1
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
2
|
Boucher J, Gilbert C, Bose S, Tessier PA. S100A9: The Unusual Suspect Connecting Viral Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1523-1529. [PMID: 38709994 PMCID: PMC11076006 DOI: 10.4049/jimmunol.2300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 05/08/2024]
Abstract
The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Abedini-Nassab R, Taheri F, Emamgholizadeh A, Naderi-Manesh H. Single-Cell RNA Sequencing in Organ and Cell Transplantation. BIOSENSORS 2024; 14:189. [PMID: 38667182 PMCID: PMC11048310 DOI: 10.3390/bios14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Fatemeh Taheri
- Biomedical Engineering Department, University of Neyshabur, Neyshabur P.O. Box 9319774446, Iran
| | - Ali Emamgholizadeh
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran;
- Department of Biophysics, Faculty of Bioscience, Tarbiat Modares University, Tehran P.O. Box 1411944961, Iran
| |
Collapse
|
4
|
Glycyrrhizic acid inhibits myeloid differentiation of hematopoietic stem cells by binding S100 calcium binding protein A8 to improve cognition in aged mice. Immun Ageing 2023; 20:12. [PMID: 36906583 PMCID: PMC10007777 DOI: 10.1186/s12979-023-00337-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Glycyrrhizic acid (GA), a saponin compound often used as a flavoring agent, can elicit anti-inflammatory and anti-tumor effects, and alleviate aging. However, the specific mechanism by which GA alters immune cell populations to produce these beneficial effects is currently unclear. RESULTS In this study, we systematically analyzed single-cell sequencing data of peripheral blood mononuclear cells from young mice, aged mice, and GA-treated aged mice. Our in vivo results show that GA reduced senescence-induced increases in macrophages and neutrophils, and increased numbers of lymphoid lineage subpopulations specifically reduced by senescence. In vitro, GA significantly promoted differentiation of Lin-CD117+ hematopoietic stem cells toward lymphoid lineages, especially CD8+ T cells. Moreover, GA inhibited differentiation of CD4+ T cells and myeloid (CD11b+) cells by binding to S100 calcium-binding protein 8 (S100A8) protein. Overexpression of S100A8 in Lin- CD117+ hematopoietic stem cells enhanced cognition in aged mice and the immune reconstitution of severely immunodeficient B-NDG (NOD.CB17-Prkdcscid/l2rgtm1/Bcgen) mice. CONCLUSIONS Collectively, GA exerts anti-aging effects by binding to S100A8 to remodel the immune system of aged mice.
Collapse
|
5
|
Wong SW, McCarroll J, Hsu K, Geczy CL, Tedla N. Intranasal Delivery of Recombinant S100A8 Protein Delays Lung Cancer Growth by Remodeling the Lung Immune Microenvironment. Front Immunol 2022; 13:826391. [PMID: 35655772 PMCID: PMC9152328 DOI: 10.3389/fimmu.2022.826391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Increasing evidence indicates a critical role for chronic inflammation in lung carcinogenesis. S100A8 is a protein with reported pro- and anti-inflammatory functions. It is highly expressed in myeloid-derived suppressor cells (MDSC) that accumulate in the tumor microenvironment and abrogate effective anti-cancer immune responses. Mechanisms of MDSC-mediated immunosuppression include production of reactive oxygen species and nitric oxide, and depletion of L-arginine required for T cell function. Although S100A8 is expressed in MDSC, its role in the lung tumor microenvironment is largely unknown. To address this, mouse recombinant S100A8 was repeatedly administered intranasally to mice bearing orthotopic lung cancers. S100A8 treatment prolonged survival from 19 days to 28 days (p < 0.001). At midpoint of survival, whole lungs and bronchoalveolar lavage fluid (BALF) were collected and relevant genes/proteins measured. We found that S100A8 significantly lowered expression of cytokine genes and proteins that promote expansion and activation of MDSC in lungs and BALF from cancer-bearing mice. Moreover, S100A8 enhanced activities of antioxidant enzymes and suppressed production of nitrite to create a lung microenvironment conducive to cytotoxic lymphocyte expansion and function. In support of this, we found decreased MDSC numbers, and increased numbers of CD4+ T cells and natural killer T (NK-T) cells in lungs from cancer-bearing mice treated with S100A8. Ex-vivo treatment of splenocytes with S100A8 protein activated NK cells. Our results indicate that treatment with S100A8 may favourably modify the lung microenvironment to promote an effective immune response in lungs, thereby representing a new strategy that could complement current immunotherapies in lung cancer.
Collapse
Affiliation(s)
- Sze Wing Wong
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kenneth Hsu
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Carolyn L Geczy
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Medical Sciences and the Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Xavier A, Cesaro A. Impact of Exercise Intensity on Calprotectin Levels in Healthy Volunteers and Patients with Inflammatory Rheumatic Diseases. Life (Basel) 2021; 11:377. [PMID: 33922149 PMCID: PMC8143494 DOI: 10.3390/life11050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Exercise influences inflammatory response and immune system performance. The regular practice of a moderate activity positively regulates immunity and the inflammatory process, while intensive training depresses it and enhances inflammatory marker secretion. Calprotectin is involved in the inflammatory process, promoting neutrophil recruitment, cell degranulation, and inflammatory mediators. Furthermore, calprotectin has been associated with various inflammatory diseases, including inflammatory rheumatic diseases. The present review explores the effect of exercise on calprotectin levels in both healthy and inflammatory rheumatic conditions. Data show that the intensity duration and the type of exercise modulate calprotectin levels and participant inflammatory status. The exact role of calprotectin in the exercise response is yet unknown. Calprotectin could constitute an interesting biomarker for monitoring both the effect of exercise on the inflammatory process in healthy volunteers and the efficiency of exercise treatment programs in a patient with inflammatory rheumatic disease.
Collapse
Affiliation(s)
| | - Annabelle Cesaro
- I3MTO (Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux et Articulaire)/EA 4708, Université d’Orléans, 45000 Orléans, France;
| |
Collapse
|
8
|
Defrêne J, Berrazouane S, Esparza N, Pagé N, Côté MF, Gobeil S, Aoudjit F, Tessier PA. Deletion of S100a8 and S100a9 Enhances Skin Hyperplasia and Promotes the Th17 Response in Imiquimod-Induced Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:505-514. [PMID: 33361205 DOI: 10.4049/jimmunol.2000087] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/26/2020] [Indexed: 02/04/2023]
Abstract
High concentrations of the damage-associated molecular patterns S100A8 and S100A9 are found in skin and serum from patients suffering from psoriasis, an IL-17-related disease. Notably, although the expression of these proteins correlates with psoriatic disease severity, the exact function of S100A8 and S100A9 in psoriasis pathogenesis remains unclear. In this study, we investigated the role of S100A8 and S100A9 in psoriasis-associated skin hyperplasia and immune responses using S100a8-/- and S100a9-/- mice in an imiquimod-induced model of psoriasis. We found that S100a8-/- and S100a9-/- psoriatic mice exhibit worsened clinical symptoms relative to wild-type mice and increased expression of S100A9 and S100A8 proteins in keratinocytes, respectively. In addition, the loss of S100A8 enhances proliferation of keratinocytes and disrupts keratinocyte differentiation. We further detected elevated production of IL-17A and -F from CD4+ T cells in the absence of S100A8 and S100A9, as well as increased infiltration of neutrophils in the skin. In addition, treatment with anti-IL-17A and -F was found to reduce psoriasis symptoms and skin hyperplasia in S100a8-/- and S100a9-/- mice. These data suggest that S100A8 and S100A9 regulate psoriasis by inhibiting production of IL-17A and -F, thereby, to our knowledge, providing new insights into their biological functions.
Collapse
Affiliation(s)
- Joan Defrêne
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Sofiane Berrazouane
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nayeli Esparza
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Marie-France Côté
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Stéphane Gobeil
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada; and
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Philippe A Tessier
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada;
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
9
|
Flynn MC, Kraakman MJ, Tikellis C, Lee MKS, Hanssen NMJ, Kammoun HL, Pickering RJ, Dragoljevic D, Al-Sharea A, Barrett TJ, Hortle F, Byrne FL, Olzomer E, McCarthy DA, Schalkwijk CG, Forbes JM, Hoehn K, Makowski L, Lancaster GI, El-Osta A, Fisher EA, Goldberg IJ, Cooper ME, Nagareddy PR, Thomas MC, Murphy AJ. Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis. Circ Res 2020; 127:877-892. [PMID: 32564710 DOI: 10.1161/circresaha.120.316653] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Michelle C Flynn
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Michael J Kraakman
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, New York (M.J.K.)
| | - Christos Tikellis
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | - Man K S Lee
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Nordin M J Hanssen
- Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, the Netherlands (N.M.J.H., C.G.S.)
| | - Helene L Kammoun
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Raelene J Pickering
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | - Dragana Dragoljevic
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Annas Al-Sharea
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Tessa J Barrett
- Division of Cardiology (T.J.B., E.A.F., I.J.G.), New York University School of Medicine
| | - Fiona Hortle
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Frances L Byrne
- Division of Endocrinology, Diabetes and Metabolism (F.L.B., E.O., K.H.), New York University School of Medicine
| | - Ellen Olzomer
- Division of Endocrinology, Diabetes and Metabolism (F.L.B., E.O., K.H.), New York University School of Medicine
| | - Domenica A McCarthy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia (D.A.M., J.M.F.)
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, the Netherlands (N.M.J.H., C.G.S.)
| | - Josephine M Forbes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia (D.A.M., J.M.F.)
| | - Kyle Hoehn
- Division of Endocrinology, Diabetes and Metabolism (F.L.B., E.O., K.H.), New York University School of Medicine
| | - Liza Makowski
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia (L.M.)
| | - Graeme I Lancaster
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Assam El-Osta
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia.,Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis (A.E.-O.).,Department of Medicine and Therapeutics (A.E.-O.), The Chinese University of Hong Kong.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital (A.E.-O.), The Chinese University of Hong Kong.,Li Ka Shing Institute of Health Sciences (A.E.-O.), The Chinese University of Hong Kong
| | - Edward A Fisher
- Division of Cardiology (T.J.B., E.A.F., I.J.G.), New York University School of Medicine
| | - Ira J Goldberg
- Division of Cardiology (T.J.B., E.A.F., I.J.G.), New York University School of Medicine
| | - Mark E Cooper
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | | | - Merlin C Thomas
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | - Andrew J Murphy
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia (A.J.M.)
| |
Collapse
|