1
|
Xiong J, Ma R, Xie K, Shan C, Chen H, Wang Y, Liao Y, Deng Y, Ye G, Wang Y, Zhu Q, Zhang Y, Cai H, Guo W, Yin Y, Li Z. Recapitulation of endochondral ossification by hPSC-derived SOX9 + sclerotomal progenitors. Nat Commun 2025; 16:2781. [PMID: 40118845 PMCID: PMC11928506 DOI: 10.1038/s41467-025-58122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Endochondral ossification generates most of the load-bearing bones, recapitulating it in human cells remains a challenge. Here, we report generation of SOX9+ sclerotomal progenitors (scl-progenitors), a mesenchymal precursor at the pre-condensation stage, from human pluripotent stem cells and development of osteochondral induction methods for these cells. Upon lineage-specific induction, SOX9+ scl-progenitors have not only generated articular cartilage but have also undergone spontaneous condensation, cartilaginous anlagen formation, chondrocyte hypertrophy, vascular invasion, and finally bone formation with stroma, thereby recapitulating key stages during endochondral ossification. Moreover, self-organized growth plate-like structures have also been induced using SOX9+ scl-progenitor-derived fusion constructs with chondro- and osteo-spheroids, exhibiting molecular and cellular similarities to the primary growth plates. Furthermore, we have identified ITGA9 as a specific surface marker for reporter-independent isolation of SOX9+ scl-progenitors and established a culture system to support their expansion. Our work highlights SOX9+ scl-progenitors as a promising tool for modeling human skeletal development and bone/cartilage bioengineering.
Collapse
Affiliation(s)
- Jingfei Xiong
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Runxin Ma
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Xie
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ce Shan
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hanyi Chen
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuansong Liao
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanhui Deng
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yifu Wang
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qing Zhu
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Yunqiu Zhang
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weihua Guo
- Yunnan Key Laboratory of Stomatology, Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yike Yin
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Zhonghan Li
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
- Yunnan Key Laboratory of Stomatology, Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Presedo A, Rutz E, Howard JJ, Shrader MW, Miller F. The Etiology of Neuromuscular Hip Dysplasia and Implications for Management: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:844. [PMID: 39062293 PMCID: PMC11275045 DOI: 10.3390/children11070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This study summarizes the current knowledge of the etiology of hip dysplasia in children with neuromuscular disease and the implications for management. This article is based on a review of development of the hip joint from embryology through childhood growth. This knowledge is then applied to selective case reviews to show how the understanding of these developmental principles can be used to plan specific treatments. The development of the hip joint is controlled by genetic shape determination, but the final adult shape is heavily dependent on the mechanical environment experienced by the hip joint during growth and development. Children with neuromuscular conditions show a high incidence of coxa valga, hip dysplasia, and subluxation. The etiology of hip pathology is influenced by factors including functional status, muscular tone, motor control, child's age, and muscle strength. These factors in combination influence the development of high neck-shaft angle and acetabular dysplasia in many children. The hip joint reaction force (HJRF) direction and magnitude determine the location of the femoral head in the acetabulum, the acetabular development, and the shape of the femoral neck. The full range of motion is required to develop a round femoral head. Persistent abnormal direction and/or magnitude of HJRF related to the muscular tone can lead to a deformed femoral head and a dysplastic acetabulum. Predominating thigh position is the primary cause defining the direction of the HJRF, leading to subluxation in nonambulatory children. The magnitude and direction of the HJRF determine the acetabular shape. The age of the child when these pathomechanics occur acts as a factor increasing the risk of hip subluxation. Understanding the risk factors leading to hip pathology can help to define principles for the management of neurologic hip impairment. The type of neurologic impairment as defined by functional severity assessed by Gross Motor Function Classification System and muscle tone can help to predict the risk of hip joint deformity. A good understanding of the biomechanical mechanisms can be valuable for treatment planning.
Collapse
Affiliation(s)
- Ana Presedo
- Department of Pediatric Orthopaedics, Robert Debré University Hospital, 75019 Paris, France;
| | - Erich Rutz
- Department of Orthopaedics, The Royal Children’s Hospital, Melbourne 3052, Australia;
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne 3010, Australia
- Medical Faculty, University of Basel, 4001 Basel, Switzerland
| | - Jason J. Howard
- Department of Orthopaedics, Nemours Children’s Health, Wilmington, DE 19803, USA; (J.J.H.); (M.W.S.)
| | - Michael Wade Shrader
- Department of Orthopaedics, Nemours Children’s Health, Wilmington, DE 19803, USA; (J.J.H.); (M.W.S.)
| | - Freeman Miller
- Department of Orthopaedics, Nemours Children’s Health, Wilmington, DE 19803, USA; (J.J.H.); (M.W.S.)
| |
Collapse
|
3
|
Kanahashi T, Matsubayashi J, Imai H, Yamada S, Otani H, Takakuwa T. Sexual dimorphism of the human fetal pelvis exists at the onset of primary ossification. Commun Biol 2024; 7:538. [PMID: 38714799 PMCID: PMC11076513 DOI: 10.1038/s42003-024-06156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 05/10/2024] Open
Abstract
Human adolescent and adult skeletons exhibit sexual dimorphism in the pelvis. However, the degree of sexual dimorphism of the human pelvis during prenatal development remains unclear. Here, we performed high-resolution magnetic resonance imaging-assisted pelvimetry on 72 human fetuses (males [M]: females [F], 34:38; 21 sites) with crown-rump lengths (CRL) of 50-225 mm (the onset of primary ossification). We used multiple regression analysis to examine sexual dimorphism with CRL as a covariate. Females exhibit significantly smaller pelvic inlet anteroposterior diameters (least squares mean, [F] 8.4 mm vs. [M] 8.8 mm, P = 0.036), larger subpubic angle ([F] 68.1° vs. [M] 64.0°, P = 0.034), and larger distance between the ischial spines relative to the transverse diameters of the greater pelvis than males. Furthermore, the sacral measurements indicate significant sex-CRL interactions. Our study suggests that sexual dimorphism of the human fetal pelvis is already apparent at the onset of primary ossification.
Collapse
Affiliation(s)
- Toru Kanahashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hirohiko Imai
- Department of Informatics, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Yokoyama Y, Kameo Y, Sunaga J, Maki K, Adachi T. Chondrocyte hypertrophy in the growth plate promotes stress anisotropy affecting long bone development through chondrocyte column formation. Bone 2024; 182:117055. [PMID: 38412894 DOI: 10.1016/j.bone.2024.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The length of long bones is determined by column formation of proliferative chondrocytes and subsequent chondrocyte hypertrophy in the growth plate during bone development. Despite the importance of mechanical loading in long bone development, the mechanical conditions of the cells within the growth plate, such as the stress field, remain unclear owing to the difficulty in investigating spatiotemporal changes within dynamically growing tissues. In this study, the mechanisms of longitudinal bone growth were investigated from a mechanical perspective through column formation of proliferative chondrocytes within the growth plate before secondary ossification center formation using continuum-based particle models (CbPMs). A one-factor model, which simply describes essential aspects of a biological signaling cascade regulating cell activities within the growth plate, was developed and incorporated into CbPM. Subsequently, the developmental process and maintenance of the growth plate structure and resulting bone morphogenesis were simulated. Thus, stress anisotropy in the proliferative zone that affects bone elongation through chondrocyte column formation was identified and found to be promoted by chondrocyte hypertrophy. These results provide further insights into the mechanical regulation of multicellular dynamics during bone development.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan
| | - Junko Sunaga
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Maki
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Deng Z, Rong S, Gan L, Wang F, Bao L, Cai F, Liao Z, Jin Y, Feng S, Feng Z, Wei Y, Chen R, Jin Y, Zhou Y, Zheng X, Huang L, Zhao L. Temporal transcriptome features identify early skeletal commitment during human epiphysis development at single-cell resolution. iScience 2023; 26:107200. [PMID: 37554462 PMCID: PMC10405011 DOI: 10.1016/j.isci.2023.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 08/10/2023] Open
Abstract
Human epiphyseal development has been mainly investigated through radiological and histological approaches, uncovering few details of cellular temporal genetic alternations. Using single-cell RNA sequencing, we investigated the dynamic transcriptome changes during post-conception weeks (PCWs) 15-25 of human distal femoral epiphysis cells. We find epiphyseal cells contain multiple subtypes distinguished by specific markers, gene signatures, Gene Ontology (GO) enrichment analysis, and gene set variation analysis (GSVA). We identify the populations committed to cartilage or ossification at this time, although the secondary ossification centers (SOCs) have not formed. We describe the temporal alternation in transcriptional expression utilizing trajectories, transcriptional regulatory networks, and intercellular communication analyses. Moreover, we find the emergence of the ossification-committed population is correlated with the COL2A1-(ITGA2/11+ITGB1) signaling. NOTCH signaling may contribute to the formation of cartilage canals and ossification via NOTCH signaling. Our findings will advance the understanding of single-cell genetic changes underlying fetal epiphysis development.
Collapse
Affiliation(s)
- Zhonghao Deng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shengwei Rong
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Gan
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fuhua Wang
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liangxiao Bao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Cai
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital Taihe Branch, Guangzhou, Guangdong 510515, China
| | - Zheting Liao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Jin
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuhao Feng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zihang Feng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yiran Wei
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruge Chen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yangchen Jin
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanli Zhou
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Xiaoyong Zheng
- Orthopaedic Department, The 8th medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Liang Zhao
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Orthopaedic Surgery, Shunde First People Hospital, Foshan, Guangdong 528300, China
| |
Collapse
|
6
|
Carman L, Besier T, Stott NS, Choisne J. Sex differences in linear bone measurements occur following puberty but do not influence femoral or tibial torsion. Sci Rep 2023; 13:11733. [PMID: 37474546 PMCID: PMC10359265 DOI: 10.1038/s41598-023-38783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Torsional, angular, and linear measurements in a paediatric population are clinically important but not well defined and understood. Different methods of measurement and discrepancies between assessors leads to a lack of understanding of what should be defined as typical or atypical for the growing skeleton. From a large dataset of 333 paediatric CT scans, we extracted three-dimensional torsional, angular, and linear measurements from the pelvis, femur, and tibia/fibula. Sex differences in linear measurements were observed in bones of children aged 13+ (around puberty), but femoral and tibial torsion were similar between males and females. The rotational profile (femoral anteversion minus tibial torsion) tended to increase with growth. Epicondylar, condylar, and malleolar widths were smaller in females than males for the same bone length after the age of 13 years, which could explain why females may be more at risk for sport injuries during adolescence. This rich dataset can be used as an atlas for researchers and clinicians to understand typical development of critical rotational profiles and linear bone measurements in children.
Collapse
Affiliation(s)
- Laura Carman
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - N Susan Stott
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Julie Choisne
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Fan C, Niu Y, Wang F. Local torsion of distal femur is a risk factor for patellar dislocation. J Orthop Surg Res 2023; 18:163. [PMID: 36869339 PMCID: PMC9983249 DOI: 10.1186/s13018-023-03646-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
PURPOSE It has been widely reported that femoral anteversion is a risk factor for patellar dislocation. This study aims to evaluate whether internal torsion of the distal femur is noticeable in patients without increased femoral anteversion and to assess whether it is a risk factor for patellar dislocation. METHODS A retrospective analysis was conducted on 35 patients (24 females, 11 males) with recurrent patellar dislocation but without increased femoral anteversion treated in our hospital from January 2019 to August 2020. All patients underwent knee X-rays, digital radiography of lower-limbs, and CT scans of hip, knee, and ankle joints to measure femoral anteversion angle, distal femoral torsion angle, TT-TG and Caton-Deschamps index. Thirty-five control cases were matched on age and sex to compare the difference of anatomic parameters between the two groups, and the logistic analysis was used to analyze risk factors for patellar dislocation. Perman correlation coefficient was used to evaluate the correlation among femoral anteversion, distal femoral torsion and TT-TG. RESULTS Greater distal femoral torsion was still observed in patients with patellar dislocation but without increased femoral anteversion. The torsion angle of distal femur, TT-TG distance and incidence of Patella Alta in patients with patellar dislocation were greater than those in control group, and the inter-group differences were statistically significant (P < 0.05). The torsion angle of distal femur (OR = 2.848, P < 0.001), TT-TG distance (OR = 1.163, P = 0.021) and Patella Alta (OR = 3.545, P = 0.034) were risk factors for patellar dislocation. However, no significant correlation was found among femoral anteversion, distal femoral torsion and TT-TG in patients with patellar dislocation. CONCLUSION On the condition that femoral anteversion did not increase, increased distal femoral torsion was commonly observed in patients with patellar dislocation, which represents an independent risk factor for patellar dislocation.
Collapse
Affiliation(s)
- Chongyi Fan
- Department of Joint Surgery, Hebei Medical University Affiliated Third Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yingzhen Niu
- Department of Joint Surgery, Hebei Medical University Affiliated Third Hospital, Shijiazhuang, 050051, Hebei, China
| | - Fei Wang
- Department of Joint Surgery, Hebei Medical University Affiliated Third Hospital, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
8
|
Takakuwa T, Saizonou MA, Fujii S, Kumano Y, Ishikawa A, Aoyama T, Imai H, Yamada S, Kanahashi T. Femoral posture during embryonic and early fetal development: An analysis using landmarks on the cartilaginous skeletons of ex vivo human specimens. PLoS One 2023; 18:e0285190. [PMID: 37130112 PMCID: PMC10153723 DOI: 10.1371/journal.pone.0285190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
The pre-axial border medially moves between the fetal and early postnatal periods, and the foot sole can be placed on the ground. Nonetheless, the precise timeline when this posture is achieved remains poorly understood. The hip joint is the most freely movable joint in the lower limbs and largely determines the lower-limb posture. The present study aimed to establish a timeline of lower-limb development using a precise measurement of femoral posture. Magnetic resonance images of 157 human embryonic samples (Carnegie stages [CS] 19-23) and 18 fetal samples (crown rump length: 37.2-225 mm) from the Kyoto Collection were obtained. Three-dimensional coordinates of eight selected landmarks in the lower limbs and pelvis were used to calculate the femoral posture. Hip flexion was approximately 14° at CS19 and gradually increased to approximately 65° at CS23; the flexion angle ranged from 90° to 120° during the fetal period. Hip joint abduction was approximately 78° at CS19 and gradually decreased to approximately 27° at CS23; the average angle was approximately 13° during the fetal period. Lateral rotation was greater than 90° at CS19 and CS21 and decreased to approximately 65° at CS23; the average angle was approximately 43° during the fetal period. During the embryonic period, three posture parameters (namely, flexion, abduction, and lateral rotation of the hip) were linearly correlated with each other, suggesting that the femoral posture at each stage was three-dimensionally constant and exhibited gradual and smooth change according to growth. During the fetal period, these parameters varied among individuals, with no obvious trend. Our study has merits in that lengths and angles were measured on anatomical landmarks of the skeletal system. Our obtained data may contribute to understanding development from anatomical aspects and provide valuable insights for clinical application.
Collapse
Affiliation(s)
- Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marie Ange Saizonou
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sena Fujii
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yousuke Kumano
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Ishikawa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kanahashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Yamaguchi Y, Murase A, Kodama R, Yamamoto A, Imai H, Yoneyama A, Yamada S. Three-dimensional visualization and quantitative analysis of embryonic and fetal thigh muscles using magnetic resonance and phase-contrast X-ray imaging. J Anat 2022; 241:1310-1323. [PMID: 36123316 PMCID: PMC9644959 DOI: 10.1111/joa.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
The musculoskeletal system around the human hip joint has acquired a suitable structure for erect bipedal walking. However, little is known about the process of separation and maturation of individual muscles during the prenatal period, when muscle composition is acquired. Understanding the maturation process of the normal musculoskeletal system contributes to elucidating the acquisition of bipedal walking in humans and to predicting normal growth and detecting congenital muscle disorders and anomalies. In this study, we clarify the process of thigh muscle maturation from the embryonic stage to the mid-fetal stage using serial sections, phase-contrast X-ray computed tomography, and magnetic resonance imaging. We also provide a 4D atlas of human thigh muscles between 8 and 23 weeks of gestation. As a result, we first show that muscle separation in the lower thigh tends to progress from the superficial to the deep layers and that all musculoskeletal components are formed by Carnegie Stage 22. Next, we show that femur and muscle volume grow in correlation with crown-rump length. Finally, we show that the anterior, abductor, and posterior muscle groups in the thigh contain a high percentage of monoarticular muscle volume by the end of the embryonic period. This ratio approaches that of adult muscle composition during normal early fetal development and is typical of bipedal walking. This study of fetal muscle composition suggests that preparation for postnatal walking may begin in early fetal period.
Collapse
Grants
- 2021G574 Committee of the Photon Factory
- 2019G542 Committee of the Photon Factory
- 2019G541 Committee of the Photon Factory
- 2017G688 Committee of the Photon Factory
- 2017G598 Committee of the Photon Factory
- 2016G171 Committee of the Photon Factory
- 2014G018 Committee of the Photon Factory
- 2012G138 Committee of the Photon Factory
- 21H01333 Ministry of Education, Culture, Sports Science, and Technology (MEXT) KAKENHI
- 20K20719 Ministry of Education, Culture, Sports Science, and Technology (MEXT) KAKENHI
- 20K20681 Ministry of Education, Culture, Sports Science, and Technology (MEXT) KAKENHI
- 19K11032 Ministry of Education, Culture, Sports Science, and Technology (MEXT) KAKENHI
Collapse
Affiliation(s)
- Yutaka Yamaguchi
- Congenital Anomaly Research CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Ami Murase
- Human Health SciencesKyoto University Graduate School of MedicineKyotoJapan
| | - Ryota Kodama
- Human Health SciencesKyoto University Graduate School of MedicineKyotoJapan
| | | | - Hirohiko Imai
- Department of Systems Science, Graduate School of InformaticsKyoto UniversityKyotoJapan
| | | | - Shigehito Yamada
- Congenital Anomaly Research CenterKyoto University Graduate School of MedicineKyotoJapan
- Human Health SciencesKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
10
|
Kantaputra P, Jatooratthawichot P, Jintakanon K, Intachai W, Pradermdutsadeeporn P, Adisornkanj P, Tongsima S, Ngamphiw C, Olsen B, Tucker AS, Cairns JRK. Mutations in LRP6 highlight the role of WNT signalling in oral exostoses and dental anomalies. Arch Oral Biol 2022; 142:105514. [DOI: 10.1016/j.archoralbio.2022.105514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
11
|
Sepúlveda M, Téllez C, Villablanca V, Birrer E. Distal femoral fractures in children. EFORT Open Rev 2022; 7:264-273. [PMID: 37931413 PMCID: PMC9069856 DOI: 10.1530/eor-21-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The physis of the distal femur contributes to 70% of femoral growth and 37% of the total limb growth; therefore, physeal injury can lead to important alterations of axes and length. Distal metaphyseal corner-type fracture prior to walking is classically associated with child abuse. In children aged >10 years, sports-related fractures and car accidents are significant contributors. Imaging includes a two-plane radiographic study of the knee. It is recommended to obtain radiographs that include the entire femur to rule out concomitant injuries. In cases of high suspicion of distal metaphyseal fractures and no radiographic evidence, CT or MRI can show the existence of hidden fractures. Fractures with physeal involvement are conventionally classified according to the Salter-Harris classification, but the Peterson classification is also recommended as it includes special subgroups. Conservative and surgical management are valid alternatives for the treatment of these fractures. Choosing between both alternatives depends on factors related to the fracture type. As there is a high risk of permanent physeal damage, long-term follow-up is essential until skeletal maturity is complete.
Collapse
Affiliation(s)
- Matías Sepúlveda
- Universidad Austral de Chile, Valdivia, Chile
- Hospital Base de Valdivia, Valdivia, Chile
- AO Foundation, PAEG Expert Group, Davos, Switzerland
| | - Cecilia Téllez
- Universidad Austral de Chile, Valdivia, Chile
- Hospital Base de Valdivia, Valdivia, Chile
| | - Víctor Villablanca
- Universidad Austral de Chile, Valdivia, Chile
- Hospital Base de Valdivia, Valdivia, Chile
| | - Estefanía Birrer
- Universidad Austral de Chile, Valdivia, Chile
- Hospital Base de Valdivia, Valdivia, Chile
| |
Collapse
|
12
|
Shao XH, Li JM, Zhang AL, Yao Y, Sun FF, Li ZZ, Liu T, Cheng K. Discovery and Characterization of Intercondylar Transphyseal Complexes and their Oncological Significance in Transphyseal Extension of Pediatric Osteosarcoma. Orthop Surg 2022; 14:411-421. [PMID: 35199961 PMCID: PMC8867409 DOI: 10.1111/os.13221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Objective To explore whether there exist undiscovered transphyseal vasculature‐canal compound structures in immature femurs and tibias, and reveal their potential oncological impact. Methods This investigation was divided into a morphological study and a clinical study. In the morphological part, a new‐identified anatomic structure was investigated by using radiographical, anatomical, and histological methodologies. Twenty‐eight 1‐mm‐slice thickness magnetic resonance images of pediatric knees were generated and 10 pediatric knees were dissected to verify the existence and universality, observe the radiographic and anatomic characteristics, and determined the located region of this structure. Hematoxylin–eosin staining, immunofluorescence, and angiography procedures were performed to illustrate its histological feature, molecular identification, and vascular origination, respectively. In the clinical part, 38 pediatric osteosarcoma patients were enrolled from January 2014 to December 2020. A descriptive clinical study including 13 typical participants was conducted to investigate the oncological significance of this new‐identified structure. Meanwhile, the discrepancy in transphyseal osteosarcoma extension between different physeal regions was evaluated in a cross‐sectional study. Results In the morphological study, we discovered a new‐found vasculature‐canal compound structure, intercondylar transphyseal complex (ITC), which originated from the middle genicular vessels, traversed the whole epiphysis, and breached the intact open physis in the immature proximal tibia or distal femur. The components of ITC included the juxta‐articular, epiphyseal, and transphyseal segments of vessels, the canals that traverse the entire epiphysis and physis and enclosed the vessels, vascular foramina on articular facet and foramina‐covered synovium. Depending on the location, ITCs can be divided into three types: femoral ITC, anterior tibial ITC, and posterior tibial ITC. Clinically, the ITC may facilitate intercondylar transphyseal sarcomatous dissemination without damaging the adjacent physeal cartilage. Compared to bilateral condylar physes, more osteosarcomas transgressed the open growth plates through intercondylar regions in which ITC was located (P = 0.022). Conclusion As the “gap” on intact open physis, ITC, which is a new‐identified compound structure in intercondylar regions of immature femur or tibia, may promote intercondylar transphyseal tumor extension. Moreover, the identification and characterization of ITC subvert some traditional comprehensions about physis and may provide novel perspectives for pediatric osteosarcomas.
Collapse
Affiliation(s)
- Xian-Hao Shao
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian-Min Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ai-Lin Zhang
- Rehabilitation Units, University of Canberra Hospital, Bruce, Australian Capital Territory, Australia
| | - Yuan Yao
- Department of Radiography, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei-Fei Sun
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen-Zhong Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Liu
- Department of Orthopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Kun Cheng
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Kellam PJ, Rogers MJ, Myhre L, Dekeyser GJ, Maak TG, Marchand LS. Femoral neck shaft angle is not correlated with femoral version: A retrospective study of computed tomography scans. Injury 2022; 53:615-619. [PMID: 34973830 DOI: 10.1016/j.injury.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND An understanding of femoral anteversion and neck-shaft angle (NSA) is essential to deliver optimal orthopaedic surgical care. Despite the importance, there is little research examining the relationship between femoral anteversion and the NSA in an adult population. This study sought to determine if there is a correlation between femoral neck shaft angle and version in skeletally mature adults using computed tomography (CT) scanograms. METHODS Between January 2010 and June 2017, all skeletally mature patients who had received a CT scanogram of the lower extremity were reviewed. Exclusion criteria included: (1) radiographic evidence of osteoarthritis, (2) history of hip, femur, or knee surgery or trauma, (3) and anatomic abnormalities of the proximal femur including prior slipped capital femoral epiphysis or Legg-Calvé-Perthes disease. Both femoral version and NSA were measured by a musculoskeletal fellowship trained radiologist using CT scanograms. Correlation between femoral version and NSA was determined using coefficient of determination (R2) and Pearson correlation coefficient (r) for the group as a whole and for each sex. RESULTS There was no statistical correlation between femoral version and NSA for either the entire cohort or for each sex. For the entire cohort, R2 = 0.0016 and r was 0.04 (p=0.45), for females, R2 = 0.0005 and r was 0.0224 (p=0.72), and for males, R2 = 0.0342 and r was 0.185 (p=0.07). CONCLUSION There was no correlation between femoral version and NSA. This finding is beneficial for surgeons to understand the proximal femoral anatomy. Patients with an increased femoral NSA should not be assumed to have increased femoral anteversion. LEVEL OF EVIDENCE Level III, Retrospective Cohort Study.
Collapse
Affiliation(s)
- Patrick J Kellam
- University of Utah, Department of Orthopaedic Surgery, Salt Lake City, Utah, USA.
| | - Miranda J Rogers
- University of Utah, Department of Orthopaedic Surgery, Salt Lake City, Utah, USA
| | - Luke Myhre
- University of Utah, Department of Orthopaedic Surgery, Salt Lake City, Utah, USA
| | - Graham J Dekeyser
- University of Utah, Department of Orthopaedic Surgery, Salt Lake City, Utah, USA
| | - Travis G Maak
- University of Utah, Department of Orthopaedic Surgery, Salt Lake City, Utah, USA
| | - Lucas S Marchand
- University of Utah, Department of Orthopaedic Surgery, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Perrone RV, Williams JL. The morphogenesis of porcine femoral head mammillary processes: A structural mechanism of biomechanical stability. Anat Rec (Hoboken) 2021; 305:265-283. [PMID: 34240585 DOI: 10.1002/ar.24713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022]
Abstract
The capital femoral physis is a growth plate located between the head of the femur and femoral neck, which forms a temporary joint where growth plate cartilage is converted to bone by endochondral ossification. The bone-cartilage-bone interface develops a unique radial pattern of interdigitating mammillary processes that interlock the femoral head with the metaphysis, increasing biomechanical stability. The arrangement of these mammillary processes may not be a random occurrence and likely serves to provide mechanical mechanisms to enhance biomechanical stability. In this study, we provide a qualitative and quantitative analysis of porcine femoral head mammillary processes and focus on the analysis of six key points of development: the epiphyseal tubercle, epiphyseal cupping, growth plate slope angles, expansion of the epiphyseal subchondral bone plate, epiphyseal elongation, and the emergence of smaller, radially arranged mammillary processes. We introduce a metric of surface roughness analysis to quantify mammillary processes and apply it to analyze the development of the observed radial pattern of peripheral mammillary processes from birth to adolescence. We hypothesized that these processes develop to form a radial pattern with some degree of periodicity beginning relatively early in development of the joint and increase in prominence with age and weight of the animal. These findings may have important implications in the early diagnosis and treatment of the hip disorder slipped capital femoral epiphysis (SCFE). Underdevelopment of femoral head mammillary processes may reduce joint stability and could be a risk factor in SCFE.
Collapse
|
15
|
Tanaka S, Sakamoto R, Kanahashi T, Yamada S, Imai H, Yoneyama A, Takakuwa T. Shoulder girdle formation and positioning during embryonic and early fetal human development. PLoS One 2020; 15:e0238225. [PMID: 32915841 PMCID: PMC7485900 DOI: 10.1371/journal.pone.0238225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/08/2020] [Indexed: 12/03/2022] Open
Abstract
Positional information on the shoulder girdle (the clavicle and scapula) is important for a better understanding of the function of the upper limb in the locomotive system as well as its associated disease pathogenesis. However, such data are limited except for information on the axial position of the scapula. Here, we describe a three-dimensional reconstruction of the shoulder girdle including the clavicle and scapula, and its relationship to different landmarks in the body. Thirty-six human fetal specimens (crown-rump length range: 7.6–225 mm) from the Kyoto Collection were used for this study. The morphogenesis and three-dimensional position of the shoulder girdle were analyzed with phase-contrast X-ray computed tomography and magnetic resonance imaging. We first detected the scapula body along with the coracoid and humeral head at Carnegie stage 18; however, the connection between the body and coracoid was not confirmed at this stage. During development, all landmarks on the shoulder girdle remained at the same axial position except for the inferior angle, which implies that the scapula enlarged in the caudal direction and reached the adult axial position in the fetal period. The scapula body was rotated internally and in the upward direction at the initiation of morphogenesis, but in the fetal period the scapula body was different than that in the adult position. The shoulder girdle was located at the ventral side of the vertebrae at the time of initial morphogenesis, but changed its position to the lateral side of the vertebrae in the late embryonic and fetal periods. Such a unique position of the shoulder girdle may contribute to the stage-specific posture of the upper limb. Adequate internal and upward rotation of the scapula could help in reducing the shoulder width, thereby facilitating childbirth. The data presented in this study can be used as normal morphometric references for shoulder girdle evaluations in the embryonic and fetal periods.
Collapse
Affiliation(s)
- Sayaka Tanaka
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rino Sakamoto
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kanahashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|