1
|
Echefu B, Becker M, Stein D, Ornoy A. Methods for Assessing Neurodevelopmental Disorders in Mice: A Critical Review of Behavioral Tests and Methodological Considerations Searching to Improve Reliability. NEUROSCI 2025; 6:27. [PMID: 40265357 PMCID: PMC12015833 DOI: 10.3390/neurosci6020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Many neurobehavioral tests are used for the assessment of human-like behaviors in animals. Most of them were developed in rodents and are used for the assessment of animal models that mimic human neurodevelopmental and neuropsychiatric disorders (NDDs). We have described tests for assessing social behavior, social interaction, and social communication; tests for restricted and repetitive behaviors; tests for cognitive impairment, for sensory stimuli, for anxiety like behavior, and for motor coordination deviations. These tests are used to demonstrate autistic-like behavior as well as other NDDs. We described possible general pitfalls in the performance of such studies, as well as probable individual errors for each group of tests assessing specific behavior. The mentioned pitfalls may induce crucial errors in the interpretation of the results, minimizing the reliability of specific models of defined human NDD. It is imperative to minimize these pitfalls and use sufficient and reliable tests that can demonstrate as many of the traits of the human disorder, grade the severity of the specific deviations and the severity of the tested NDD by using a scoring system. Due to possible gender differences in the clinical presentations of NDD, it is important to carry out studies on males and females.
Collapse
Affiliation(s)
- Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
| | - Dan Stein
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
| | - Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
- Jerusalem Multidisciplinary College, Jerusalem, Israel
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
2
|
Zheng H, Chen D, Zhong Z, Li Z, Yuan M, Zhang Z, Zhou X, Zhu G, Sun H, Sun L. Behavioral tests for the assessment of social hierarchy in mice. Front Behav Neurosci 2025; 19:1549666. [PMID: 40110389 PMCID: PMC11920152 DOI: 10.3389/fnbeh.2025.1549666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Social hierarchy refers to the set of social ranks in a group of animals where individuals can gain priority access to resources through repeated social interactions. Key mechanisms involved in this process include conflict, social negotiation, prior experience, and physical advantages. The establishment and maintenance of social hierarchies not only promote group stability and well-being but also shape individual social behaviors by fostering cooperation and reducing conflict. Existing research indicates that social hierarchy is closely associated with immune responses, neural regulation, metabolic processes, and endocrine functions. These physiological systems collectively modulate an individual's sensitivity to stress and influence adaptive responses, thereby playing a critical role in the development of psychiatric disorders such as depression and anxiety. This review summarizes the primary behavioral methods used to assess social dominance in mice, evaluates their applicability and limitations, and discusses potential improvements. Additionally, it explores the underlying neural mechanisms associated with these methods to deepen our understanding of their biological basis. By critically assessing existing methodologies and proposing refinements, this study aims to provide a systematic reference framework and methodological guidance for future research, facilitating a more comprehensive exploration of the neural mechanisms underlying social behavior. The role of sex differences in social hierarchy formation remains underexplored. Most studies focus predominantly on males, while the distinct social strategies and physiological mechanisms of females are currently overlooked. Future studies should place greater emphasis on evaluating social hierarchy in female mice to achieve a more comprehensive understanding of sex-specific social behaviors and their impact on group structure and individual health. Advances in automated tracking technologies may help address this gap by improving behavioral assessments in female mice. Future research may also benefit from integrating physiological data (e.g., hormone levels) to gain deeper insights into the relationships between social status, stress regulation, and mental health. Additionally, developments in artificial intelligence and deep learning could enhance individual recognition and behavioral analysis, potentially reducing reliance on chemical markers or implanted devices.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Dantong Chen
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zilong Zhong
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Ziyi Li
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Meng Yuan
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Zhenkun Zhang
- Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaoping Zhou
- Network Information Center, Shandong Second Medical University, Weifang, China
| | - Guohui Zhu
- Depression Treatment Center, Weifang Mental Health Center, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Herdt R, Kinzel L, Maaß JG, Walther M, Fröhlich H, Schubert T, Maass P, Schaaf CP. Enhancing the analysis of murine neonatal ultrasonic vocalizations: Development, evaluation, and application of different mathematical models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2448-2466. [PMID: 39400270 DOI: 10.1121/10.0030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Rodents employ a broad spectrum of ultrasonic vocalizations (USVs) for social communication. As these vocalizations offer valuable insights into affective states, social interactions, and developmental stages of animals, various deep learning approaches have aimed at automating both the quantitative (detection) and qualitative (classification) analysis of USVs. So far, no notable efforts have been made to determine the most suitable architecture. We present the first systematic evaluation of different types of neural networks for USV classification. We assessed various feedforward networks, including a custom-built, fully-connected network, a custom-built convolutional neural network, several residual neural networks, an EfficientNet, and a Vision Transformer. Our analysis concluded that convolutional networks with residual connections specifically adapted to USV data, are the most suitable architecture for analyzing USVs. Paired with a refined, entropy-based detection algorithm (achieving recall of 94.9 % and precision of 99.3 %), the best architecture (achieving 86.79 % accuracy) was integrated into a fully automated pipeline capable of analyzing extensive USV datasets with high reliability. In ongoing projects, our pipeline has proven to be a valuable tool in studying neonatal USVs. By comparing these distinct deep learning architectures side by side, we have established a solid foundation for future research.
Collapse
Affiliation(s)
- Rudolf Herdt
- Center for Industrial Mathematics, University of Bremen, Bremen 28334, Germany
| | - Louisa Kinzel
- Center for Industrial Mathematics, University of Bremen, Bremen 28334, Germany
| | - Johann Georg Maaß
- Institute of Human Genetics, University of Heidelberg, Heidelberg 69120, Germany
- Interdisciplinary Neurobehavioral Core, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marvin Walther
- Institute of Electrodynamics and Microelectronics, University of Bremen, Bremen 28334, Germany
| | - Henning Fröhlich
- Institute of Human Genetics, University of Heidelberg, Heidelberg 69120, Germany
| | - Tim Schubert
- Institute of Human Genetics, University of Heidelberg, Heidelberg 69120, Germany
| | - Peter Maass
- Center for Industrial Mathematics, University of Bremen, Bremen 28334, Germany
| | | |
Collapse
|
4
|
Nesterova YV, Vsyakikh OV, Kul'pin PV, Povetyeva TN, Zyuz'kov GN, Suslov NI, Zhdanov VV, Losev EA. Comparative Study of the Anxiolytic Activity of Songorine in Elevated Plus Maze Test and by Recording Ultrasonic Vocalizations. Bull Exp Biol Med 2024; 177:648-652. [PMID: 39340623 DOI: 10.1007/s10517-024-06242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 09/30/2024]
Abstract
It was found that the diterpene alkaloid songorine administered per os to mice at a dose of 25 μg/kg provides a pronounced anxiolytic effect during elevated plus maze testing comparable to the effect of the benzodiazepine anxiolytic phenazepam. Recording of ultrasonic vocalizations of animals revealed an increase in the number of short high-frequency (50 kHz) signals under the action of songorine and the reference drug, which confirms their anti-anxiety properties.
Collapse
Affiliation(s)
- Yu V Nesterova
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - O V Vsyakikh
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - P V Kul'pin
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - T N Povetyeva
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - G N Zyuz'kov
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N I Suslov
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V V Zhdanov
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E A Losev
- Laboratory of Phytopharmacology and Special Nutrition, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
5
|
Li Y, Liu ZW, Santana GM, Capaz AM, Doumazane E, Gao XB, Renier N, Dietrich MO. Neurons for infant social behaviors in the mouse zona incerta. Science 2024; 385:409-416. [PMID: 39052814 DOI: 10.1126/science.adk7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Understanding the neural basis of infant social behaviors is crucial for elucidating the mechanisms of early social and emotional development. In this work, we report a specific population of somatostatin-expressing neurons in the zona incerta (ZISST) of preweaning mice that responds dynamically to social interactions, particularly those with their mother. Bidirectional neural activity manipulations in pups revealed that widespread connectivity of preweaning ZISST neurons to sensory, emotional, and cognitive brain centers mediates two key adaptive functions associated with maternal presence: the reduction of behavior distress and the facilitation of learning. These findings reveal a population of neurons in the infant mouse brain that coordinate the positive effects of the relationship with the mother on an infant's behavior and physiology.
Collapse
Affiliation(s)
- Yuexuan Li
- Laboratory of Physiology of Behavior, Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Zhong-Wu Liu
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Gustavo M Santana
- Laboratory of Physiology of Behavior, Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ana Marta Capaz
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Paris Brain Institute, INSERM U1127, CNRS UMR7225, AP-HP, 75013 Paris, France
| | - Etienne Doumazane
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Paris Brain Institute, INSERM U1127, CNRS UMR7225, AP-HP, 75013 Paris, France
| | - Xiao-Bing Gao
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Nicolas Renier
- Laboratoire de Plasticité Structurale, Sorbonne Université, ICM Paris Brain Institute, INSERM U1127, CNRS UMR7225, AP-HP, 75013 Paris, France
| | - Marcelo O Dietrich
- Laboratory of Physiology of Behavior, Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Gan-Or B, London M. Cortical circuits modulate mouse social vocalizations. SCIENCE ADVANCES 2023; 9:eade6992. [PMID: 37774030 PMCID: PMC10541007 DOI: 10.1126/sciadv.ade6992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Vocalizations provide a means of communication with high fidelity and information rate for many species. Diencephalon and brainstem neural circuits have been shown to control mouse vocal production; however, the role of cortical circuits in this process is debatable. Using electrical and optogenetic stimulation, we identified a cortical region in the anterior cingulate cortex in which stimulation elicits ultrasonic vocalizations. Moreover, fiber photometry showed an increase in Ca2+ dynamics preceding vocal initiation, whereas optogenetic suppression in this cortical area caused mice to emit fewer vocalizations. Last, electrophysiological recordings indicated a differential increase in neural activity in response to female social exposure dependent on vocal output. Together, these results indicate that the cortex is a key node in the neuronal circuits controlling vocal behavior in mice.
Collapse
Affiliation(s)
- Benjamin Gan-Or
- Edmond and Lily Safra Center for Brain Sciences and Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
7
|
Baggi D, Premoli M, Gnutti A, Bonini SA, Leonardi R, Memo M, Migliorati P. Extended performance analysis of deep-learning algorithms for mice vocalization segmentation. Sci Rep 2023; 13:11238. [PMID: 37433808 DOI: 10.1038/s41598-023-38186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
Ultrasonic vocalizations (USVs) analysis represents a fundamental tool to study animal communication. It can be used to perform a behavioral investigation of mice for ethological studies and in the field of neuroscience and neuropharmacology. The USVs are usually recorded with a microphone sensitive to ultrasound frequencies and then processed by specific software, which help the operator to identify and characterize different families of calls. Recently, many automated systems have been proposed for automatically performing both the detection and the classification of the USVs. Of course, the USV segmentation represents the crucial step for the general framework, since the quality of the call processing strictly depends on how accurately the call itself has been previously detected. In this paper, we investigate the performance of three supervised deep learning methods for automated USV segmentation: an Auto-Encoder Neural Network (AE), a U-NET Neural Network (UNET) and a Recurrent Neural Network (RNN). The proposed models receive as input the spectrogram associated with the recorded audio track and return as output the regions in which the USV calls have been detected. To evaluate the performance of the models, we have built a dataset by recording several audio tracks and manually segmenting the corresponding USV spectrograms generated with the Avisoft software, producing in this way the ground-truth (GT) used for training. All three proposed architectures demonstrated precision and recall scores exceeding [Formula: see text], with UNET and AE achieving values above [Formula: see text], surpassing other state-of-the-art methods that were considered for comparison in this study. Additionally, the evaluation was extended to an external dataset, where UNET once again exhibited the highest performance. We suggest that our experimental results may represent a valuable benchmark for future works.
Collapse
Affiliation(s)
- Daniele Baggi
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Gnutti
- Department of Information Engineering, University of Brescia, Brescia, Italy.
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Riccardo Leonardi
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
8
|
Ham GX, Lim KE, Augustine GJ, Leong V. Synchrony in parent-offspring social interactions across development: A cross-species review of rodents and humans. J Neuroendocrinol 2023:e13241. [PMID: 36929715 DOI: 10.1111/jne.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
In humans, parent-child neural synchrony has been shown to support early communication, social attunement and learning. Further, some animal species (including rodents and bats) are now known to share neural synchrony during certain forms of social behaviour. However, very little is known about the developmental origins and sequelae of neural synchrony, and whether this neural mechanism might play a causal role in the control of social and communicative behaviour across species. Rodent models are optimal for exploring such questions of causality, with a plethora of tools available for both disruption/induction (optogenetics) and even mechanistic dissection of synchrony-induction pathways (in vivo electrical or optical recording of neural activity). However, before the benefits of rodent models for advancing research on parent-infant synchrony can be realised, it is first important to address a gap in understanding the forms of parent-pup synchrony that occur during rodent development, and how these social relationships evolve over time. Accordingly, this review seeks to identify parent-pup social behaviours that could potentially drive or facilitate synchrony and to discuss key differences or limitations when comparing mouse to human models of parent-infant synchrony. Uniquely, our review will focus on parent-pup dyadic social behaviours that have particular analogies to the human context, including instrumental, social interactive and vocal communicative behaviours. This review is intended to serve as a primer on the study of neurobehavioral synchrony across human and rodent dyadic developmental models.
Collapse
Affiliation(s)
- Gao Xiang Ham
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kai En Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Caruso A, Marconi MA, Scattoni ML, Ricceri L. Ultrasonic vocalizations in laboratory mice: strain, age, and sex differences. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12815. [PMID: 35689354 PMCID: PMC9744514 DOI: 10.1111/gbb.12815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Abstract
Mice produce ultrasonic vocalizations (USVs) in different social contexts across lifespan. There is ethological evidence that pup USVs elicit maternal retrieval and adult USVs facilitate social interaction with a conspecific. Analysis of mouse vocal and social repertoire across strains, sex and contexts remains not well explored. To address these issues, in inbred (C57BL/6, FVB) and outbred (CD-1) mouse strains, we recorded and evaluated USVs as neonates and during adult social encounters (male-female and female-female social interaction). We showed significant strain differences in the quantitative (call rate and duration of USVs) and qualitative vocal analysis (spectrographic characterization) from early stage to adulthood, in line with specific patterns of social behaviors. Inbred C57BL/6 mice produced a lower number of calls with less internal changes and shorter duration; inbred FVB mice displayed more social behaviors and produced more syllables with repeated internal changes; outbred CD-1 mice had an intermediate profile. Our results suggest specific vocal signatures in each mouse strain, thus helping to better define socio-communicative profiles of mouse strains and to guide the choice of an appropriate strain according to the experimental settings.
Collapse
Affiliation(s)
- Angela Caruso
- Research Coordination and Support ServiceIstituto Superiore di SanitàRomeItaly
| | - Maria Adelaide Marconi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life SciencesUniversity of Veterinary MedicineViennaAustria
| | | | - Laura Ricceri
- Center for Behavioral Sciences and Mental HealthIstituto Superiore di SanitàRomeItaly
| |
Collapse
|
10
|
Abstract
Social interactions can bolster and protect memory performance. However, the relationship between social stimuli and individually learned memories remains enigmatic. Our work reveals that exposure to a stressed, naïve nonfamiliar conspecific or to the ambient olfactory–auditory cues of a recently stressed familiar conspecific induces reactivation of the cellular ensembles associated with a fear memory in the hippocampus. Artificially stimulating the hippocampal ensemble active during the social experience induces fearful behaviors in animals that have previously acquired a negative memory, revealing the interaction between individual history and social experience. The neural resurgence of fear-driving ensembles during social experiences leads to a context-specific enhancement of fear recall. Our findings provide evidence that unlike direct stressors, social stimuli reactivate and amplify an individual’s memories. For group-living animals, the social environment provides salient experience that can weaken or strengthen aspects of cognition such as memory recall. Although the cellular substrates of individually acquired fear memories in the dentate gyrus (DG) and basolateral amygdala (BLA) have been well-studied and recent work has revealed circuit mechanisms underlying the encoding of social experience, the processes by which social experience interacts with an individual’s memories to alter recall remain unknown. Here we show that stressful social experiences enhance the recall of previously acquired fear memories in male but not female mice, and that social buffering of conspecifics’ distress blocks this enhancement. Activity-dependent tagging of cells in the DG during fear learning revealed that these ensembles were endogenously reactivated during the social experiences in males, even after extinction. These reactivated cells were shown to be functional components of engrams, as optogenetic stimulation of the cells active during the social experience in previously fear-conditioned and not naïve animals was sufficient to drive fear-related behaviors. Taken together, our findings suggest that social experiences can reactivate preexisting engrams to thereby strengthen discrete memories.
Collapse
|
11
|
Pitzer C, Kurpiers B, Eltokhi A. Sex Differences in Depression-Like Behaviors in Adult Mice Depend on Endophenotype and Strain. Front Behav Neurosci 2022; 16:838122. [PMID: 35368297 PMCID: PMC8969904 DOI: 10.3389/fnbeh.2022.838122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.
Collapse
Affiliation(s)
- Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- *Correspondence: Claudia Pitzer,
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Ahmed Eltokhi,
| |
Collapse
|
12
|
Pitzer C, Kurpiers B, Eltokhi A. Gait performance of adolescent mice assessed by the CatWalk XT depends on age, strain and sex and correlates with speed and body weight. Sci Rep 2021; 11:21372. [PMID: 34725364 PMCID: PMC8560926 DOI: 10.1038/s41598-021-00625-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The automatization of behavioral tests assessing motor activity in rodent models is important for providing robust and reproducible results and evaluating new therapeutics. The CatWalk system is an observer-independent, automated and computerized technique for the assessment of gait performance in rodents. This method has previously been used in adult rodent models of CNS-based movement disorders such as Parkinson's and Huntington's diseases. As motor and gait abnormalities in neuropsychiatric disorders are observed during infancy and adolescence, it became important to validate the CatWalk XT in the gait analysis of adolescent mice and unravel factors that may cause variations in gait performance. Three adolescent wild-type inbred mouse strains, C57BL/6N, DBA/2 and FVB/N, were tested using the CatWalk XT (Version 10.6) for suitable detection settings to characterize several gait parameters at P32 and P42. The same detection settings being suitable for C57BL/6N and DBA/2 mice allowed a direct comparison between the two strains. On the other hand, due to their increased body weight and size, FVB/N mice required different detection settings. The CatWalk XT reliably measured the temporal, spatial, and interlimb coordination parameters in the investigated strains during adolescence. Additionally, significant effects of sex, development, speed and body weight within each strain confirmed the sensitivity of motor and gait functions to these factors. The CatWalk gait analysis of rodents during adolescence, taking the effect of age, strain, sex, speed and body weight into consideration, will decrease intra-laboratory discrepancies and increase the face validity of rodent models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, USA.
| |
Collapse
|
13
|
Eltokhi A, Kurpiers B, Pitzer C. Baseline Depression-Like Behaviors in Wild-Type Adolescent Mice Are Strain and Age but Not Sex Dependent. Front Behav Neurosci 2021; 15:759574. [PMID: 34690714 PMCID: PMC8529326 DOI: 10.3389/fnbeh.2021.759574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a major neuropsychiatric disorder, decreasing the ability of hundreds of millions of individuals worldwide to function in social, academic, and employment settings. Beyond the alarming public health problem, depression leads to morbidity across the entire age including adolescence and adulthood. Modeling depression in rodents has been used to understand the pathophysiological mechanisms behind this disorder and create new therapeutics. Although women are two times more likely to be diagnosed with depression compared to men, behavioral experiments on rodent models of depression are mainly performed in males based on the assumption that the estrous cycles in females may affect the behavioral outcome and cause an increase in the intrinsic variability compared to males. Still, the inclusion of female rodents in the behavioral analysis is mandatory to establish the origin of sex bias in depression. Here, we investigated the baseline depression-like behaviors in male and female mice of three adolescent wild-type inbred strains, C57BL/6N, DBA/2, and FVB/N, that are typically used as background strains for mouse models of neuropsychiatric disorders. Our experiments, performed at two different developmental stages during adolescence (P22-P26 and P32-P36), revealed strain but no sex differences in a set of depression-related tests, including tail suspension, sucrose preference and forced swim tests. Additionally, the 10-day interval during this sensitive period uncovered a strong impact on the behavioral outcome of C57BL/6N and FVB/N mice, highlighting a significant effect of maturation on behavioral patterns. Since anxiety-related behavioral tests are often performed together with depression tests in mouse models of neuropsychiatric disorders, we extended our study and included hyponeophagia as an anxiety test. Consistent with a previous study revealing sex differences in other anxiety tests in adolescent mice, male and females mice behaved differently in the hyponeophagia test at P27. Our study gives insight into the behavioral experiments assessing depression and stresses the importance of considering strain, age and sex when evaluating neuropsychiatric-like traits in rodent models.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
15
|
Comprehensive characterization of motor and coordination functions in three adolescent wild-type mouse strains. Sci Rep 2021; 11:6497. [PMID: 33753800 PMCID: PMC7985312 DOI: 10.1038/s41598-021-85858-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropsychiatric disorders are often associated with motor and coordination abnormalities that have important implications on the etiology, pathophysiology, and management of these disorders. Although the onset of many neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and attention-deficit hyperactivity disorder emerges mainly during infancy and adolescence, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, possibly missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we examined which behavioral tests assessing both motor and coordination functions can be performed in mice at two different adolescent stages. As strain and sex affect mouse behavior, our experiments covered both male and female mice of three inbred wild-type strains, C57BL/6N, DBA/2, and FVB/N. Adolescent mice of both postnatal days (P)22-30 and P32-40 developmental stages were capable of mastering common motor and coordination tests. However, results differed significantly between strains and sexes. Moreover, the 10-day interval between the two tested cohorts uncovered a strong difference in the behavioral results, confirming the significant impact of maturation on behavioral patterns. Interestingly, the results of distinct behavioral experiments were directly correlated with the weight of mice, which may explain the lack of reproducibility of some behavioral results in genetically-modified mice. Our study paves the way for better reproducibility of behavioral tests by addressing the effect of the developmental stage, strain, sex, and weight of mice on achieving the face validity of neuropsychiatric disorder-associated motor dysfunctions.
Collapse
|
16
|
Yang X, Guo D, Li K, Shi L. Altered postnatal developmental patterns of ultrasonic vocalizations in Dock4 knockout mice. Behav Brain Res 2021; 406:113232. [PMID: 33705839 DOI: 10.1016/j.bbr.2021.113232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Ultrasonic vocalization (USV) characterization is useful for evaluating communication in mouse models of autism spectrum disorder (ASD). Here, by categorizing USVs into 12 types using a comprehensive classification method, we obtained the qualitative and quantitative characteristics of USV repertoire emitted by ASD-related Dock4 knockout (KO) mice and their wild-type (WT) littermates during social isolation over early postnatal development. Notably, USVs emitted by WT pups exhibited a developmental switch from a pattern with more multiple-note calls, which have more complex acoustic structure, lower pitch and larger volume, into one with more single-note calls, which have simpler acoustic structure, higher pitch and smaller volume. Comparing with WT pups, USVs emitted by Dock4 KO pups had larger volume and consisted of more multiple-note calls with higher pitch in later developmental stage. These findings collectively reveal a developmental pattern of USV in normal mice and identified a set of alterations in Dock4 KO pups.
Collapse
Affiliation(s)
- Xiaoman Yang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China; The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, China
| | - Keshen Li
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
17
|
Binder MS, Shi HD, Bordey A. CD-1 Outbred Mice Produce Less Variable Ultrasonic Vocalizations Than FVB Inbred Mice, While Displaying a Similar Developmental Trajectory. Front Psychiatry 2021; 12:687060. [PMID: 34475829 PMCID: PMC8407076 DOI: 10.3389/fpsyt.2021.687060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The production of ultrasonic vocalizations (USVs) in neonatal mice is a critical means of communication that is used to elicit maternal care. Alterations in neonatal USV production is also an indicator of neurological deficits. However, USVs have been predominately assessed in inbred animals and are significantly understudied in outbred mice, even though outbred animals better represent the genetic diversity of humans and are used in several neurological disorder models. To determine the reproducibility of USVs across models, we compared male and female CD-1 (outbred) and FVB (inbred) mice on postnatal days (PD) 4, 8, 12, 16, and 20. We found that CD-1 and FVB mice displayed a similar developmental trajectory of USVs. However, CD1 mice emitted more USVs on PD 12 than FVB mice. In addition, FVB mice emitted a longer duration of calls on PD 4 and 8 and a higher overall maximum and minimum frequency of USVs than CD-1 mice. No differences in mean amplitude were found between groups. We also detected numerous significant differences between outbred and inbred mice when comparing each group's call composition. We next assessed the relative variability of mouse vocalizations between groups, finding that outbred mice were less variable than inbred mice. For the spectral and temporal characteristics of the USVs, variability was similar between groups. Altogether, we found that CD-1 outbred mice display a similar, if not lower, degree of variability than FVB inbred mice when assessing neonatal USVs.
Collapse
Affiliation(s)
- Matthew S Binder
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| | - Hannah D Shi
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| | - Angelique Bordey
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Imbalanced post- and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol Psychiatry 2021; 26:6482-6504. [PMID: 34021263 PMCID: PMC8760046 DOI: 10.1038/s41380-021-01140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.
Collapse
|
19
|
Eltokhi A, Kurpiers B, Pitzer C. Behavioral tests assessing neuropsychiatric phenotypes in adolescent mice reveal strain- and sex-specific effects. Sci Rep 2020; 10:11263. [PMID: 32647155 PMCID: PMC7347854 DOI: 10.1038/s41598-020-67758-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
In humans, infancy and adolescence are associated with major changes in synaptic functions and ongoing maturation of neural networks, which underlie the major behavioral changes during these periods. Among adult cases with neuropsychiatric disorders including autism spectrum disorder, schizophrenia, attention deficit hyperactivity, and bipolar disorders, 50% have developed behavioral symptoms and received a diagnosis before 15 years of age. However, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we explored which behavioral experiments assessing neuropsychiatric phenotypes can be performed during a specific window of development in adolescent male and female C57BL/6N, DBA/2, and FVB/N mice that are typically used as background strains for generating genetically-modified mouse models. The three wild-type strains were evaluated across anxiety, social behaviors, and cognitive functions in order to cover the main behavioral impairments that occur in neuropsychiatric disorders. During adolescence, the three strains displayed significant differences under certain behavioral paradigms. In addition, C57BL/6N and FVB/N, but not DBA/2 mice revealed some sex-related differences. Our results provide new insights into discrete behaviors during development and emphasize the crucial importance of the genetic background, sex, and experimental settings in the age-dependent regulation of different behaviors.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020; 15:e0228892. [PMID: 32045453 PMCID: PMC7015103 DOI: 10.1371/journal.pone.0228892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023] Open
Abstract
Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.
Collapse
Affiliation(s)
- Daria D. Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
21
|
Correction: Longitudinal analysis of ultrasonic vocalizations in mice from infancy to adolescence: Insights into the vocal repertoire of three wild-type strains in two different social contexts. PLoS One 2019; 14:e0221469. [PMID: 31415671 PMCID: PMC6695107 DOI: 10.1371/journal.pone.0221469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|