1
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
2
|
Vargas-Reyes M, Bruna N, Ramos-Zúñiga J, Valenzuela-Ibaceta F, Rivas-Álvarez P, Navarro CA, Pérez-Donoso JM. Biosynthesis of photostable CdS quantum dots by UV-resistant psychrotolerant bacteria isolated from Union Glacier, Antarctica. Microb Cell Fact 2024; 23:140. [PMID: 38760827 PMCID: PMC11100238 DOI: 10.1186/s12934-024-02417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.
Collapse
Affiliation(s)
- Matías Vargas-Reyes
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Paula Rivas-Álvarez
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
3
|
Ghasemi M, Debnath PC, Kim B, Pournoury M, Khazaeinezhad R, Hosseinzadeh Kassani S, Yeom DI, Oh K. Highly nonlinear optic nucleic acid thin-solid film to generate short pulse laser. Sci Rep 2023; 13:17494. [PMID: 37840076 PMCID: PMC10577146 DOI: 10.1038/s41598-023-44242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
Using aqueous precursors, we report successfully fabricating thin-solid films of two nucleic acids, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). We investigated the potential of these films deposited on a fiber optic platform as all-fiber integrated saturable absorbers (SAs) for ultrafast nonlinear optics. RNA-SA performances were comparable to those of DNA-SA in terms of its nonlinear transmission, modulation depth, and saturation intensity. Upon insertion of these devices into an Erbium-doped fiber ring-laser cavity, both RNA and DNA SAs enabled efficient passive Q-switching operation. RNA-SA application further facilitated robust mode-locking and generated a transform-limited soliton pulse, exhibiting a pulse duration of 633 femtoseconds. A detailed analysis of these pulsed laser characteristics compared RNA and DNA fiber optic SAs with other nonlinear optic materials. The findings of this research establish the feasibility of utilizing RNA as a saturable absorber in ultrafast laser systems with an equal or higher potential as DNA, which presents novel possibilities for the nonlinear photonic applications of nucleic acid thin solid films.
Collapse
Affiliation(s)
- Marjan Ghasemi
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-749, South Korea
| | - Pulak Chandra Debnath
- Department of Physics and Energy Systems Research, Ajou University, Suwon, 443-749, South Korea
| | - Byungjoo Kim
- Department of Laser and Electron Beam Technologies, Korea Institute of Machinery and Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Marzieh Pournoury
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Reza Khazaeinezhad
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92697, USA
| | | | - Dong-Il Yeom
- Department of Physics and Energy Systems Research, Ajou University, Suwon, 443-749, South Korea
| | - Kyunghwan Oh
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-749, South Korea.
| |
Collapse
|
4
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
5
|
Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q. Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 2022; 23:21. [PMID: 34983376 PMCID: PMC8725419 DOI: 10.1186/s12864-021-08184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a group of noncoding RNAs that participate in gene expression regulation in various pathways. The essential roles of circRNAs have been revealed in many species. However, knowledge of circRNAs in fungi is still not comprehensive. Results Trichophyton rubrum (T. rubrum) is considered a model organism of human pathogenic filamentous fungi and dermatophytes. In this study, we performed a genome-wide investigation of circRNAs in T. rubrum based on high-throughput sequencing and ultimately identified 4254 circRNAs. Most of these circRNAs were specific to the conidial or mycelial stage, revealing a developmental stage-specific expression pattern. In addition, 940 circRNAs were significantly differentially expressed between the conidial and mycelial stages. PCR experiments conducted on seven randomly selected differentially expressed (DE-) circRNAs confirmed the circularized structures and relative expression levels of these circRNAs. Based on their genome locations, most circRNAs originated from intergenic regions, unlike those in plants and animals. Furthermore, we constructed circRNA-miRNA-mRNA regulatory networks that included 661 DE-circRNAs targeting 140 miRNAs and further regulating 2753 mRNAs. The relative expression levels of two randomly selected circRNA-miRNA-mRNA axes were investigated by qRT-PCR, and the competing endogenous RNA (ceRNA) network theory was validated. Functional enrichment analysis of the target genes suggested that they were significantly involved in posttranscriptional processes and protein synthesis as well as some small-molecule metabolism processes. CircRNAs are relatively more conserved in closely related dermatophytes but rarely conserved in distantly related species. Tru_circ07138_001 is a highly conserved circRNA that was conserved in all ten dermatophytes analyzed in our study and three distantly related species. Its host gene TERG_07138 was also highly conserved in two of these distantly related species Gallus gallus and Caenorhabditis elegans. The specific role of this circRNA deserves further exploration. Conclusions Our study is the first to provide a global profile of circRNAs in T. rubrum as well as dermatophytes. These results could serve as valuable resources for research on circRNA regulatory mechanisms in fungi and reveal new insights for further investigation of the physical characteristics of these significant human fungal pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08184-y.
Collapse
Affiliation(s)
- Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
6
|
Raza S, Matuła K, Karoń S, Paczesny J. Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. Antibiotics (Basel) 2021; 10:435. [PMID: 33924618 PMCID: PMC8070485 DOI: 10.3390/antibiotics10040435] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (K.M.); (S.K.)
| |
Collapse
|