1
|
Bahr J, Poschmann G, Jungmann A, Busch M, Ding Z, Vogt J, Zalfen R, Steinhausen J, Euan Martínez AA, Wachtmeister T, Rickert D, Lautwein T, Alter C, Amrute JM, Lavine KJ, Köhrer K, Levkau B, Most P, Stühler K, Hesse J, Schrader J. A secretome atlas of cardiac fibroblasts from healthy and infarcted mouse hearts. Commun Biol 2025; 8:675. [PMID: 40301568 PMCID: PMC12041564 DOI: 10.1038/s42003-025-08083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/12/2025] [Indexed: 05/01/2025] Open
Abstract
Cardiac fibroblasts (CF) are key players after myocardial infarction (MI), but their signaling is only incompletely understood. Here we report a first secretome atlas of CF in control (cCF) and post-MI mouse hearts (miCF), combining a rapid cell isolation technique with SILAC and click chemistry. In CF, numerous paracrine factors involved in immune homeostasis are identified. Comparing secretome, transcriptome (SLAMseq), and cellular proteome disclose protein turnover. In miCF at day 5 post-MI, significantly upregulated proteins include SLIT2, FN1, and CRLF1 in mouse and human samples. Comparing the miCF secretome at days 3 and 5 post-MI reveals the dynamic nature of protein secretion. Specific in-vivo labeling of miCF proteins via biotin ligase TurboID using the POSTN promotor mirrors the in-vitro data. In summary, we identify numerous paracrine factors specifically secreted from CF in mice and humans. This secretome atlas may lead to new biomarkers and/or therapeutic targets for the activated CF.
Collapse
Affiliation(s)
- Jasmin Bahr
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Jungmann
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Busch
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Vogt
- Institute of Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ria Zalfen
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Steinhausen
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arlen Aurora Euan Martínez
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Rickert
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Junedh M Amrute
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Most
- Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Brown RD, Hunter KS, Li M, Frid MG, Harral J, Krafsur GM, Holt TN, Williams J, Zhang H, Riddle SR, Edwards MG, Kumar S, Hu CJ, Graham BB, Walker LA, Garry FB, Buttrick PM, Lahm T, Kheyfets VO, Hansen KC, Stenmark KR. Functional and molecular determinants of right ventricular response to severe pulmonary hypertension in a large animal model. Am J Physiol Heart Circ Physiol 2023; 324:H804-H820. [PMID: 36961489 PMCID: PMC10190846 DOI: 10.1152/ajpheart.00614.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.
Collapse
Affiliation(s)
- R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Kendall S Hunter
- Department of Bioengineering, University of Coloradoo Denver, Denver, Colorado, United States
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Julie Harral
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Greta M Krafsur
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Timothy N Holt
- Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason Williams
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, United States
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Suzette R Riddle
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | | | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Brian B Graham
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California, United States
| | - Lori A Walker
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Franklyn B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Peter M Buttrick
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, University of Colorado Denver, Denver, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Vitaly O Kheyfets
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
- Department of Biomedical Informatics, University of Colorado Denver, Denver, Colorado, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, United States
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States
- Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| |
Collapse
|
3
|
Zhao Y, Riching AS, Knight WE, Chi C, Broadwell LJ, Du Y, Abdel-Hafiz M, Ambardekar AV, Irwin DC, Proenza C, Xu H, Leinwand LA, Walker LA, Woulfe KC, Bristow MR, Buttrick PM, Song K. Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart. Circulation 2022; 146:699-714. [PMID: 35862102 PMCID: PMC9427731 DOI: 10.1161/circulationaha.121.058017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/07/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.
Collapse
Affiliation(s)
- Yuanbiao Zhao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lindsey J. Broadwell
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mostafa Abdel-Hafiz
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V. Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David C. Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lori A. Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter M. Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Lambert M, Mendes-Ferreira P, Ghigna MR, LeRibeuz H, Adão R, Boet A, Capuano V, Rucker-Martin C, Brás-Silva C, Quarck R, Domergue V, Vachiéry JL, Humbert M, Perros F, Montani D, Antigny F. Kcnk3 dysfunction exaggerates the development of pulmonary hypertension induced by left ventricular pressure overload. Cardiovasc Res 2021; 117:2474-2488. [PMID: 33483721 DOI: 10.1093/cvr/cvab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is a common complication of left heart disease (LHD, Group 2 PH) leading to right ventricular (RV) failure and death. Several loss-of-function (LOF) mutations in KCNK3 were identified in pulmonary arterial hypertension (PAH, Group 1 PH). Additionally, we found that KCNK3 dysfunction is a hallmark of PAH at pulmonary vascular and RV levels. However, the role of KCNK3 in the pathobiology of PH due to LHD is unknown. METHODS AND RESULTS We evaluated the role of KCNK3 on PH induced by ascending aortic constriction (AAC), in WT and Kcnk3-LOF-mutated rats, by echocardiography, RV catheterization, histology analyses, and molecular biology experiments. We found that Kcnk3-LOF-mutation had no consequence on the development of left ventricular (LV) compensated concentric hypertrophy in AAC, while left atrial emptying fraction was impaired in AAC-Kcnk3-mutated rats. AAC-animals (WT and Kcnk3-mutated rats) developed PH secondary to AAC and Kcnk3-mutated rats developed more severe PH than WT. AAC-Kcnk3-mutated rats developed RV and LV fibrosis in association with an increase of Col1a1 mRNA in right ventricle and left ventricle. AAC-Kcnk3-mutated rats developed severe pulmonary vascular (pulmonary artery as well as pulmonary veins) remodelling with intense peri-vascular and peri-bronchial inflammation, perivascular oedema, alveolar wall thickening, and exaggerated lung vascular cell proliferation compared to AAC-WT-rats. Finally, in lung, right ventricle, left ventricle, and left atrium of AAC-Kcnk3-mutated rats, we found a strong increased expression of Il-6 and periostin expression and a reduction of lung Ctnnd1 mRNA (coding for p120 catenin), contributing to the exaggerated pulmonary and heart remodelling and pulmonary vascular oedema in AAC-Kcnk3-mutated rats. CONCLUSIONS Our results indicate that Kcnk3-LOF is a key event in the pathobiology of PH due to AAC, suggesting that Kcnk3 channel dysfunction could play a potential key role in the development of PH due to LHD.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven-University of Leuven, Leuven,Belgium
| | - Maria-Rosa Ghigna
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Hélène LeRibeuz
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Rui Adão
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
| | - Angèle Boet
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Catherine Rucker-Martin
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Carmen Brás-Silva
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven-University of Leuven, Leuven,Belgium
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven, Leuven, Belgium
| | - Valérie Domergue
- Animal Facility, Institut Paris Saclay d'Innovation Thérapeutique (UMS IPSIT), Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Luc Vachiéry
- Department of Cardiology, Cliniques Universitaires de Bruxelles-Hôpital Erasme, Brussels, Belgium
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Frédéric Perros
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - David Montani
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| |
Collapse
|
5
|
Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, Stengl M, Kolar M, Novotny J, Benes J, Cervenka L, Petrak J, Melenovsky V. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep 2021; 11:17136. [PMID: 34429479 PMCID: PMC8384875 DOI: 10.1038/s41598-021-96618-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms of right ventricular (RV) dysfunction in heart failure (HF) are poorly understood. RV response to volume overload (VO), a common contributing factor to HF, is rarely studied. The goal was to identify interventricular differences in response to chronic VO. Rats underwent aorto-caval fistula (ACF)/sham operation to induce VO. After 24 weeks, RV and left ventricular (LV) functions, gene expression and proteomics were studied. ACF led to biventricular dilatation, systolic dysfunction and hypertrophy affecting relatively more RV. Increased RV afterload contributed to larger RV stroke work increment compared to LV. Both ACF ventricles displayed upregulation of genes of myocardial stress and metabolism. Most proteins reacted to VO in a similar direction in both ventricles, yet the expression changes were more pronounced in RV (pslope: < 0.001). The most upregulated were extracellular matrix (POSTN, NRAP, TGM2, CKAP4), cell adhesion (NCAM, NRAP, XIRP2) and cytoskeletal proteins (FHL1, CSRP3) and enzymes of carbohydrate (PKM) or norepinephrine (MAOA) metabolism. Downregulated were MYH6 and FAO enzymes. Therefore, when exposed to identical VO, both ventricles display similar upregulation of stress and metabolic markers. Relatively larger response of ACF RV compared to the LV may be caused by concomitant pulmonary hypertension. No evidence supports RV chamber-specific regulation of protein expression in response to VO.
Collapse
Affiliation(s)
- Tereza Havlenova
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Skaroupkova
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Matus Miklovic
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matej Behounek
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Chmel
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovska
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Sviglerova
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Stengl
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Michal Kolar
- grid.418827.00000 0004 0620 870XInstitute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- grid.418827.00000 0004 0620 870XInstitute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Benes
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Ludek Cervenka
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtech Melenovsky
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| |
Collapse
|
6
|
Zhu Y, Do VD, Richards AM, Foo R. What we know about cardiomyocyte dedifferentiation. J Mol Cell Cardiol 2020; 152:80-91. [PMID: 33275936 DOI: 10.1016/j.yjmcc.2020.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes (CMs) lost during cardiac injury and heart failure (HF) cannot be replaced due to their limited proliferative capacity. Regenerating the failing heart by promoting CM cell-cycle re-entry is an ambitious solution, currently vigorously pursued. Some genes have been proven to promote endogenous CM proliferation, believed to be preceded by CM dedifferentiation, wherein terminally differentiated CMs are initially reversed back to the less mature state which precedes cell division. However, very little else is known about CM dedifferentiation which remains poorly defined. We lack robust molecular markers and proper understanding of the mechanisms driving dedifferentiation. Even the term dedifferentiation is debated because there is no objective evidence of pluripotency, and could rather reflect CM plasticity instead. Nonetheless, the significance of CM transition states on cardiac function, and whether they necessarily lead to CM proliferation, remains unclear. This review summarises the current state of knowledge of both natural and experimentally induced CM dedifferentiation in non-mammalian vertebrates (primarily the zebrafish) and mammals, as well as the phenotypes and molecular mechanisms involved. The significance and potential challenges of studying CM dedifferentiation are also discussed. In summary, CM dedifferentiation, essential for CM plasticity, may have an important role in heart regeneration, thereby contributing to the prevention and treatment of heart disease. More attention is needed in this field to overcome the technical limitations and knowledge gaps.
Collapse
Affiliation(s)
- Yike Zhu
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - Vinh Dang Do
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore; Genome Institute of Singapore, Agency of Science Research and Technology, Singapore.
| |
Collapse
|
7
|
Szepes M, Melchert A, Dahlmann J, Hegermann J, Werlein C, Jonigk D, Haverich A, Martin U, Olmer R, Gruh I. Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. Int J Mol Sci 2020; 21:E8947. [PMID: 33255686 PMCID: PMC7728071 DOI: 10.3390/ijms21238947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial interstitial fibrosis (MIF) is characterized by excessive extracellular matrix (ECM) deposition, increased myocardial stiffness, functional weakening, and compensatory cardiomyocyte (CM) hypertrophy. Fibroblasts (Fbs) are considered the principal source of ECM, but the contribution of perivascular cells, including pericytes (PCs), has gained attention, since MIF develops primarily around small vessels. The pathogenesis of MIF is difficult to study in humans because of the pleiotropy of mutually influencing pathomechanisms, unpredictable side effects, and the lack of available patient samples. Human pluripotent stem cells (hPSCs) offer the unique opportunity for the de novo formation of bioartificial cardiac tissue (BCT) using a variety of different cardiovascular cell types to model aspects of MIF pathogenesis in vitro. Here, we have optimized a protocol for the derivation of hPSC-derived PC-like cells (iPSC-PCs) and present a BCT in vitro model of MIF that shows their central influence on interstitial collagen deposition and myocardial tissue stiffening. This model was used to study the interplay of different cell types-i.e., hPSC-derived CMs, endothelial cells (ECs), and iPSC-PCs or primary Fbs, respectively. While iPSC-PCs improved the sarcomere structure and supported vascularization in a PC-like fashion, the functional and histological parameters of BCTs revealed EC- and PC-mediated effects on fibrosis-related cardiac tissue remodeling.
Collapse
Affiliation(s)
- Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Anna Melchert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Julia Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Hegermann
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | | | - Danny Jonigk
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
8
|
Brown RD, Fini MA, Stenmark KR. Band on the run: insights into right ventricular reverse remodelling. Cardiovasc Res 2020; 116:1651-1653. [PMID: 32289148 DOI: 10.1093/cvr/cvaa091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert D Brown
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mehdi A Fini
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Floy ME, Mateyka TD, Foreman KL, Palecek SP. Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Res 2020; 45:101831. [PMID: 32446219 PMCID: PMC7931507 DOI: 10.1016/j.scr.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is one of the leading causes of death in the United States. Recent advances in stem cell biology have led to the development and engineering of human pluripotent stem cell (hPSC)-derived cardiac cells and tissues for application in cellular therapy and cardiotoxicity studies. Initial studies in this area have largely focused on improving differentiation efficiency and maturation states of cardiomyocytes. However, other cell types in the heart, including endothelial and stromal cells, play crucial roles in cardiac development, injury response, and cardiomyocyte function. This review discusses recent advances in differentiation of hPSCs to cardiac stromal cells, identification and classification of cardiac stromal cell types, and application of hPSC-derived cardiac stromal cells and tissues containing these cells in regenerative and drug development applications.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Tian L, Wu D, Dasgupta A, Chen KH, Mewburn J, Potus F, Lima PDA, Hong Z, Zhao YY, Hindmarch CCT, Kutty S, Provencher S, Bonnet S, Sutendra G, Archer SL. Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension: A Pyruvate Dehydrogenase Kinase-Dependent Shift in Mitochondrial Metabolism Promotes Right Ventricular Fibrosis. Circ Res 2020; 126:1723-1745. [PMID: 32216531 DOI: 10.1161/circresaha.120.316443] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Right ventricular (RV) fibrosis in pulmonary arterial hypertension contributes to RV failure. While RV fibrosis reflects changes in the function of resident RV fibroblasts (RVfib), these cells are understudied. OBJECTIVE Examine the role of mitochondrial metabolism of RVfib in RV fibrosis in human and experimental pulmonary arterial hypertension. METHODS AND RESULTS Male Sprague-Dawley rats received monocrotaline (MCT; 60 mg/kg) or saline. Drinking water containing no supplement or the PDK (pyruvate dehydrogenase kinase) inhibitor dichloroacetate was started 7 days post-MCT. At week 4, treadmill testing, echocardiography, and right heart catheterization were performed. The effects of PDK activation on mitochondrial dynamics and metabolism, RVfib proliferation, and collagen production were studied in RVfib in cell culture. Epigenetic mechanisms for persistence of the profibrotic RVfib phenotype in culture were evaluated. PDK expression was also studied in the RVfib of patients with decompensated RV failure (n=11) versus control (n=7). MCT rats developed pulmonary arterial hypertension, RV fibrosis, and RV failure. MCT-RVfib (but not left ventricular fibroblasts) displayed excess mitochondrial fission and had increased expression of PDK isoforms 1 and 3 that persisted for >5 passages in culture. PDK-mediated decreases in pyruvate dehydrogenase activity and oxygen consumption rate were reversed by dichloroacetate (in RVfib and in vivo) or siRNA targeting PDK 1 and 3 (in RVfib). These interventions restored mitochondrial superoxide and hydrogen peroxide production and inactivated HIF (hypoxia-inducible factor)-1α, which was pathologically activated in normoxic MCT-RVfib. Redox-mediated HIF-1α inactivation also decreased the expression of TGF-β1 (transforming growth factor-beta-1) and CTGF (connective tissue growth factor), reduced fibroblast proliferation, and decreased collagen production. HIF-1α activation in MCT-RVfib reflected increased DNMT (DNA methyltransferase) 1 expression, which was associated with a decrease in its regulatory microRNA, miR-148b-3p. In MCT rats, dichloroacetate, at therapeutic levels in the RV, reduced phospho-pyruvate dehydrogenase expression, RV fibrosis, and hypertrophy and improved RV function. In patients with pulmonary arterial hypertension and RV failure, RVfib had increased PDK1 expression. CONCLUSIONS MCT-RVfib manifest a DNMT1-HIF-1α-PDK-mediated, chamber-specific, metabolic memory that promotes collagen production and RV fibrosis. This epigenetic mitochondrial-metabolic pathway is a potential antifibrotic therapeutic target.
Collapse
Affiliation(s)
- Lian Tian
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Danchen Wu
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Asish Dasgupta
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Kuang-Hueih Chen
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Jeffrey Mewburn
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Francois Potus
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Patricia D A Lima
- Queen'ps CardioPulmonary Unit, Department of Medicine, Translational Institute of Medicine (P.D.A.L., C.C.T.H., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois at Chicago (Z.H.)
| | - Yuan-Yuan Zhao
- Department of Agricultural, Food and Nutritional Science (Y.-Y.Z.), University of Alberta, Edmonton, Canada
| | - Charles C T Hindmarch
- Queen'ps CardioPulmonary Unit, Department of Medicine, Translational Institute of Medicine (P.D.A.L., C.C.T.H., S.L.A.), Queen's University, Kingston, Ontario, Canada
| | - Shelby Kutty
- Department of Medicine, John Hopkins University, Baltimore, MD (S.K.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Department of Medicine, Heart and Lung Institute of Quebec, Laval University, Canada (S.P., S.B.)
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Department of Medicine, Heart and Lung Institute of Quebec, Laval University, Canada (S.P., S.B.)
| | - Gopinath Sutendra
- Department of Medicine (G.S.), University of Alberta, Edmonton, Canada
| | - Stephen L Archer
- From the Department of Medicine (L.T., D.W., A.D., K.-H.C., J.M., F.P., S.L.A.), Queen's University, Kingston, Ontario, Canada.,Queen'ps CardioPulmonary Unit, Department of Medicine, Translational Institute of Medicine (P.D.A.L., C.C.T.H., S.L.A.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Nwabuo CC, Vasan RS. Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr Hypertens Rep 2020; 22:11. [PMID: 32016791 DOI: 10.1007/s11906-020-1017-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Given that the life expectancy and the burden of hypertension are projected to increase over the next decade, hypertensive heart disease (HHD) may be expected to play an even more central role in the pathophysiology of cardiovascular disease (CVD). A broader understanding of the features and underlying mechanisms that constitute HHD therefore is of paramount importance. RECENT FINDINGS HHD is a condition that arises as a result of elevated blood pressure and constitutes a key underlying mechanism for cardiovascular morbidity and mortality. Historically, studies investigating HHD have primarily focused on left ventricular (LV) hypertrophy (LVH), but it is increasingly apparent that HHD encompasses a range of target-organ damage beyond LVH, including other cardiovascular structural and functional adaptations that may occur separately or concomitantly. HHD is characterized by micro- and macroscopic myocardial alterations, structural phenotypic adaptations, and functional changes that include cardiac fibrosis, and the remodeling of the atria and ventricles and the arterial system. In this review, we summarize the structural and functional alterations in the cardiac and vascular system that constitute HHD and underscore their underlying pathophysiology.
Collapse
Affiliation(s)
| | - Ramachandran S Vasan
- Framingham Heart Study, 73 Mt. Wayte Avenue, Suite 2, Framingham, MA, 01702, USA. .,Departments of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA. .,Department of Medicine, Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University Schools of Medicine, Boston, MA, USA.
| |
Collapse
|