1
|
D'Italia G, Schroen B, Cosemans JM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2025; 12:1013-1028. [PMID: 39375979 PMCID: PMC11911585 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Judith M.E.M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
2
|
Farha S, Asosingh K, Hassoun PM, Barnard J, Comhair S, Reichard A, Wanner N, Radeva M, Aldred MA, Beck GJ, Berman-Rosenzweig E, Borlaug BA, Finet JE, Frantz RP, Grunig G, Hemnes AR, Hill N, Horn EM, Jellis C, Leopold JA, Mehra R, Park MM, Rischard FP, Tang WHW, Erzurum SC. Alterations in Mitochondrial Function in Pulmonary Vascular Diseases. Antioxid Redox Signal 2025; 42:361-377. [PMID: 39655485 DOI: 10.1089/ars.2024.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aims: Alterations of mitochondrial bioenergetics and arginine metabolism are universally present and mechanistically linked to pulmonary arterial hypertension (PAH), but there is little knowledge of arginine metabolism and mitochondrial functions across the different pulmonary hypertension (PH) groups. We hypothesize that abnormalities in mitochondrial functions are present across all PH groups and associated with clinical phenotypes. We test the hypothesis in PH patients and healthy controls from the Pulmonary Vascular Disease Phenomics Program cohort, who had comprehensive clinical phenotyping and follow-up for at least 4 years for death or transplant status. Mitochondrial transmembrane potential, superoxide production, and mass were measured by flow cytometry in fresh platelets. Metabolomics analysis was performed on plasma samples. Global arginine bioavailability was calculated as the ratio of arginine/(ornithine+citrulline). Results: Global arginine bioavailability is consistently lower than controls in all PH groups. Although the mitochondrial mass is similar across all PH groups and controls, superoxide production and transmembrane potential vary across groups. Mitochondrial superoxide is higher in group 1 PAH and lowest in group 3 compared with other groups, while transmembrane potential is lower in group 1 PAH than controls or group 3. The alterations in mitochondrial functions of group 1 PAH are associated with changes in fatty acid metabolism. Mitochondrial transmembrane potential in group 1 PAH is associated with transplant-free survival. Conclusion: While alterations in mitochondrial function are found in all PH groups, group 1 PAH has a unique mitochondrial phenotype with greater superoxide and lower transmembrane potential linked to fatty acid metabolism, and clinically to survival. Antioxid. Redox Signal. 42, 361-377.
Collapse
Affiliation(s)
- Samar Farha
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Kewal Asosingh
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Barnard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suzy Comhair
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Reichard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Milena Radeva
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Micheala A Aldred
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | - Gerald J Beck
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J Emanuel Finet
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicholas Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Evelyn M Horn
- Division of Cardiology, Weill Cornell Medical Center, New York, New York, USA
| | - Christine Jellis
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reena Mehra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Park
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Franz P Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona, USA
| | - W H Wilson Tang
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil C Erzurum
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
3
|
Jheng JR, Bai Y, Noda K, Huot JR, Cook T, Fisher A, Chen YY, Goncharov DA, Goncharova EA, Simon MA, Zhang Y, Forman DE, Rojas M, Machado RF, Auwerx J, Gladwin MT, Lai YC. Skeletal Muscle SIRT3 Deficiency Contributes to Pulmonary Vascular Remodeling in Pulmonary Hypertension Due to Heart Failure With Preserved Ejection Fraction. Circulation 2024; 150:867-883. [PMID: 38804138 PMCID: PMC11384544 DOI: 10.1161/circulationaha.124.068624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a major complication linked to adverse outcomes in heart failure with preserved ejection fraction (HFpEF), yet no specific therapies exist for PH associated with HFpEF (PH-HFpEF). We have recently reported on the role of skeletal muscle SIRT3 (sirtuin-3) in modulation of PH-HFpEF, suggesting a novel endocrine signaling pathway for skeletal muscle modulation of pulmonary vascular remodeling. METHODS Using skeletal muscle-specific Sirt3 knockout mice (Sirt3skm-/-) and mass spectrometry-based comparative secretome analysis, we attempted to define the processes by which skeletal muscle SIRT3 defects affect pulmonary vascular health in PH-HFpEF. RESULTS Sirt3skm-/- mice exhibited reduced pulmonary vascular density accompanied by pulmonary vascular proliferative remodeling and elevated pulmonary pressures. Comparative analysis of secretome by mass spectrometry revealed elevated secretion levels of LOXL2 (lysyl oxidase homolog 2) in SIRT3-deficient skeletal muscle cells. Elevated circulation and protein expression levels of LOXL2 were also observed in plasma and skeletal muscle of Sirt3skm-/- mice, a rat model of PH-HFpEF, and humans with PH-HFpEF. In addition, expression levels of CNPY2 (canopy fibroblast growth factor signaling regulator 2), a known proliferative and angiogenic factor, were increased in pulmonary artery endothelial cells and pulmonary artery smooth muscle cells of Sirt3skm-/- mice and animal models of PH-HFpEF. CNPY2 levels were also higher in pulmonary artery smooth muscle cells of subjects with obesity compared with nonobese subjects. Moreover, treatment with recombinant LOXL2 protein promoted pulmonary artery endothelial cell migration/proliferation and pulmonary artery smooth muscle cell proliferation through regulation of CNPY2-p53 signaling. Last, skeletal muscle-specific Loxl2 deletion decreased pulmonary artery endothelial cell and pulmonary artery smooth muscle cell expression of CNPY2 and improved pulmonary pressures in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS This study demonstrates a systemic pathogenic impact of skeletal muscle SIRT3 deficiency in remote pulmonary vascular remodeling and PH-HFpEF. This study suggests a new endocrine signaling axis that links skeletal muscle health and SIRT3 deficiency to remote CNPY2 regulation in the pulmonary vasculature through myokine LOXL2. Our data also identify skeletal muscle SIRT3, myokine LOXL2, and CNPY2 as potential targets for the treatment of PH-HFpEF.
Collapse
MESH Headings
- Animals
- Sirtuin 3/metabolism
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/etiology
- Vascular Remodeling
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Mice, Knockout
- Mice
- Humans
- Stroke Volume
- Male
- Rats
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Disease Models, Animal
- Female
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang (Y.B.)
| | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, PA (K.N.)
| | - Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Todd Cook
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Amanda Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (Y.-Y.C.)
| | - Dmitry A Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis (D.A.G., E.A.G.)
| | - Elena A Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis (D.A.G., E.A.G.)
| | - Marc A Simon
- Division of Cardiology, University of California, San Francisco (M.A.S.)
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine (Y.Z.), University of Pittsburgh, PA
| | - Daniel E Forman
- Department of Medicine, Divisions of Geriatrics and Cardiology (D.E.F.), University of Pittsburgh, PA
- Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, PA (D.E.F.)
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus (M.R.)
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.)
| | - Mark T Gladwin
- Department of Medicine, University of Maryland, Baltimore (M.T.G.)
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
4
|
Jheng JR, DesJardin JT, Chen YY, Huot JR, Bai Y, Cook T, Hibbard LM, Rupp JM, Fisher A, Zhang Y, Duarte JD, Desai AA, Machado RF, Simon MA, Lai YC. Plasma Proteomics Identifies B2M as a Regulator of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol 2024; 44:1570-1583. [PMID: 38813697 PMCID: PMC11208054 DOI: 10.1161/atvbaha.123.320270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS Plasma proteomics identified high protein abundance levels of B2M (β2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Humans
- Male
- Mice
- Middle Aged
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/blood
- beta 2-Microglobulin/metabolism
- Biomarkers/blood
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Proteomics/methods
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Stroke Volume
- Vascular Remodeling
- Ventricular Function, Left
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | | | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Nankang, Taipei, Taiwan (Y.-Y.C.)
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan (Y.-Y.C.)
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang (Y.B.)
| | - Todd Cook
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Lainey M. Hibbard
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Jennifer M. Rupp
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Amanda Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA (Y.Z.)
| | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville (J.D.D.)
| | - Ankit A. Desai
- Krannert Cardiovascular Research Center (A.A.D.), Indiana University School of Medicine, Indianapolis
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Marc A. Simon
- Division of Cardiology, University of California, San Francisco (J.T.D.J., M.A.S.)
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
5
|
Gonzalez-Armenta JL, Bergstrom J, Lee J, Furdui CM, Nicklas BJ, Molina AJA. Serum factors mediate changes in mitochondrial bioenergetics associated with diet and exercise interventions. GeroScience 2024; 46:349-365. [PMID: 37368157 PMCID: PMC10828137 DOI: 10.1007/s11357-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA
| | - Jingyun Lee
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Section On Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara J Nicklas
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA.
| |
Collapse
|
6
|
Actis Dato V, Lange S, Cho Y. Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. Int J Mol Sci 2024; 25:1211. [PMID: 38279217 PMCID: PMC10816475 DOI: 10.3390/ijms25021211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
This comprehensive review explores the critical role of fatty acid (FA) metabolism in cardiac diseases, particularly heart failure (HF), and the implications for therapeutic strategies. The heart's reliance on ATP, primarily sourced from mitochondrial oxidative metabolism, underscores the significance of metabolic flexibility, with fatty acid oxidation (FAO) being a dominant source. In HF, metabolic shifts occur with an altered FA uptake and FAO, impacting mitochondrial function and contributing to disease progression. Conditions like obesity and diabetes also lead to metabolic disturbances, resulting in cardiomyopathy marked by an over-reliance on FAO, mitochondrial dysfunction, and lipotoxicity. Therapeutic approaches targeting FA metabolism in cardiac diseases have evolved, focusing on inhibiting or stimulating FAO to optimize cardiac energetics. Strategies include using CPT1A inhibitors, using PPARα agonists, and enhancing mitochondrial biogenesis and function. However, the effectiveness varies, reflecting the complexity of metabolic remodeling in HF. Hence, treatment strategies should be individualized, considering that cardiac energy metabolism is intricate and tightly regulated. The therapeutic aim is to optimize overall metabolic function, recognizing the pivotal role of FAs and the need for further research to develop effective therapies, with promising new approaches targeting mitochondrial oxidative metabolism and FAO that improve cardiac function.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
- Department of Biomedicine, Aarhus University, DK 8000 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, DK 8200 Aarhus, Denmark
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
| |
Collapse
|
7
|
Sumbalová Z, Kucharská J, Rausová Z, Palacka P, Kovalčíková E, Takácsová T, Mojto V, Navas P, Lopéz-Lluch G, Gvozdjáková A. Reduced platelet mitochondrial respiration and oxidative phosphorylation in patients with post COVID-19 syndrome are regenerated after spa rehabilitation and targeted ubiquinol therapy. Front Mol Biosci 2022; 9:1016352. [PMID: 36339707 PMCID: PMC9634579 DOI: 10.3389/fmolb.2022.1016352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
European Association of Spa Rehabilitation recommend spa rehabilitation for patients with post COVID-19 syndrome (post C-19). We studied effects of special mountain spa rehabilitation program and its combination with ubiquinol (reduced form of coenzyme Q10-CoQ10) supplementation on pulmonary function, clinical symptoms, endogenous CoQ10 levels, and platelet mitochondrial bioenergetics of patients with post C-19. 36 patients with post C-19 enrolled for rehabilitation in mountain spa resort and 15 healthy volunteers representing the control group were included in this study. 14 patients with post C-19 (MR group) were on mountain spa rehabilitation lasting 16-18 days, 22 patients (MRQ group) were supplemented with ubiquinol (2 × 100 mg/day) during the rehabilitation and additional 12-14 days at home. Clinical symptoms and functional capacity of the lungs were determined in the patients before and after the spa rehabilitation program. Platelet bioenergetics by high-resolution respirometry, plasma TBARS concentration, and CoQ10 concentration in blood, plasma and platelets were evaluated before and after the spa rehabilitation program, and in 8 patients of MRQ group also after additional 12-14 days of CoQ10 supplementation. Pulmonary function and clinical symptoms improved after the rehabilitation program in both groups, 51.8% of symptoms disappeared in the MR group and 62.8% in the MRQ group. Platelet mitochondrial Complex I (CI)-linked oxidative phosphorylation (OXPHOS) and electron transfer (ET) capacity were markedly reduced in both groups of patients. After the rehabilitation program the improvement of these parameters was significant in the MRQ group and moderate in the MR group. CI-linked OXPHOS and ET capacity increased further after additional 12-14 days of CoQ10 supplementation. CoQ10 concentration in platelets, blood and plasma markedly raised after the spa rehabilitation with ubiquinol supplementation, not in non-supplemented group. In the MRQ group all parameters of platelet mitochondrial respiration correlated with CoQ10 concentration in platelets, and the increase in CI-linked OXPHOS and ET capacity correlated with the increase of CoQ10 concentration in platelets. Our data show a significant role of supplemented ubiquinol in accelerating the recovery of mitochondrial health in patients with post C-19. Mountain spa rehabilitation with coenzyme Q10 supplementation could be recommended to patients with post C-19. This study was registered as a clinical trial: ClinicalTrials.gov ID: NCT05178225.
Collapse
Affiliation(s)
- Zuzana Sumbalová
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Jarmila Kucharská
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Zuzana Rausová
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Patrik Palacka
- Comenius University in Bratislava, Faculty of Medicine, 2nd Department of Oncology, Bratislava, Slovakia
| | | | | | - Viliam Mojto
- Comenius University in Bratislava, Faculty of Medicine, 3rd Department of Internal Medicine, Bratislava, Slovakia
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Guillermo Lopéz-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Anna Gvozdjáková
- Comenius University in Bratislava, Faculty of Medicine, Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Bratislava, Slovakia
| |
Collapse
|
8
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
9
|
Todd N, Lai YC. Current Understanding of Circulating Biomarkers in Pulmonary Hypertension Due to Left Heart Disease. Front Med (Lausanne) 2020; 7:570016. [PMID: 33117832 PMCID: PMC7575769 DOI: 10.3389/fmed.2020.570016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD; Group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most frequent cause of PH. Despite its prevalence, no effective therapies for PH-LHD are available at present. This is largely due to the lack of a concise definition for hemodynamic phenotyping, existence of significant gaps in the understanding of the underlying pathology and the impact of associated comorbidities, as well as the absence of specific biomarkers that can aid in the early diagnosis and management of this challenging syndrome. Currently, B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are guideline-recommended biomarkers for the diagnosis and prognosis of heart failure (HF) and PH. Endothelin-1 (ET-1), vascular endothelial growth factor-D (VEGF-D), and microRNA-206 have also been recently identified as new potential circulating biomarkers for patients with PH-LHD. In this review, we aim to present the current state of knowledge of circulating biomarkers that can be used to guide future research toward diagnosis, refine specific patient phenotype, and develop therapeutic approaches for PH-LHD, with a particular focus on PH-HFpEF. Potential circulating biomarkers identified in pre-clinical models of PH-LHD are also summarized here.
Collapse
Affiliation(s)
- Noah Todd
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Esparza O, Higa K, Davizon-Castillo P. Molecular and functional characteristics of megakaryocytes and platelets in aging. Curr Opin Hematol 2020; 27:302-310. [PMID: 32740036 PMCID: PMC11776438 DOI: 10.1097/moh.0000000000000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Advances in medical care and preventive measures have contributed to increasing life expectancy. Therefore, it is critical to expand our understanding of the physiological and pathophysiological adaptations of the hematological system in aging. We highlight and review the findings from recent investigations aimed at understanding the effects of aging on megakaryocytes and platelets. RECENT FINDINGS Biochemical and transcriptomic studies of megakaryocytes and platelets from older humans and mice have advanced our understanding of the molecular and functional characteristics of megakaryocytes and platelets during aging. These studies have led to the identification of metabolic and inflammatory pathways associated with the generation of hyperreactive platelets that may significantly contribute to the high incidence of thrombosis in aging. SUMMARY By increasing our research efforts to understand and identify the characteristics of megakaryocytes and platelets in aging, we will increase our potential to develop novel therapies aimed at decreasing the incidence of aging-associated thrombosis. These efforts will also serve as a foundation to better understand the role of megakaryocytes and platelets in other age-related hematological conditions with high thrombotic risk such as clonal hematopoiesis of indeterminate potential and myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Orlando Esparza
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
| | - Kelly Higa
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Pavel Davizon-Castillo
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
- Hemophilia and Thrombosis Center, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
11
|
Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37:101674. [PMID: 32811789 PMCID: PMC7767752 DOI: 10.1016/j.redox.2020.101674] [Citation(s) in RCA: 726] [Impact Index Per Article: 145.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial electron transport chain utilizes a series of electron transfer reactions to generate cellular ATP through oxidative phosphorylation. A consequence of electron transfer is the generation of reactive oxygen species (ROS), which contributes to both homeostatic signaling as well as oxidative stress during pathology. In this graphical review we provide an overview of oxidative phosphorylation and its inter-relationship with ROS production by the electron transport chain. We also outline traditional and novel translational methodology for assessing mitochondrial energetics in health and disease.
Collapse
|
12
|
Owiredu S, Ranganathan A, Eckmann DM, Shofer FS, Hardy K, Lambert DS, Kelly M, Jang DH. Ex vivo use of cell-permeable succinate prodrug attenuates mitochondrial dysfunction in blood cells obtained from carbon monoxide-poisoned individuals. Am J Physiol Cell Physiol 2020; 319:C129-C135. [PMID: 32374677 DOI: 10.1152/ajpcell.00539.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate a new pharmacological strategy using a first-generation succinate prodrug, NV118, in peripheral blood mononuclear cells (PBMCs) obtained from subjects with carbon monoxide (CO) poisoning and healthy controls. We obtained human blood cells from subjects with CO poisoning and healthy control subjects. Intact PBMCs from subjects in the CO and Control group were analyzed with high-resolution respirometry measured in pmol O2 per second per 10-6 PBMCs. In addition to obtaining baseline respiration, NV118 (100 μM) was injected, and the same parameters of respiration were obtained for comparison in PBMCs. We measured mitochondrial dynamics with microscopy with the same conditions. We enrolled 37 patients (17 in the CO group and 20 in the Control group for comparison) in the study. PMBCs obtained from subjects in the CO group had overall significantly lower respiration compared with the Control group (P < 0.0001). There was a significant increase in respiration with NV118, specifically with an increase in maximum respiration and respiration from complex II and complex IV (P < 0.0001). The mitochondria in PBMCs demonstrated an overall increase in net movement compared with the Control group. Our results of this study suggest that the therapeutic compound, NV118, increases respiration at complex II and IV as well as restoration of mitochondrial movement in PBMCs obtained from subjects with CO poisoning. Mitochondrial-directed therapy offers a potential future strategy with further exploration in vivo.
Collapse
Affiliation(s)
- Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abhay Ranganathan
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Hardy
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David S Lambert
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Kelly
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
14
|
McDowell RE, Aulak KS, Almoushref A, Melillo CA, Brauer BE, Newman JE, Tonelli AR, Dweik RA. Platelet glycolytic metabolism correlates with hemodynamic severity in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L562-L569. [PMID: 32022593 DOI: 10.1152/ajplung.00389.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Group 1 pulmonary hypertension (PH), i.e., pulmonary arterial hypertension (PAH), is associated with a metabolic shift favoring glycolysis in cells comprising the lung vasculature as well as skeletal muscle and right heart. We sought to determine whether this metabolic switch is also detectable in circulating platelets from PAH patients. We used Seahorse Extracellular Flux to measure bioenergetics in platelets isolated from group 1 PH (PAH), group 2 PH, patients with dyspnea and normal pulmonary artery pressures, and healthy controls. We show that platelets from group 1 PH patients exhibit enhanced basal glycolysis and lower glycolytic reserve compared with platelets from healthy controls but do not differ from platelets of group 2 PH or dyspnea patients without PH. Although we were unable to identify a glycolytic phenotype unique to platelets from PAH patients, we found that platelet glycolytic metabolism correlated with hemodynamic severity only in group 1 PH patients, supporting the known link between PAH pathology and altered glycolytic metabolism and extending this association to ex vivo platelets. Pulmonary artery pressure and pulmonary vascular resistance in patients with group 1 PH were directly associated with basal platelet glycolysis and inversely associated with maximal and reserve glycolysis, suggesting that PAH progression reduces the capacity for glycolysis even while demanding an increase in glycolytic metabolism. Therefore, platelets may provide an easy-to-harvest, real-time window into the metabolic shift occurring in the lung vasculature and represent a useful surrogate for interrogating the glycolytic shift central to PAH pathology.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kulwant S Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allaa Almoushref
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Celia A Melillo
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brittany E Brauer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jennie E Newman
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Raed A Dweik
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Braganza A, Annarapu GK, Shiva S. Blood-based bioenergetics: An emerging translational and clinical tool. Mol Aspects Med 2020; 71:100835. [PMID: 31864667 PMCID: PMC7031032 DOI: 10.1016/j.mam.2019.100835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Accumulating studies demonstrate that mitochondrial genetics and function are central to determining the susceptibility to, and prognosis of numerous diseases across all organ systems. Despite this recognition, mitochondrial function remains poorly characterized in humans primarily due to the invasiveness of obtaining viable tissue for mitochondrial studies. Recent studies have begun to test the hypothesis that circulating blood cells, which can be obtained by minimally invasive methodology, can be utilized as a biomarker of systemic bioenergetic function in human populations. Here we present the available methodologies for assessing blood cell bioenergetics and review studies that have applied these techniques to healthy and disease populations. We focus on the validation of this methodology in healthy subjects, as well as studies testing whether blood cell bioenergetics are altered in disease, correlate with clinical parameters, and compare with other methodology for assessing human mitochondrial function. Finally, we present the challenges and goals for the development of this emerging approach into a tool for translational research and personalized medicine.
Collapse
Affiliation(s)
- Andrea Braganza
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Peripheral Blood Mononuclear Cells and Platelets Mitochondrial Dysfunction, Oxidative Stress, and Circulating mtDNA in Cardiovascular Diseases. J Clin Med 2020; 9:jcm9020311. [PMID: 31979097 PMCID: PMC7073649 DOI: 10.3390/jcm9020311] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVDs) are devastating disorders and the leading cause of mortality worldwide. The pathophysiology of cardiovascular diseases is complex and multifactorial and, in the past years, mitochondrial dysfunction and excessive production of reactive oxygen species (ROS) have gained growing attention. Indeed, CVDs can be considered as a systemic alteration, and understanding the eventual implication of circulating blood cells peripheral blood mononuclear cells (PBMCs) and or platelets, and particularly their mitochondrial function, ROS production, and mitochondrial DNA (mtDNA) releases in patients with cardiac impairments, appears worthwhile. Interestingly, reports consistently demonstrate a reduced mitochondrial respiratory chain oxidative capacity related to the degree of CVD severity and to an increased ROS production by PBMCs. Further, circulating mtDNA level was generally modified in such patients. These data are critical steps in term of cardiac disease comprehension and further studies are warranted to challenge the possible adjunct of PBMCs’ and platelets’ mitochondrial dysfunction, oxidative stress, and circulating mtDNA as biomarkers of CVD diagnosis and prognosis. This new approach might also allow further interesting therapeutic developments.
Collapse
|
17
|
Fernández AI, Yotti R, González-Mansilla A, Mombiela T, Gutiérrez-Ibanes E, Pérez del Villar C, Navas-Tejedor P, Chazo C, Martínez-Legazpi P, Fernández-Avilés F, Bermejo J. The Biological Bases of Group 2 Pulmonary Hypertension. Int J Mol Sci 2019; 20:ijms20235884. [PMID: 31771195 PMCID: PMC6928720 DOI: 10.3390/ijms20235884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a potentially fatal condition with a prevalence of around 1% in the world population and most commonly caused by left heart disease (PH-LHD). Usually, in PH-LHD, the increase of pulmonary pressure is only conditioned by the retrograde transmission of the left atrial pressure. However, in some cases, the long-term retrograde pressure overload may trigger complex and irreversible biomechanical and biological changes in the pulmonary vasculature. This latter clinical entity, designated as combined pre- and post-capillary PH, is associated with very poor outcomes. The underlying mechanisms of this progression are poorly understood, and most of the current knowledge comes from the field of Group 1-PAH. Treatment is also an unsolved issue in patients with PH-LHD. Targeting the molecular pathways that regulate pulmonary hemodynamics and vascular remodeling has provided excellent results in other forms of PH but has a neutral or detrimental result in patients with PH-LHD. Therefore, a deep and comprehensive biological characterization of PH-LHD is essential to improve the diagnostic and prognostic evaluation of patients and, eventually, identify new therapeutic targets. Ongoing research is aimed at identify candidate genes, variants, non-coding RNAs, and other biomarkers with potential diagnostic and therapeutic implications. In this review, we discuss the state-of-the-art cellular, molecular, genetic, and epigenetic mechanisms potentially involved in PH-LHD. Signaling and effective pathways are particularly emphasized, as well as the current knowledge on -omic biomarkers. Our final aim is to provide readers with the biological foundations on which to ground both clinical and pre-clinical research in the field of PH-LHD.
Collapse
Affiliation(s)
- Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Paula Navas-Tejedor
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Christian Chazo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.I.F.); (R.Y.); (A.G.-M.); (T.M.); (E.G.-I.); (C.P.d.V.); (P.N.-T.); (C.C.); (P.M.-L.); (F.F.-A.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain
- Facultad de Medicine, Universidad Complutense de Madrid, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-91-586-8279
| |
Collapse
|