1
|
Li T, Kowal TJ, Zhao J, Li L, Wang Q, Ning K, Lo CH, Liu Z, Shen Y, Yu J, Jin H, Sun Y. Effect of brimonidine on retinal ganglion cell function by in vivo calcium imaging of optic nerve crush in mice. Exp Eye Res 2025; 255:110355. [PMID: 40127747 PMCID: PMC12058395 DOI: 10.1016/j.exer.2025.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Brimonidine has shown neuroprotective effects in animal studies, but clinical trials failed to demonstrate effective endpoints. Here, we used a newly developed in vivo calcium imaging method to measure RGC function of brimonidine in mice optic nerve crush (ONC) models. To transduce RGCs in vivo, wild-type C57Bl/6j mice were treated with intravitreal AAV2-mSncg-jGCaMP7s, a live-cell Ca2+ tracer. RGCs are defined as 10 subtypes according to different responses to UV light. Mice were treated with topical brimonidine or placebo three times daily for two weeks after ONC. The calcium signals of live-cell RGCs were measured with the Heidelberg cSLO system. Ganglion cell complex (GCC) thickness and IOP were examined at different timepoints after treatment. RGCs were counted after RBPMS immunostaining. Live calcium imaging showed ONC significantly decreased RGC number at 14 days post-ONC compared to controls. The topical brimonidine administration changed calcium signal responses of RGC to UV light in ONC mice. It showed brimonidine partly prevented the decrease of survival ON-RGCs percent after ONC. Single RGC analysis showed a lower conversion percent of ON-RGCs to OFF-RGCs with brimonidine administration after ONC. However, no significant differences in RGC survival, IOP or GCC thickness were noted between eyes treated with brimonidine or placebo. In the acute ONC mice model, in vivo calcium imaging revealed that brimonidine maintained the Ca2+ activation of ON-RGCs to UV stimulation, inhibiting the conversion of survival ON-RGCs to OFF-RGCs. This indicates that ON-RGCs may be more resilient to acute optic nerve injury based on the calcium imaging method.
Collapse
Affiliation(s)
- Tingting Li
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Jingyu Zhao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Yingchun Shen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA
| | - Jing Yu
- Department of Ophthalmology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94306, USA; Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Noh MY, Oh SI, Kim YE, Cha SJ, Sung W, Oh KW, Park Y, Mun JY, Ki CS, Nahm M, Kim SH. Mutations in NEK1 cause ciliary dysfunction as a novel pathogenic mechanism in amyotrophic lateral sclerosis. Mol Neurodegener 2025; 20:59. [PMID: 40389989 PMCID: PMC12090460 DOI: 10.1186/s13024-025-00848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Neuronal primary cilia, vital for signaling and cell-cycle regulation, have been implicated in maintaining neuronal identity. While a link between primary ciliary defects and neurodegenerative diseases is emerging, the precise pathological mechanisms remain unclear. METHODS We studied the genetic contribution of NEK1 to ALS pathogenesis by analyzing the exome sequences of 920 Korean patients with ALS. To understand the disease contribution of NEK1 variants in ALS, we performed a series of functional studies using patient fibroblasts focusing on primary cilia and microtubule-related phenotypes. In addition, these findings were validated in iPSC-derived motor neurons (iPSC-MNs). RESULTS NIMA-related kinase 1 (NEK1), a gene encoding a serine/threonine kinase involved in cell cycle regulation, has been identified as a risk gene for amyotrophic lateral sclerosis (ALS). Here, we report that mutations in NEK1 cause primary ciliary abnormality, cell cycle re-entry, and disrupted tubulin acetylation in ALS. We analyzed the whole-exome sequences of 920 Korean patients with sporadic ALS and identified 16 NEK1 variants in 23 patients. We found that two novel variants, p.E853Rfs*9 and p.M1?, reduced NEK1 expression, resulting in loss-of-function (LOF) and one synonymous splicing variant (p.Q132=) exhibited an aberrant isoform lacking exon 5. All three NEK1 variants exhibited abnormal primary ciliary structure, impaired sonic hedgehog signaling, and altered cell-cycle progression. Furthermore, the ALS-linked variants induced intracellular calcium overload followed by Aurora kinase A (AurA)-histone deacetylase (HDAC)6 activation, resulting in ciliary disassembly. These defects were restored by treatment with the intracellular Ca2+ chelator, BAPTA. We also found that NEK1 variants cause decreased α-tubulin acetylation, mitochondrial alteration, and impaired DNA damage response (DDR). Notably, drug treatment to inhibit HDAC6 restored the NEK1-dependent deficits in patient fibroblasts. And, we confirmed that data found in patient fibroblasts were reproduced in iPSC-MNs model. CONCLUSIONS Our results suggest that NEK1 contributes to ALS pathogenesis through the LOF mechanism, and HDAC6 inhibition provides an attractive therapeutic strategy for NEK1 variants associated ALS treatment.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sun Joo Cha
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yurim Park
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Seok Ki
- Green Cross Genome Corporation, Yongin, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Sarić N, Atak Z, Sade CF, Reddy N, Bell G, Tolete C, Rajtboriraks MT, Hashimoto-Torii K, Jevtović-Todorović V, Haydar TF, Ishibashi N. Ciliopathy interacts with neonatal anesthesia to cause non-apoptotic caspase-mediated motor deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.624302. [PMID: 39651246 PMCID: PMC11623571 DOI: 10.1101/2024.11.27.624302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Increasing evidence suggests that anesthesia may induce developmental neurotoxicity, yet the influence of genetic predispositions associated with congenital anomalies on this toxicity remains largely unknown. Children with congenital heart disease often exhibit mutations in cilia-related genes and ciliary dysfunction, requiring sedation for their catheter or surgical interventions during the neonatal period. Here we demonstrate that briefly exposing ciliopathic neonatal mice to ketamine causes motor skill impairments, which are associated with a baseline deficit in neocortical layer V neuron apical spine density and their altered dynamics during motor learning.. These neuromorphological changes were linked to augmented non-apoptotic neuronal caspase activation. Neonatal caspase suppression rescued the spine density and motor deficits, confirming the requirement for sublethal caspase signaling in appropriate spine formation and motor learning. Our findings suggest that ciliopathy interacts with ketamine to induce motor impairments, which is reversible through caspase inhibition. Furthermore, they underscore the potential for ketamine- induced sublethal caspase responses in shaping neurodevelopmental outcomes.
Collapse
|
4
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
6
|
Lukomska A, Theune WC, Frost MP, Xing J, Kearney A, Trakhtenberg EF. Upregulation of developmentally-downregulated miR-1247-5p promotes neuroprotection and axon regeneration in vivo. Neurosci Lett 2024; 823:137662. [PMID: 38286398 PMCID: PMC10923146 DOI: 10.1016/j.neulet.2024.137662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Numerous micro-RNAs (miRNAs) affect neurodevelopment and neuroprotection, but potential roles of many miRNAs in regulating these processes are still unknown. Here, we used the retinal ganglion cell (RGC) central nervous system (CNS) projection neuron and optic nerve crush (ONC) injury model, to optimize a mature miRNA arm-specific quantification method for characterizing the developmental regulation of miR-1247-5p in RGCs, investigated whether injury affects its expression, and tested whether upregulating miR-1247-5p-mimic in RGCs promotes neuroprotection and axon regeneration. We found that, miR-1247-5p is developmentally-downregulated in RGCs, and is further downregulated after ONC. Importantly, RGC-specific upregulation of miR-1247-5p promoted neuroprotection and axon regeneration after injury in vivo. To gain insight into the underlying mechanisms, we analyzed by bulk-mRNA-seq embryonic and adult RGCs, along with adult RGCs transduced by miR-1247-5p-expressing viral vector, and identified developmentally-regulated cilial and mitochondrial biological processes, which were reinstated to their embryonic levels in adult RGCs by upregulation of miR-1247-5p. Since axon growth is also a developmentally-regulated process, in which mitochondrial dynamics play important roles, it is possible that miR-1247-5p promoted neuroprotection and axon regeneration through regulating mitochondrial functions.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Anja Kearney
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
7
|
Behnam B, Fazilaty H, Ghadyani M, Fadavi P, Taghizadeh-Hesary F. Ciliated, Mitochondria-Rich Postmitotic Cells are Immune-privileged, and Mimic Immunosuppressive Microenvironment of Tumor-Initiating Stem Cells: From Molecular Anatomy to Molecular Pathway. FRONT BIOSCI-LANDMRK 2023; 28:261. [PMID: 37919090 DOI: 10.31083/j.fbl2810261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Cancer whose major problems are metastasis, treatment resistance, and recurrence is the leading cause of death worldwide. Tumor-initiating stem cells (TiSCs) are a subset of the tumor population responsible for tumor resistance and relapse. Understanding the characteristics and shared features between tumor-initiating stem cells (TiSCs) and long-lived postmitotic cells may hold a key to better understanding the biology of cancer. Postmitotic cells have exited the cell cycle and are transitioned into a non-dividing and terminally differentiated state with a specialized function within a tissue. Conversely, a cancer cell with TiSC feature can divide and produce a variety of progenies, and is responsible for disease progression, tumor resistance to therapy and immune system and disease relapse. Surprisingly, our comprehensive evaluation of TiSCs suggests common features with long-lived post-mitotic cells. They are similar in structure (primary cilia, high mitochondrial content, and being protected by a barrier), metabolism (autophagy and senescence), and function (immunoescape and/or immune-privileged by a blood barrier). In-depth exploration showed how mitochondrial metabolism contributes to these shared features, including high energy demands arising from ciliary and microtubular functionality, increased metabolic activity, and movement. These findings can assist in decoding the remaining properties which offer insights into the biology of TiSCs, with potential implications for enhancing cancer treatment strategies and patient prognosis.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Mobina Ghadyani
- School of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Pedram Fadavi
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| |
Collapse
|
8
|
Abstract
Neurodegenerative diseases are caused by the progressive loss of specific neurons. The exact mechanisms of action of these diseases are unknown, and many studies have focused on pathways related to abnormal accumulation and processing of proteins, mitochondrial dysfunction, and oxidative stress leading to apoptotic death. However, a growing body of evidence indicates that aberrant cell cycle re-entry plays a major role in the pathogenesis of neurodegeneration. The activation of the cell cycle in mature neurons could be promoted by several signaling mechanisms, including c-Jun N-terminal kinases, p38 mitogen-activated protein kinases, and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades; post-translational modifications such as Tau-phosphorylation; and DNA damage response. In all these events, implicated Cdk5, a proline-directed serine/threonine protein kinase, seems to be responsible for several cellular processes in neurons including axon growth, neurotransmission, synaptic plasticity, neuronal migration, and maintenance of neuronal survival. However, under pathological conditions, Cdk5 dysregulation may lead to cell cycle re-entry in post-mitotic neurons. Thus, Cdk5 hyperactivation, by its physiologic activator p25, hyper-phosphorylates downstream substrates related to neurodegenerative diseases. This review summarizes factors such as oxidative stress, DNA damage response, signaling pathway disturbance, and Ubiquitin proteasome malfunction contributing to cell cycle re-entry in post-mitotic neurons. It also describes how all these factors are linked to a greater or lesser extent with Cdk5. Thus, it offers a global vision of the function of cell cycle-related proteins in mature neurons with a focus on Cdk5 and how this protein contributes to the development of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease by cell cycle activation.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain,Correspondence to: Raquel Requejo-Aguilar, PhD, .
| |
Collapse
|
9
|
Bae JE, Kim JB, Jo DS, Park NY, Kim YH, Lee HJ, Kim SH, Kim SH, Son M, Kim P, Ryu HY, Lee WH, Ryoo ZY, Lee HS, Jung YK, Cho DH. Carnitine Protects against MPP+-Induced Neurotoxicity and Inflammation by Promoting Primary Ciliogenesis in SH-SY5Y Cells. Cells 2022; 11:cells11172722. [PMID: 36078130 PMCID: PMC9454591 DOI: 10.3390/cells11172722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Primary cilia help to maintain cellular homeostasis by sensing conditions in the extracellular environment, including growth factors, nutrients, and hormones that are involved in various signaling pathways. Recently, we have shown that enhanced primary ciliogenesis in dopamine neurons promotes neuronal survival in a Parkinson’s disease model. Moreover, we performed fecal metabolite screening in order to identify several candidates for improving primary ciliogenesis, including L-carnitine and acetyl-L-carnitine. However, the role of carnitine in primary ciliogenesis has remained unclear. In addition, the relationship between primary cilia and neurodegenerative diseases has remained unclear. In this study, we have evaluated the effects of carnitine on primary ciliogenesis in 1-methyl-4-phenylpyridinium ion (MPP+)-treated cells. We found that both L-carnitine and acetyl-L-carnitine promoted primary ciliogenesis in SH-SY5Y cells. In addition, the enhancement of ciliogenesis by carnitine suppressed MPP+-induced mitochondrial reactive oxygen species overproduction and mitochondrial fragmentation in SH-SY5Y cells. Moreover, carnitine inhibited the production of pro-inflammatory cytokines in MPP+-treated SH-SY5Y cells. Taken together, our findings suggest that enhanced ciliogenesis regulates MPP+-induced neurotoxicity and inflammation.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Ha Jung Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - So Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Mikyung Son
- ORGASIS Corp. 260, Changyong-daero, Yeongtong-gu, Suwon 16229, Korea
| | - Pansoo Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Won Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- ORGASIS Corp. 260, Changyong-daero, Yeongtong-gu, Suwon 16229, Korea
- Correspondence: ; Tel.: +82-53-950-5382
| |
Collapse
|
10
|
Kowal TJ, Dhande OS, Wang B, Wang Q, Ning K, Liu W, Berbari NF, Hu Y, Sun Y. Distribution of prototypical primary cilia markers in subtypes of retinal ganglion cells. J Comp Neurol 2022; 530:2176-2187. [PMID: 35434813 PMCID: PMC9219574 DOI: 10.1002/cne.25326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022]
Abstract
Loss of retinal ganglion cells (RGCs) underlies several forms of retinal disease including glaucomatous optic neuropathy, a leading cause of irreversible blindness. Several rare genetic disorders associated with cilia dysfunction have retinal degeneration as a clinical hallmark. Much of the focus of ciliopathy associated blindness is on the connecting cilium of photoreceptors; however, RGCs also possess primary cilia. It is unclear what roles RGC cilia play, what proteins and signaling machinery localize to RGC cilia, or how RGC cilia are differentiated across the subtypes of RGCs. To better understand these questions, we assessed the presence or absence of a prototypical cilia marker Arl13b and a widely distributed neuronal cilia marker AC3 in different subtypes of mouse RGCs. Interestingly, not all RGC subtype cilia are the same and there are significant differences even among these standard cilia markers. Alpha-RGCs positive for osteopontin, calretinin, and SMI32 primarily possess AC3-positive cilia. Directionally selective RGCs that are CART positive or Trhr positive localize either Arl13b or AC3, respectively, in cilia. Intrinsically photosensitive RGCs differentially localize Arl13b and AC3 based on melanopsin expression. Taken together, we characterized the localization of gold standard cilia markers in different subtypes of RGCs and conclude that cilia within RGC subtypes may be differentially organized. Future studies aimed at understanding RGC cilia function will require a fundamental ability to observe the cilia across subtypes as their signaling protein composition is elucidated. A comprehensive understanding of RGC cilia may reveal opportunities to understanding how their dysfunction leads to retinal degeneration.
Collapse
Affiliation(s)
- Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Onkar S. Dhande
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Wendy Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202 USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA 94304
| |
Collapse
|
11
|
Choi JY, Bae JE, Kim JB, Jo DS, Park NY, Kim YH, Lee HJ, Kim SH, Kim SH, Jeon HB, Na HW, Choi H, Ryu HY, Ryoo ZY, Lee HS, Cho DH. 2-IPMA Ameliorates PM2.5-Induced Inflammation by Promoting Primary Ciliogenesis in RPE Cells. Molecules 2021; 26:molecules26175409. [PMID: 34500843 PMCID: PMC8433925 DOI: 10.3390/molecules26175409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cilia mediate the interactions between cells and external stresses. Thus, dysregulation of primary cilia is implicated in various ciliopathies, e.g., degeneration of the retina caused by dysregulation of the photoreceptor primary cilium. Particulate matter (PM) can cause epithelium injury and endothelial dysfunction by increasing oxidative stress and inflammatory responses. Previously, we showed that PM disrupts the formation of primary cilia in retinal pigment epithelium (RPE) cells. In the present study, we identified 2-isopropylmalic acid (2-IPMA) as a novel inducer of primary ciliogenesis from a metabolite library screening. Both ciliated cells and primary cilium length were increased in 2-IPMA-treated RPE cells. Notably, 2-IPMA strongly promoted primary ciliogenesis and restored PM2.5-induced dysgenesis of primary cilia in RPE cells. Both excessive reactive oxygen species (ROS) generation and activation of a stress kinase, JNK, by PM2.5 were reduced by 2-IPMA. Moreover, 2-IPMA inhibited proinflammatory cytokine production, i.e., IL-6 and TNF-α, induced by PM2.5 in RPE cells. Taken together, our data suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in RPE cells.
Collapse
Affiliation(s)
- Ji Yeon Choi
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| | - Joon Bum Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Doo Sin Jo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Na Yeon Park
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Yong Hwan Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Ha Jung Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Seong Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - So Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Hong Bae Jeon
- Stem Cell Institute, ENCell Co. Ltd., Seoul 06072, Korea;
| | - Hye-Won Na
- R&D Center AMOREPACIFIC Corporation, Yongin 17074, Gyeonggi-do, Korea; (H.-W.N.); (H.C.)
| | - Hyungjung Choi
- R&D Center AMOREPACIFIC Corporation, Yongin 17074, Gyeonggi-do, Korea; (H.-W.N.); (H.C.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.Y.C.); (J.B.K.); (D.S.J.); (N.Y.P.); (Y.H.K.); (H.J.L.); (S.H.K.); (S.H.K.); (H.-Y.R.); (Z.Y.R.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
- Correspondence:
| |
Collapse
|
12
|
Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc Natl Acad Sci U S A 2021; 118:2017282118. [PMID: 33627402 DOI: 10.1073/pnas.2017282118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a leading therapeutic candidate for several ocular diseases and induces optic nerve regeneration in animal models. Paradoxically, however, although CNTF gene therapy promotes extensive regeneration, recombinant CNTF (rCNTF) has little effect. Because intraocular viral vectors induce inflammation, and because CNTF is an immune modulator, we investigated whether CNTF gene therapy acts indirectly through other immune mediators. The beneficial effects of CNTF gene therapy remained unchanged after deleting CNTF receptor alpha (CNTFRα) in retinal ganglion cells (RGCs), the projection neurons of the retina, but were diminished by depleting neutrophils or by genetically suppressing monocyte infiltration. CNTF gene therapy increased expression of C-C motif chemokine ligand 5 (CCL5) in immune cells and retinal glia, and recombinant CCL5 induced extensive axon regeneration. Conversely, CRISPR-mediated knockdown of the cognate receptor (CCR5) in RGCs or treating wild-type mice with a CCR5 antagonist repressed the effects of CNTF gene therapy. Thus, CCL5 is a previously unrecognized, potent activator of optic nerve regeneration and mediates many of the effects of CNTF gene therapy.
Collapse
|
13
|
CCP1, a Tubulin Deglutamylase, Increases Survival of Rodent Spinal Cord Neurons following Glutamate-Induced Excitotoxicity. eNeuro 2021; 8:ENEURO.0431-20.2021. [PMID: 33688040 PMCID: PMC8021396 DOI: 10.1523/eneuro.0431-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubules (MTs) are cytoskeletal elements that provide structural support and act as roadways for intracellular transport in cells. MTs are also needed for neurons to extend and maintain long axons and dendrites that establish connectivity to transmit information through the nervous system. Therefore, in neurons, the ability to independently regulate cytoskeletal stability and MT-based transport in different cellular compartments is essential. Posttranslational modification of MTs is one mechanism by which neurons regulate the cytoskeleton. The carboxypeptidase CCP1 negatively regulates posttranslational polyglutamylation of MTs. In mammals, loss of CCP1, and the resulting hyperglutamylation of MTs, causes neurodegeneration. It has also long been known that CCP1 expression is activated by neuronal injury; however, whether CCP1 plays a neuroprotective role after injury is unknown. Using shRNA-mediated knock-down of CCP1 in embryonic rat spinal cord cultures, we demonstrate that CCP1 protects spinal cord neurons from excitotoxic death. Unexpectedly, excitotoxic injury reduced CCP1 expression in our system. We previously demonstrated that the CCP1 homolog in Caenorhabditis elegans is important for maintenance of neuronal cilia. Although cilia enhance neuronal survival in some contexts, it is not yet clear whether CCP1 maintains cilia in mammalian spinal cord neurons. We found that knock-down of CCP1 did not result in loss or shortening of cilia in cultured spinal cord neurons, suggesting that its effect on survival of excitotoxicity is independent of cilia. Our results support the idea that enzyme regulators of MT polyglutamylation might be therapeutically targeted to prevent excitotoxic death after spinal cord injuries.
Collapse
|
14
|
Loss of primary cilia promotes mitochondria-dependent apoptosis in thyroid cancer. Sci Rep 2021; 11:4181. [PMID: 33602982 PMCID: PMC7893175 DOI: 10.1038/s41598-021-83418-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium is well-preserved in human differentiated thyroid cancers such as papillary and follicular carcinoma. Specific thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto’s thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria-dependent apoptosis pathway. Tg-Cre;Ift88flox/flox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria-dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss-of-function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell death in differentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting differentiated thyroid cancers.
Collapse
|
15
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Li X, Yang S, Han L, Mao K, Yang S. Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB J 2020; 34:6741-6756. [PMID: 32227389 DOI: 10.1096/fj.201902838r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
The intervertebral disc degeneration (IVDD)-related diseases occur in more than 90% of the population older than 50 years. Owing to the lack of understanding of the cellular mechanisms involved in IVDD formation effective treatment options are still unavailable. Primary cilia are microtubule-based organelles that play important roles in the organ development. Intraflagellar transport (IFT) proteins are essential for the assembly and bidirectional transport within the cilium. Role of cilia and IFT80 protein in intervertebral disc (IVD) development, maintenance, and degeneration are largely unknown. Using cilia-GFP mice, we found presence of cilia on growth plate (GP), cartilage endplate (EP) annulus fibrosus (AF), and nucleus pulposus (NP) with varying ciliary length. Cilia length in NP and AF during IVDD were significantly decreased. However, cilia numbers increased by 63% in AF during repair. Deletion of IFT80 in type II collagen-positive cells resulted in cilia loss in GP and EP, and disrupted IVD structure with disorganized and decreased GP, EP, and internal AF (IAF), and less compact and markedly decreased gel-like matrix in the NP. Deletion of IFT80 in type I collagen-positive cells led to a disorganized outer AF (OAF) with thinner, loosened, and disconnected fiber alignment. Mechanistic analyses showed that loss of IFT80 caused a significant increase in cell apoptosis in the IVD, and a marked decrease in expression of chondrogenic markers - type II collagen, sox9, aggrecan, and hedgehog (Hh) signaling components, including Gli1 and Patch1 in the IVD of IFT80fl/fl ; Col2-creERT mice, and Gli1 and Patch1 expression in the OAF of IFT80fl/fl ; Col1-creERT mice. Interestingly, Smoothened agonist-SAG rescued OAF cell proliferation and osteogenic differentiation. Our findings demonstrate that ciliary IFT80 is important for the maintenance of IVD cell organization and function through regulating the cell survival and Hh signaling.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Spinal Surgery, East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Shuting Yang
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Keya Mao
- Department of Orthopedics, Chinese PLA General Hospital (301 Hospital), Beijing, China
| | - Shuying Yang
- Department of Basic and Translational Science, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|