1
|
Li L, Wang J, Zhang D, Deng L, Zhao X, Wang C, Yan X, Hu S. Resveratrol relieves myocardial ischemia-reperfusion injury through inhibiting AKT nitration modification. Redox Rep 2024; 29:2420564. [PMID: 39496098 PMCID: PMC11536672 DOI: 10.1080/13510002.2024.2420564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE The aim of this study was to clarify whether Protein kinase B (PKB)/AKT is nitrated in myocardial ischemia and reperfusion injury (MIRI) resveratrol (RSV)'s protective effect during this process. METHODS We blocked blood flow of the left coronary artery (LAD) of mice and used H9c2 cells under an oxygen-glucose deprivation (OGD) environment as animal and cell models of MIRI. N-methyl-D-aspartic acid receptor (NMDAR) inhibitor MK801, neuronal nitric oxide synthase (nNOS) inhibitor 7-NI and RSV were used as interventions. Nitration of proteins, infarction area, cardiomyocyte apoptosis and AKT nitration sites were detected during this study. RESULTS During in-vivo study, AKT nitration was induced through the NMDAR/nNOS/peroxynitrite (ONOO-) pathway, leading to decreased phosphorylation of AKT and increased cardiomyocyte apoptosis. AKT nitration was decreased and phosphorylation was elevated when administrated with RSV, MK801 and 7-NI. In in-vitro study, AKT nitration and TUNEL positive cells was elevated when administrated with NO donor H9c2 cells after OGD/R, when administrated with RSV, MK801 and 7-NI, AKT nitration and apoptosis was deceased in H9c2 cells. Mass spectrometry revealed that nitration sites of AKT included 14 Tyrosine residues. DISCUSSION RSV could inhibit AKT nitration and elevated phosphorylation through suppressing NMDAR/nNOS/ONOO- pathway and further reduce the apoptosis of cardiomyocytes in of myocardial I/R.
Collapse
Affiliation(s)
- Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jiantao Wang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Dandan Zhang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Li Deng
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Chunqing Wang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Xianliang Yan
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Emergency Medicine, Suining People's Hospital, Xuzhou, People’s Republic of China
| | - Shuqun Hu
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
2
|
Pang L, Zhao Y, Xu Y, Gao C, Wang C, Yu X, Wang F, He K. Mechanisms Underlying the Therapeutic Effects of JianPiYiFei II Granules in Treating COPD Based on GEO Datasets, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. BIOLOGY 2024; 13:711. [PMID: 39336138 PMCID: PMC11428342 DOI: 10.3390/biology13090711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND JianPiYiFei (JPYF) II granules are a Chinese medicine for the treatment of chronic obstructive pulmonary disease (COPD). However, the main components and underlying mechanisms of JPYF II granules are not well understood. This study aimed to elucidate the potential mechanism of JPYF II granules in the treatment of COPD using network pharmacology, molecular docking, and molecular dynamics simulation techniques. METHODS The active compounds and corresponding protein targets of the JPYF II granules were found using the TCMSP, ETCM, and Uniport databases, and a compound-target network was constructed using Cytoscape3.9.1. The COPD targets were searched for in GEO datasets and the OMIM and GeneCards databases. The intersection between the effective compound-related targets and disease-related targets was obtained, PPI networks were constructed, and GO and KEGG enrichment analyses were performed. Then, molecular docking analysis verified the results obtained using network pharmacology. Finally, the protein-compound complexes obtained from the molecular docking analysis were simulated using molecular dynamics (MD) simulations. RESULTS The network pharmacological results showed that quercetin, kaempferol, and stigmasterol are the main active compounds in JPYF II granules, and AKT1, IL-6, and TNF are key target proteins. The PI3K/AKT signaling pathway is a potential pathway through which the JPYF II granules affect COPD. The results of the molecular docking analysis suggested that quercetin, kaempferol, and stigmasterol have a good binding affinity with AKT1, IL-6, and TNF. The MD simulation results showed that TNF has a good binding affinity with the compounds. CONCLUSIONS This study identified the effective compounds, targets, and related underlying molecular mechanisms of JPYF II granules in the treatment of COPD through network pharmacology, molecular docking, and MD simulation techniques, which provides a reference for subsequent research on the treatment of COPD.
Collapse
Affiliation(s)
- Liyuan Pang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yongjuan Zhao
- Department of Pulmonary and Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Yang Xu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Oberdier MT, Li J, Ambinder DI, Suzuki M, Tumarkin E, Fink S, Neri L, Zhu X, Justice CN, Vanden Hoek TL, Halperin HR. Survival and Neurologic Outcomes From Pharmacologic Peptide Administration During Cardiopulmonary Resuscitation of Pulseless Electrical Activity. J Am Heart Assoc 2024; 13:e9757. [PMID: 38934857 PMCID: PMC11255698 DOI: 10.1161/jaha.123.033371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Outcomes from cardiopulmonary resuscitation (CPR) following sudden cardiac arrest are suboptimal. Postresuscitation targeted temperature management has been shown to have benefit in subjects with sudden cardiac arrest due to ventricular fibrillation, but there are few data for outcomes from sudden cardiac arrest due to pulseless electrical activity. In addition, intra-CPR cooling is more effective than postresuscitation cooling. Physical cooling is associated with increased protein kinase B activity. Therefore, our group developed a novel peptide, TAT-PHLPP9c, which regulates protein kinase B. We hypothesized that when given during CPR, TAT-PHLPP9c would improve survival and neurologic outcomes following pulseless electrical activity arrest. METHODS AND RESULTS In 24 female pigs, pulseless electrical activity was induced by inflating balloon catheters in the right coronary and left anterior descending arteries for ≈7 minutes. Advanced life support was initiated. In 12 control animals, epinephrine was given after 1 and 3 minutes. In 12 peptide-treated animals, 7.5 mg/kg TAT-PHLPP9c was also administered at 1 and 3 minutes of CPR. The balloons were removed after 2 minutes of support. Animals were recovered and neurologically scored 24 hours after return of spontaneous circulation. Return of spontaneous circulation was more common in the peptide group, but this difference was not significant (8/12 control versus 12/12 peptide; P=0.093), while fully intact neurologic survival was significantly more common in the peptide group (0/12 control versus 11/12 peptide; P<0.00001). TAT-PHLPP9c significantly increased myocardial nicotinamide adenine dinucleotide levels. CONCLUSIONS TAT-PHLPP9c resulted in improved survival with full neurologic function after sudden cardiac arrest in a swine model of pulseless electrical activity, and the peptide shows potential as an intra-CPR pharmacologic agent.
Collapse
Affiliation(s)
| | - Jing Li
- University of Illinois – ChicagoChicagoIL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Justice CN, O’Donnell JM, Vanden Hoek TL. Nicotinamide restores tissue NAD+ and improves survival in rodent models of cardiac arrest. PLoS One 2023; 18:e0291598. [PMID: 37713442 PMCID: PMC10503771 DOI: 10.1371/journal.pone.0291598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Metabolic suppression in the ischemic heart is characterized by reduced levels of NAD+ and ATP. Since NAD+ is required for most metabolic processes that generate ATP, we hypothesized that nicotinamide restores ischemic tissue NAD+ and improves cardiac function in cardiomyocytes and isolated hearts, and enhances survival in a mouse model of cardiac arrest. Mouse cardiomyocytes were exposed to 30 min simulated ischemia and 90 min reperfusion. NAD+ content dropped 40% by the end of ischemia compared to pre-ischemia. Treatment with 100 μM nicotinamide (NAM) at the start of reperfusion completely restored the cellular level of NAD+ at 15 min of reperfusion. This rescue of NAD+ depletion was associated with improved contractile recovery as early as 10 min post-reperfusion. In a mouse model of cardiac arrest, 100 mg/kg NAM administered IV immediately after cardiopulmonary resuscitation resulted in 100% survival at 4 h as compared to 50% in the saline group. In an isolated rat heart model, the effect of NAM on cardiac function was measured for 20 min following 18 min global ischemia. Rate pressure product was reduced by 26% in the control group following arrest. Cardiac contractile function was completely recovered with NAM treatment given at the start of reperfusion. NAM restored tissue NAD+ and enhanced production of lactate and ATP, while reducing glucose diversion to sorbitol in the heart. We conclude that NAM can rapidly restore cardiac NAD+ following ischemia and enhance glycolysis and contractile recovery, with improved survival in a mouse model of cardiac arrest.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Jing Li
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Huashan Wang
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Filip M. Gasior
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Chunpei Lee
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Shaoxia Lin
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Cody N. Justice
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - J. Michael O’Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine and Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Li J, Zhu X, Oberdier MT, Lee C, Lin S, Fink SJ, Justice CN, Qin K, Begeman AW, Damen FC, Kim H, Chen J, Cai K, Halperin HR, Vanden Hoek TL. A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models. J Clin Invest 2023; 133:e164283. [PMID: 37115695 PMCID: PMC10145924 DOI: 10.1172/jci164283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 04/29/2023] Open
Abstract
Out-of-hospital cardiac arrest is a leading cause of death in the US, with a mortality rate over 90%. Preclinical studies demonstrate that cooling during cardiopulmonary resuscitation (CPR) is highly beneficial, but can be challenging to implement clinically. No medications exist for improving long-term cardiac arrest survival. We have developed a 20-amino acid peptide, TAT-PHLPP9c, that mimics cooling protection by enhancing AKT activation via PH domain leucine-rich repeat phosphatase 1 (PHLPP1) inhibition. Complementary studies were conducted in mouse and swine. C57BL/6 mice were randomized into blinded saline control and peptide-treatment groups. Following a 12-minute asystolic arrest, TAT-PHLPP9c was administered intravenously during CPR and significantly improved the return of spontaneous circulation, mean arterial blood pressure and cerebral blood flow, cardiac and neurological function, and survival (4 hour and 5 day). It inhibited PHLPP-NHERF1 binding, enhanced AKT but not PKC phosphorylation, decreased pyruvate dehydrogenase phosphorylation and sorbitol production, and increased ATP generation in heart and brain. TAT-PHLPP9c treatment also reduced plasma taurine and glutamate concentrations after resuscitation. The protective benefit of TAT-PHLPP9c was validated in a swine cardiac arrest model of ventricular fibrillation. In conclusion, TAT-PHLPP9c may improve neurologically intact cardiac arrest survival without the need for physical cooling.
Collapse
Affiliation(s)
- Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Matt T. Oberdier
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunpei Lee
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shaoxia Lin
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sarah J. Fink
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kevin Qin
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrew W. Begeman
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Hajwa Kim
- Center for Clinical and Translational Science
| | - Jiwang Chen
- Cardiovascular Research Center, and
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kejia Cai
- Department of Radiology, College of Medicine
| | - Henry R. Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Departments of Radiology and Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Justice CN, Zhu X, Li J, O'Donnell JM, Vanden Hoek TL. Intra-ischemic hypothermia cardioprotection involves modulation of PTEN/Akt/ERK signaling and fatty acid oxidation. Physiol Rep 2023; 11:e15611. [PMID: 36807889 PMCID: PMC9938006 DOI: 10.14814/phy2.15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release. Left ventricular function was monitored continuously in isolated rat hearts subjected to 20 min of global, no-flow ischemia. Moderate cooling (30°C) was applied at the start of ischemia and hearts were rewarmed after 10 min of reperfusion. The effect of TH on protein phosphorylation and expression at 0 and 30 min of reperfusion was investigated by western blot analysis. Post-ischemic cardiac metabolism was investigated by 13 C-NMR. TH enhanced recovery of cardiac function, reduced taurine release, and enhanced PTEN phosphorylation and expression. Phosphorylation of Akt and ERK1/2 was increased at the end of ischemia but decreased at the end of reperfusion. On NMR analysis, TH-treated hearts displayed decreased fatty acid oxidation. Direct cardioprotection by moderate intra-ischemic TH is associated with decreased fatty acid oxidation, reduced taurine release, enhanced PTEN phosphorylation and expression, and enhanced activation of both Akt and ERK1/2 prior to reperfusion.
Collapse
Affiliation(s)
- Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - J. Michael O'Donnell
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
7
|
Li J, Chang WT, Qin G, Wojcik KR, Li CQ, Hsu CW, Han M, Zhu X, Vanden Hoek TL, Shao ZH. Baicalein Preconditioning Cardioprotection Involves Pro-Oxidant Signaling and Activation of Pyruvate Dehydrogenase. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1255-1267. [PMID: 35748215 DOI: 10.1142/s0192415x22500513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preconditioning has a powerful protective potential against myocardial ischemia-reperfusion injury (I/R). Our prior work demonstrated that baicalein, a flavonoid derived from the root of Scatellaria baicalensis Georgi (also known as Huangqin), confers this preconditioning protection. This study further explored the mechanisms of baicalein preconditioning (BC-PC) in mouse cardiomyocytes. Cells were treated with baicalein (10 μM) for a brief period of time (10 min) prior to simulated ischemia 90 min/reperfusion for 180 min. Baicalein triggered an induction of a small amount of mitochondrial reactive oxygen species (ROS) prior to the initiation of ischemia, assessed by 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate (6-carboxy-H2DCFDA). It also significantly increased cell viability measured by propidium iodide (PI) and lactate dehydrogenase and preserved mitochondrial membrane potential assessed by TMRM fluorescence intensity. Myxothiazol, a mitochondrial electron transport chain complex III inhibitor, partially blocked ROS generation induced by BC-PC and reduced cell viability. BC-PC increased phosphorylation of Akt (Thr308 and Ser473) and eNOS Ser1177, and nitric oxide (NO) production measured using 4,5-diaminofluorescein diacetate (DAF-2 DA, 1 μM). Akt inhibitor API-2 abolished Akt phosphorylation and reduced DAF-2 production and cell viability. In addition, BC-PC decreased phosphorylation of pyruvate dehydrogenase (PDH) reflecting upregulated PDH activity, and increased ATP production at 30 min during reperfusion. Taken together, baicalein preconditioning-induced cardioprotection involves pro-oxidant generation, activates survival signaling Akt/eNOS/NO, and improves metabolic recovery after I/R injury. Our work provides new perspectives on the effect of baicalein on cardiac preconditioning against I/R injury.
Collapse
Affiliation(s)
- Jing Li
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Gina Qin
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Kimberly R Wojcik
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Chang-Qing Li
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Chin-Wang Hsu
- Department of Emergency, School of Medicine, College of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mei Han
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Xiangdong Zhu
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Terry L Vanden Hoek
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| | - Zuo-Hui Shao
- Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
8
|
Rutledge CA, Chiba T, Redding K, Dezfulian C, Sims-Lucas S, Kaufman BA. A novel ultrasound-guided mouse model of sudden cardiac arrest. PLoS One 2020; 15:e0237292. [PMID: 33275630 PMCID: PMC7717537 DOI: 10.1371/journal.pone.0237292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
AIM Mouse models of sudden cardiac arrest are limited by challenges with surgical technique and obtaining reliable venous access. To overcome this limitation, we sought to develop a simplified method in the mouse that uses ultrasound-guided injection of potassium chloride directly into the heart. METHODS Potassium chloride was delivered directly into the left ventricular cavity under ultrasound guidance in intubated mice, resulting in immediate asystole. Mice were resuscitated with injection of epinephrine and manual chest compressions and evaluated for survival, body temperature, cardiac function, kidney damage, and diffuse tissue injury. RESULTS The direct injection sudden cardiac arrest model causes rapid asystole with high surgical survival rates and short surgical duration. Sudden cardiac arrest mice with 8-min of asystole have significant cardiac dysfunction at 24 hours and high lethality within the first seven days, where after cardiac function begins to improve. Sudden cardiac arrest mice have secondary organ damage, including significant kidney injury but no significant change to neurologic function. CONCLUSIONS Ultrasound-guided direct injection of potassium chloride allows for rapid and reliable cardiac arrest in the mouse that mirrors human pathology without the need for intravenous access. This technique will improve investigators' ability to study the mechanisms underlying post-arrest changes in a mouse model.
Collapse
Affiliation(s)
- Cody A. Rutledge
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Takuto Chiba
- Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States of America
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kevin Redding
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research and Critical Care Medicine Department, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sunder Sims-Lucas
- Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States of America
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Brett A. Kaufman
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
9
|
Shi J, Dai W, Carreno J, Zhao L, Kloner RA. Therapeutic Hypothermia Improves Long-Term Survival and Blunts Inflammation in Rats During Resuscitation of Hemorrhagic Shock. Ther Hypothermia Temp Manag 2020; 10:237-243. [DOI: 10.1089/ther.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Lifu Zhao
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Robert A. Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|