrachochytrium dendrobatidis, which has caused a global panzootic among amphibians. However, the mechanisms driving community structure and function in the amphibian skin microbiome are still poorly understood, and longitudinal analyses of the skin microbiome have not yet been conducted in wild populations. In this study, we investigate longitudinal patterns in the skin microbiome of 19 individually marked adult frogs from two wild populations of the endangered Sierra Nevada yellow-legged frog (Rana sierrae), sampled over the course of 2 years. We found that individuals with low bacterial diversity (dominated by order Burkhorderiales) had significantly more stable bacterial communities than those with higher diversity. Amplicon sequence variants (ASVs) with high relative abundance were significantly less transient than those with low relative abundance, and ASVs with intermediate-level relative abundances experienced the greatest volatility over time. Based on these results, we suggest that efforts to develop probiotic treatments to combat B. dendrobatidis should focus on bacteria that are found at high relative abundances in some members of a population, as these strains are more likely to persist and remain stable in the long term.
Collapse
Affiliation(s)
- Silas Ellison
- Department of Biology, San Francisco State University, San Francisco, California, USA.
| | - Roland Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
| | - Vance Vredenburg
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Rothstein AP, Byrne AQ, Knapp RA, Briggs CJ, Voyles J, Richards-Zawacki CL, Rosenblum EB. Divergent regional evolutionary histories of a devastating global amphibian pathogen. Proc Biol Sci 2021; 288:20210782. [PMID: 34157877 PMCID: PMC8220259 DOI: 10.1098/rspb.2021.0782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Emerging infectious diseases are a pressing threat to global biological diversity. Increased incidence and severity of novel pathogens underscores the need for methodological advances to understand pathogen emergence and spread. Here, we use genetic epidemiology to test, and challenge, key hypotheses about a devastating zoonotic disease impacting amphibians globally. Using an amplicon-based sequencing method and non-invasive samples we retrospectively explore the history of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two emblematic amphibian systems: the Sierra Nevada of California and Central Panama. The hypothesis in both regions is the hypervirulent Global Panzootic Lineage of Bd (BdGPL) was recently introduced and spread rapidly in a wave-like pattern. Our data challenge this hypothesis by demonstrating similar epizootic signatures can have radically different underlying evolutionary histories. In Central Panama, our genetic data confirm a recent and rapid pathogen spread. However, BdGPL in the Sierra Nevada has remarkable spatial structuring, high genetic diversity and a relatively older history inferred from time-dated phylogenies. Thus, this deadly pathogen lineage may have a longer history in some regions than assumed, providing insights into its origin and spread. Overall, our results highlight the importance of integrating observed wildlife die-offs with genetic data to more accurately reconstruct pathogen outbreaks.
Collapse
Affiliation(s)
- Andrew P Rothstein
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA.,Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Cheryl J Briggs
- Earth Research Institute, University of California, Santa Barbara, CA, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
|
13
|
Basanta MD, Byrne AQ, Rosenblum EB, Piovia-Scott J, Parra-Olea G. Early presence of Batrachochytrium dendrobatidis in Mexico with a contemporary dominance of the global panzootic lineage. Mol Ecol 2020; 30:424-437. [PMID: 33205419 DOI: 10.1111/mec.15733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/13/2023]
Abstract
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a devastating infectious disease of amphibians. Retrospective studies using museum vouchers and genetic samples supported the hypothesis that Bd colonized Mexico from North America and then continued to spread into Central and South America, where it led to dramatic losses in tropical amphibian biodiversity (the epizootic wave hypothesis). While these studies suggest that Bd has been in Mexico since the 1970s, information regarding the historical and contemporary occurrence of different pathogen genetic lineages across the country is limited. In the current study, we investigated the historical and contemporary patterns of Bd in Mexico. We combined the swabbing of historical museum vouchers and sampling of wild amphibians with a custom Bd genotyping assay to assess the presence, prevalence, and genetic diversity of Bd over time in Mexico. We found Bd-positive museum specimens from the late 1800s, far earlier than previous records and well before recent amphibian declines. With Bd genotypes from samples collected between 1975-2019, we observed a contemporary dominance of the global panzootic lineage in Mexico and report four genetic subpopulations and potential for admixture among these populations. The observed genetic variation did not have a clear geographic signature or provide clear support for the epizootic wave hypothesis. These results provide a framework for testing new questions regarding Bd invasions and their temporal relationship to observed amphibian declines in the Americas.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, BC, USA
| | - Gabriela Parra-Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Sette CM, Vredenburg VT, Zink AG. Differences in Fungal Disease Dynamics in Co-occurring Terrestrial and Aquatic Amphibians. ECOHEALTH 2020; 17:302-314. [PMID: 33237500 DOI: 10.1007/s10393-020-01501-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/14/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The fungal pathogen, Batrachochytrium dendrobatidis (Bd), has devastated biodiversity and ecosystem health and is implicated as a driver of mass amphibian extinctions. This 100-year study investigates which environmental factors contribute to Bd prevalence in a fully terrestrial species, and determines whether infection patterns differ between a fully terrestrial amphibian and more aquatic host species. We performed a historical survey to quantify Bd prevalence in 1127 Batrachoseps gregarius museum specimens collected from 1920 to 2000, and recent data from 16 contemporary (live-caught) B. gregarius populations from the southwestern slopes of the Sierra Nevada mountains in California, USA. We compared these results to Bd detection rates in 1395 historical and 1033 contemporary specimens from 10 species of anurans and 427 historical Taricha salamander specimens collected throughout the Sierra Nevada mountains. Our results indicate that Bd dynamics in the entirely terrestrial species, B. gregarius, differ from aquatic species in the same region in terms of both seasonal patterns of Bd abundance and in the possible timing of Bd epizootics.
Collapse
Affiliation(s)
- Carla M Sette
- University of California, Santa Cruz, EEB/CBB mailstop, UCSC/Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA, 95060, USA.
| | | | | |
Collapse
|