1
|
Cho FN, Achidi EA, Enoh JE, Pallerla SR, Linh LTK, Tong HV, Kamgno J, Penlap VB, Adegnika AA, Lekana-Douki JB, Bouyou-Akotet MK, Kahunu GM, Lutete GT, Bates M, Tembo J, Elton L, McHugh TD, Grobusch MP, Zumla A, Ntoumi F, Velavan TP. Drug-induced hepatotoxicity and association with slow acetylation variants NAT2*5 and NAT2*6 in Cameroonian patients with tuberculosis and HIV co-infection. BMC Infect Dis 2024; 24:759. [PMID: 39085767 PMCID: PMC11293078 DOI: 10.1186/s12879-024-09638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and tuberculosis (TB) are major contributors to morbidity and mortality in sub-Saharan Africa including Cameroon. Pharmacogenetic variants could serve as predictors of drug-induced hepatotoxicity (DIH), in patients with TB co-infected with HIV. We evaluated the occurrence of DIH and pharmacogenetic variants in Cameroonian patients. METHODS Treatment-naïve patients with HIV, TB or TB/HIV co-infection were recruited at three hospitals in Cameroon, between September 2018 and November 2019. Appropriate treatment was initiated, and patients followed up for 12 weeks to assess DIH. Pharmacogenetic variants were assessed by allele discrimination TaqMan SNP assays. RESULTS Of the 141 treatment naïve patients, the overall incidence of DIH was 38% (53/141). The highest incidence of DIH, 52% (32/61), was observed among HIV patients. Of 32 pharmacogenetic variants, the slow acetylation variants NAT2*5 was associated with a decreased risk of DIH (OR: 0.4; 95%CI: 0.17-0.96; p = 0.038), while NAT2*6 was found to be associated with an increased risk of DIH (OR: 4.2; 95%CI: 1.1-15.2; p = 0.017) among patients treated for TB. Up to 15 SNPs differed in ≥ 5% of allele frequencies among African populations, while 25 SNPs differed in ≥ 5% of the allele frequencies among non-African populations, respectively. CONCLUSIONS DIH is an important clinical problem in African patients with TB and HIV. The NAT2*5 and NAT2*6 variants were found to be associated with DIH in the Cameroonian population. Prior screening for the slow acetylation variants NAT2*5 and NAT2*6 may prevent DIH in TB and HIV-coinfected patients.
Collapse
Affiliation(s)
- Frederick Nchang Cho
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Eric A Achidi
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Jude Eteneneng Enoh
- Faculty of Sciences, University of Buea, Buea, Cameroon
- Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
- Vietnamese-German Centre for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
- Vietnamese-German Centre for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Véronique Beng Penlap
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
- Centre de Recherches Medicales de Lambarene (CERMEL), Lambarene, Gabon
| | - Jean-Bernard Lekana-Douki
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Parasitology-Mycology and Tropical Medicine, Faculty of Medicine, Université des Sciences de la Santé (USS), Libreville, Gabon
| | - Marielle Karine Bouyou-Akotet
- Department of Parasitology-Mycology and Tropical Medicine, Faculty of Medicine, Université des Sciences de la Santé (USS), Libreville, Gabon
| | - Gauthier Mesia Kahunu
- Unit of Clinical Pharmacology and pharmacovigilance, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Gaston Tona Lutete
- Unit of Clinical Pharmacology and pharmacovigilance, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Mathew Bates
- School of Life Sciences, University of Lincoln, Lincoln, UK
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | - Linzy Elton
- Centre for Clinical Microbiology, University College London, London, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, UK
| | - Martin P Grobusch
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
- Centre de Recherches Medicales de Lambarene (CERMEL), Lambarene, Gabon
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, University College London, London, UK
- National Institute for Health and Care Research Biomedical Research Centre, University College London, London, UK
| | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Republic of Congo
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.
- Vietnamese-German Centre for Medical Research, VG-CARE, Hanoi, Vietnam.
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
2
|
Chen X, Pan H, Hao Z, Yi H, Tang S. Changing Trajectories of Alanine Aminotransferase and Risk of Antituberculosis Drug-Induced Liver Injury in Chinese Patients: A Cohort Study. J Clin Pharmacol 2024; 64:840-848. [PMID: 38436510 DOI: 10.1002/jcph.2422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Antituberculosis drug-induced liver injury (ATLI) is a major adverse effect during antituberculosis treatment. Early detection or prediction is essential to prevent ATLI in antituberculosis treatment patients. The purpose of this work is to explore the relationship between alanine aminotransferase (ALT) trajectories within 15 days of initial treatment and the risk of ATLI. Based on a historical cohort of patients hospitalized for antituberculosis treatment and group-based trajectory modeling analysis, ALT trajectories within 15 days of initial treatment were determined. Conditional logistic regression model was used to estimate the association between different ALT trajectories and the risk of ATLI, and the corresponding odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated with covariates. Based on the ALT levels within 15 days of initial treatment, a total of 853 patients were divided into four ALT trajectories. The incidence of ATLI significantly increased with the increase of ALT trajectories (2.33%, 4.38%, 5.90%, and 2.44%, respectively). Compared with trajectory 1, the adjusted OR for ATLI in trajectory 2, trajectory 3, and trajectory 4 were 2.448 (95% CI: 0.302-19.856, P = 0.402), 5.373 (95% CI: 0.636-45.411, P = 0.123), 11.010 (95% CI: 0.720-168.330, P = 0.085), respectively, and there was an increasing trend of ATLI risk (Ptrend = 0.015). Different ALT trajectories within 15 days of initial treatment were associated with different risk of ATLI, and it is necessary to pay attention to the ALT trajectory within 15 days of initial treatment to predict the occurrence of ATLI.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Li Y, Zhao L, Sun C, Yang J, Zhang X, Dou S, Hua Q, Ma A, Cai J. Regulation of Gut Microflora by Lactobacillus casei Zhang Attenuates Liver Injury in Mice Caused by Anti-Tuberculosis Drugs. Int J Mol Sci 2023; 24:ijms24119444. [PMID: 37298396 DOI: 10.3390/ijms24119444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The gut-liver axis may provide a new perspective for treating anti-tuberculosis drug-induced liver injury (ATDILI). Herein, the protective effect of Lactobacillus casei (Lc) was investigated by modulating gut microflora (GM) and the toll like receptor 4 (TLR4)-nuclear factor (NF)-κB-myeloiddifferentiationfactor 88 (MyD88) pathway. C57BL/6J mice were given three levels of Lc intragastrically for 2 h before administering isoniazid and rifampicin for 8 weeks. Blood, liver, and colon tissues, as well as cecal contents, were collected for biochemical and histological examination, as well as Western blot, quantitative real time polymerase chain reaction (qRT-PCR), and 16S rRNA analyses. Lc intervention decreased alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and tumor necrosis factor (TNF)-α levels (p < 0.05), recovered hepatic lobules, and reduced hepatocyte necrosis to alleviate liver injury induced by anti-tuberculosis drugs. Moreover, Lc also increased the abundance of Lactobacillus and Desulfovibrio and decreased Bilophila abundance, while enhancing zona occludens (ZO)-1 and claudin-1 protein expression compared with the model group (p < 0.05). Furthermore, Lc pretreatment reduced the lipopolysaccharide (LPS) level and downregulated NF-κB and MyD88 protein expression (p < 0.05), thus restraining pathway activation. Spearman correlation analysis indicated that Lactobacillus and Desulfovibrio were positively correlated with ZO-1 or occludin protein expression and negatively correlated with pathway protein expression. Desulfovibrio had significant negative relationships with alanine aminotransferase (ALT) and LPS levels. In contrast, Bilophila had negative associations with ZO-1, occludin, and claudin-1 protein expressions and positive correlations with LPS and pathway proteins. The results prove that Lactobacillus casei can enhance the intestinal barrier and change the composition of the gut microflora. Moreover, Lactobacillus casei may also inhibit TLR4-NF-κB-MyD88 pathway activation and alleviate ATDILI.
Collapse
Affiliation(s)
- Yue Li
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Liangjie Zhao
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Changyu Sun
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jingyi Yang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Xinyue Zhang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Sheng Dou
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
4
|
Wang S, Xiong L, Ruan Z, Gong X, Luo Y, Wu C, Wang Y, Shang H, Chen J. Indole-3-propionic acid alleviates sepsis-associated acute liver injury by activating pregnane X receptor. Mol Med 2023; 29:65. [PMID: 37208586 DOI: 10.1186/s10020-023-00658-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The morbidity and mortality of sepsis are extremely high, which is a major problem plaguing human health. However, current drugs and measures for the prevention and treatment of sepsis have little effect. Sepsis-associated acute liver injury (SALI) is an independent risk factor for sepsis, which seriously affects the prognosis of sepsis. Studies have found that gut microbiota is closely related to SALI, and indole-3-propionic Acid (IPA) can activate Pregnane X receptor (PXR). However, the role of IPA and PXR in SALI has not been reported. METHODS This study aimed to explore the association between IPA and SALI. The clinical data of SALI patients were collected and IPA level in feces was detected. The sepsis model was established in wild-type mice and PXR knockout mice to investigate the role of IPA and PXR signaling in SALI. RESULTS We showed that the level of IPA in patients' feces is closely related to SALI, and the level of IPA in feces has a good ability to identify and diagnose SALI. IPA pretreatment significantly attenuated septic injury and SALI in wild-type mice, but not found in knockout PXR gene mice. CONCLUSIONS IPA alleviates SALI by activating PXR, which reveals a new mechanism of SALI, and provides potentially effective drugs and targets for the prevention of SALI.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Liangzhi Xiong
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhihua Ruan
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaofang Gong
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yanrong Luo
- Physical examination center, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, 442000, Hubei, China
| | - Chengyi Wu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Hui Shang
- Department of Orthopaedic, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
5
|
Zhuang X, Li L, Liu T, Zhang R, Yang P, Wang X, Dai L. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review. Front Pharmacol 2022; 13:1037814. [PMID: 36299895 PMCID: PMC9589499 DOI: 10.3389/fphar.2022.1037814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Isoniazid (INH) and rifampicin (RFP) are the first-line medications for tuberculosis treatment, and liver injury is the major adverse effect. Natural medicinal ingredients provide distinct benefits in alleviating patients’ symptoms, lowering the liver injury risk, delaying disease progression, and strengthening the body’s ability to heal. This paper summarises the recent research on the mechanisms of INH and RFP-induced liver injury and the effects of natural medicinal ingredients. It is believed that INH-induced liver injury may be attributed to oxidative stress, mitochondrial dysfunction, drug metabolic enzymes, protoporphyrin IX accumulation, endoplasmic reticulum stress, bile transport imbalance, and immune response. RFP-induced liver injury is mainly related to cholestasis, endoplasmic reticulum stress, and liver lipid accumulation. However, the combined effect of INH and RFP on liver injury risk is still uncertain. RFP can increase INH-induced hepatotoxicity by regulating the expression of drug-metabolizing enzymes and transporters. In contrast, INH can antagonize RFP-induced liver injury by reducing the total bilirubin level in the blood. Sagittaria sagittifolia polysaccharide, quercetin, gallic acid, and other natural medicinal ingredients play protective roles on INH and RFP-induced liver injury by enhancing the body’s antioxidant capacity, regulating metabolism, inhibiting cell apoptosis, and reducing the inflammatory response. There are still many gaps in the literature on INH and RFP-induced liver injury mechanisms and the effects of natural medicinal ingredients. Thus, further research should be carried out from the perspectives of liver injury phenotype, injury markers, in vitro and in vivo liver injury model construction, and liver-gut axis. This paper comprehensively reviewed the literature on mechanisms involved in INH and RFP-induced liver injury and the status of developing new drugs against INH and RFP-induced liver injury. In addition, this review also highlighted the uses and advantages of natural medicinal ingredients in treating drug-induced liver injury.
Collapse
Affiliation(s)
- Xiuping Zhuang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Li
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Liu
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peimin Yang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Wang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xin Wang, ; Long Dai,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Xin Wang, ; Long Dai,
| |
Collapse
|
6
|
Zhang J, Zhou W, Ma S, Kang Y, Yang W, Peng X, Zhou Y, Deng F. Combined electronic medical records and gene polymorphism characteristics to establish an anti-tuberculosis drug-induced hepatic injury (ATDH) prediction model and evaluate the prediction value. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1114. [PMID: 36388795 PMCID: PMC9652536 DOI: 10.21037/atm-22-4551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2024]
Abstract
BACKGROUND Anti-tuberculosis drug-induced hepatic injury (ATDH) lacks specific diagnostic markers. The characteristics of gene polymorphisms have been preliminarily used for the risk classification of ATDH, and the activation of Pregnane X receptor/aminole-vulinic synthase-1/forkhead box O1 (PXR/ALAS1/FOXO1) axis is closely related to ATDH. Therefore, we consider combining general clinical features of the electronic medical record, laboratory indications, and genetic features of key genes in this axis for predictive model construction to help early clinical diagnosis and treatment. METHODS The general characteristics derived from the Hospital Information System (HIS) medical record system, the biochemical tests and hematology tests were detected by Roche automatic biochemical immunoassay analyzer cobas8000 and Sysmex automatic hemocytometer XE2100. The single nucleotide polymorphisms (SNPs) genotyping work was conducted with a custom-designed 48-plex SNP scan® TM Kit. A total of 746 cases were included which were divided into training set and validation set according to the ratio of 3:2 randomly. Taking the occurrence of confirmed ATDH as the outcome variable, lasso regression and logistic regression were used to identify the predictors preliminarily. alanine aminotransferase, aspartate aminotransferase, monocyte, uric acid, albumin, fever, the polymorphisms of rs4435111 (FOXO1) and rs3814055 (PXR) were chosen from all variables to combine the predictive model. The goodness of fit, predictive efficacy, discrimination, and consistency, and clinical decision curve analysis was used to assess the clinical applicability of the models. RESULTS The best model had a discriminant efficacy C-index of 0.8164, a sensitivity of 34.25%, specificity of 97.99%, a positive predictive value of 78.13% and negative predictive value of 87.69%, the two-tailed value of Spiegelhalter Z test of consistency test S:P =0.896, maximum absolute difference Emax =0.147, and average absolute difference Eave =0.017. In the validation set, performance was close. The clinical decision curve showed the clinical applicability of the prediction model when the prediction risk threshold was between 0.1 and 0.8. CONCLUSIONS The ATDH prediction model was constructed using a machine learning approach, combining general characteristics of the study population, laboratory indications, and SNP features of PXR and FOXO1 genes with good fit and certain predictive value, and has potential and value for clinical application.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Laboratory Medicine, Chengdu Second People’s Hospital, Chengdu, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Nephrology, Chengdu Jinniu District People’s Hospital (Sichuan Provincial People’s Hospital Jinniu Hospital), Chengdu, China
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shijie Ma
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Kang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Wei Yang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Xiaodong Peng
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Chengdu Jinniu District People’s Hospital (Sichuan Provincial People’s Hospital Jinniu Hospital), Chengdu, China
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Wang N, Guo S, Liu H, Ding Y, Yao R, Liu Z, Zhu H, Chen X, Yang X, Chen X, Lu Y. Relevance of gene polymorphisms of NAT2 and NR1I2 to anti-tuberculosis drug-induced hepatotoxicity. Xenobiotica 2022; 52:520-526. [PMID: 35723590 DOI: 10.1080/00498254.2022.2092783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The recommended treatment regimen for tuberculosis is a combination of agents with antitubercular activity, during which hepatotoxicity is one of the most common side effects. In addition to the N-acetyltransferase 2 (NAT2) genotype, rs3814055 in nuclear receptor subfamily 1, group I, member 2 (NR1I2) has been demonstrated to be associated with anti-tuberculosis drug-induced hepatotoxicity (ATDH), but previous results have been inconsistent.A retrospective nested hospital-based case-control study was performed to investigate the association between genetic polymorphisms and the risk of ATDH. Fifteen genetic variants (13 SNPs and two null genotypes) in cytochrome P450 2E1, NR1I2, UDP-glucuronosyltransferase 1A1, NAT2, superoxide dismutase 1, superoxide dismutase 2, and glutathione S-transferases (GSTT1, GSTM1, GSTP1) were genotyped. Odds ratios with 95% confidence intervals were calculated with drug doses, body mass index comorbidity of diabetes mellitus, and baseline alanine transaminase value as covariates.Conditional logistic regression demonstrated that the NAT2 slow acetylation genotype and the T allele of rs3814055 in NR1I2 may contribute to susceptibility to ATDH.Stratified association analysis demonstrated that in NAT2 non-slow acetylators, the T allele of rs3814055 was a risk factor for ATDH, whereas the T allele did not increase the susceptibility to ATDH in slow acetylators.
Collapse
Affiliation(s)
- Ning Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shaochen Guo
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Haiting Liu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yangming Ding
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rong Yao
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhongquan Liu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hui Zhu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xi Chen
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinting Yang
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaoyou Chen
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China.,Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Dou JY, Zhang M, Cen H, Chen YQ, Wu YF, Lu F, Zhou J, Liu XS, Gu YY. Salvia miltiorrhiza Bunge (Danshen) and Bioactive Compound Tanshinone IIA Alleviates Cisplatin-Induced Acute Kidney Injury Through Regulating PXR/NF-κB Signaling. Front Pharmacol 2022; 13:860383. [PMID: 35401224 PMCID: PMC8987575 DOI: 10.3389/fphar.2022.860383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: The present study aims to provide evidence on the potential protective role of Salvia miltiorrhiza Bunge (Danshen) and its bioactive compound Tanshinone IIA (TanIIA) in AKI and to reveal the specific regulatory function of PXR/NF-κB signaling in AKI-induced renal inflammation. Methods: A network pharmacological analysis was used to study target genes and regulatory networks in the treatment of Salvia miltiorrhiza on AKI. Further experiments with in vivo AKI mouse model and in vitro studies were applied to investigate the renal protective effect of TanIIA in AKI. The mechanisms of TanIIA regulating PXR/NF-κB signaling in renal inflammation were also studied. Results: Network pharmacology had suggested the nuclear receptor family as new therapeutic targets of Salvia miltiorrhiza in AKI treatment. The in vivo studies had demonstrated that TanIIA improved renal function and inflammation by reducing necrosis and promoting the proliferation of tubular epithelial cells. Improved renal arterial perfusion in AKI mice with TanIIA treatment was also recorded by ultrasonography. In vitro studies had shown that TanIIA ameliorated renal inflammation by activating the PXR while inhibiting PXR-mediated NF-κB signaling. The results had suggested a role of PXR activation against AKI-induced renal inflammation. Conclusion: Salvia miltiorrhiza Bunge (Danshen) may protect the kidneys against AKI by regulating nuclear receptors. TanIIA improved cell necrosis proliferation and reduced renal inflammation by upregulating the expression of the PXR and inhibiting NF-κB signaling in a PXR-dependent manner. The PXR may be a potential therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Jing-Yun Dou
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Cen
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Qin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fan Wu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuhua Lu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Yue-Yu Gu, ; Xu-Sheng Liu,
| | - Yue-Yu Gu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Yue-Yu Gu, ; Xu-Sheng Liu,
| |
Collapse
|
9
|
Genetic and Functional Evaluation of the Role of FOXO1 in Antituberculosis Drug-Induced Hepatotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3185874. [PMID: 34249128 PMCID: PMC8238576 DOI: 10.1155/2021/3185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/14/2021] [Indexed: 02/05/2023]
Abstract
Background The accumulation of the hepatotoxic substance protoporphyrin IX (PPIX) induced by aminolevulinate synthase 1 (ALAS1) activation is one of the important mechanisms of antituberculosis drug-induced hepatotoxicity (ATDH). Forkhead box protein O1 (FOXO1) may activate ALAS1 transcription. However, little is known about their roles in ATDH; we performed a study to determine the association between polymorphisms in the two genes and ATDH susceptibility. Then, we verified this possible association by cellular functional experiments. Materials and Methods Tag single-nucleotide polymorphisms (TagSNPs) in the two genes were genotyped in 746 tuberculosis patients. The frequencies of the alleles, genotypes, genetic models, and haplotype distribution of the variants were compared between the case and control groups. L-02 cells and HepG2 cells were incubated with the indicated concentration of isoniazid (INH) and rifampicin (RIF) for the desired times, and then the expression levels of ALAS1 and FOXO1 mRNAs and proteins were detected. HepG2 cells were transiently transfected with FOXO1 siRNA to observe the effect of changes in the FOXO1 expression on the cell survival rate and ALAS1 expression. Results The C allele at rs2755237 and the T allele at rs4435111 in the FOXO1 gene were associated with a decreased risk of ATDH. The expression of ALAS1 in both L-02 cells and HepG2 cells was increased by the coadministration of INH/RIF (600/200 μM) for 24 h. Although FOXO1 expression was reduced slightly by the same treatment, its content in the nucleus was significantly increased. However, the cell survival rate and ALAS1 expression level were not significantly altered by the downregulation of FOXO1 in HepG2 cells. Conclusions Variants of the rs4435111 and rs2755237 loci in the FOXO1 gene were associated with susceptibility to ATDH. Coadministration of INH/RIF promoted the transfer of FOXO1 from the cytoplasm to the nucleus, but the functional significance of its nuclear translocation requires further verification.
Collapse
|
10
|
Cheng Y, Jiao L, Li W, Wang J, Lin Z, Lai H, Ying B. Collagen type XVIII alpha 1 chain (COL18A1) variants affect the risk of anti-tuberculosis drug-induced hepatotoxicity: A prospective study. J Clin Lab Anal 2020; 35:e23630. [PMID: 33296124 PMCID: PMC7891502 DOI: 10.1002/jcla.23630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Background The role of collagen type XVIII alpha 1 chain (COL18A1) in anti‐tuberculosis drug‐induced hepatotoxicity (ATDH) has not been reported. This study aimed to explore the association between of COL18A1 variants and ATDH susceptibility. Methods A total of 746 patients were enrolled in our study from December 2016 to April 2018, and all subjects in the study signed an informed consent form. The custom‐by‐design 2x48‐Plex SNPscanTM kit was used to genotype all selected 11 SNPs. Categorical variables were compared by chi‐square (χ2) or Fisher's exact test, while continuous variables were compared by Mann‐Whitney's U test. Plink was utilized to analyze allelic and genotypic frequencies, and genetic models. Multivariate logistic regression analyses were used to adjust potential factors. The odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were also calculated. Results Among patients with successfully genotyping, there were 114 cases and 612 controls. The mutant A allele of rs12483377 conferred the decreased risk of ATDH (OR = 0.13, 95%CI: 0.02–0.98, P = 0.020), and this significance still existed after adjusting age and gender (P = 0.024). The mutant homozygote AA genotype of rs12483377 was associated with decreased total protein levels (P = 0.018). Conclusion Our study first revealed that the A allele of COL18A1 rs12483377 was associated with the decreased risk of ATDH in the Western Chinese Han population, providing new perspective for the molecular prediction, precise diagnosis, and individual treatment of ATDH.
Collapse
Affiliation(s)
- Yuhui Cheng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lin Jiao
- West China School of Medicine, Sichuan University, Chengdu, China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weixiu Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jialing Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhangyu Lin
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Hongli Lai
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Binwu Ying
- West China School of Medicine, Sichuan University, Chengdu, China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Pallerla SR, Elion Assiana DO, Linh LTK, Cho FN, Meyer CG, Fagbemi KA, Adegnika AA, Beng VP, Achidi EA, Kahunu GM, Bates M, Grobusch MP, Kremsner PG, Ntoumi F, Velavan TP. Pharmacogenetic considerations in the treatment of co-infections with HIV/AIDS, tuberculosis and malaria in Congolese populations of Central Africa. Int J Infect Dis 2020; 104:207-213. [PMID: 33310105 DOI: 10.1016/j.ijid.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND HIV-infection, tuberculosis and malaria are the big three communicable diseases that plague sub-Saharan Africa. If these diseases occur as co-morbidities they require polypharmacy, which may lead to severe drug-drug-gene interactions and variation in adverse drug reactions, but also in treatment outcomes. Polymorphisms in genes encoding drug-metabolizing enzymes are the major cause of these variations, but such polymorphisms may support the prediction of drug efficacy and toxicity. There is little information on allele frequencies of pharmacogenetic variants of enzymes involved in the metabolism of drugs used to treat HIV-infection, TB and malaria in the Republic of Congo (ROC). The aim of this study was therefore to investigate the occurrence and allele frequencies of 32 pharmacogenetic variants localized in absorption distribution, metabolism and excretion (ADME) and non-ADME genes and to compare the frequencies with population data of Africans and non-Africans derived from the 1000 Genomes Project. RESULTS We found significant differences in the allele frequencies of many of the variants when comparing the findings from ROC with those of non-African populations. On the other hand, only a few variants showed significant differences in their allele frequencies when comparing ROC with other African populations. In addition, considerable differences in the allele frequencies of the pharmacogenetic variants among the African populations were observed. CONCLUSIONS The findings contribute to the understanding of pharmacogenetic variants involved in the metabolism of drugs used to treat HIV-infection, TB and malaria in ROC and their diversity in different populations. Such knowledge helps to predict drug efficacy, toxicity and ADRs and to inform individual and population-based decisions.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Viet Nam
| | - Darrel Ornelle Elion Assiana
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Viet Nam
| | - Frederick Nchang Cho
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Department of Biochemistry and Molecular Biology, Faculty of Science, Laboratory of Infectious Diseases, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam
| | - Kaossarath Adédjokè Fagbemi
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Department of Biomedical Sciences, Laboratory of Cytogenetics and Medical Genetics, Faculty of Health Sciences, University of Abomey-Calavi, Benin
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Véronique Penlap Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, Faculty of Science, Laboratory of Infectious Diseases, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Gauthier Mesia Kahunu
- Unit of Clinical Pharmacology and Pharmacovigilance, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Mathew Bates
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Martin P Grobusch
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Centre de Recherches Medicales de Lambarene, Lambarene, Gabon; Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Viet Nam; Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
12
|
Yang M, Qiu Y, Jin Y, Liu W, Wang Q, Yi H, Tang S. NR1I2 genetic polymorphisms and the risk of anti-tuberculosis drug-induced hepatotoxicity: A systematic review and meta-analysis. Pharmacol Res Perspect 2020; 8:e00696. [PMID: 33300686 PMCID: PMC7726956 DOI: 10.1002/prp2.696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/12/2023] Open
Abstract
Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is a serious adverse drug reaction. Conflicting results have been obtained regarding the associations of nuclear receptor subfamily 1 group I member 2 (NR1I2) gene polymorphisms on susceptibility to ATDH. Therefore, we aimed to evaluate the associations using a systematic review/meta-analysis approach. PubMed, Medline, Cochrane Library, Web of Science and SinoMed databases were searched for all eligible studies from inception to June 10, 2020. Pooled adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were employed to evaluate the strength of the association between the NR1I2 polymorphisms and the risk of ATDH. Subgroup analysis was performed by region of origin, and meta-regression were performed to detect potential sources of heterogeneity. A total of five case-control studies involving 572 cases and 1867 controls were identified. Fourteen SNPs in the NR1I2 gene have been reported, and the most heavily studied SNPs were rs3814055 and rs7643645. The pooled estimates did not exhibit any significant associations between SNPs rs3814055 and rs7643645 and the risk of ATDH (rs3814055: dominant model, OR = 1.00, 95% CI: 0.82-1.22, P = 1.00; recessive model, OR = 1.17, 95% CI: 0.76-1.78, P = .48; rs7643645: dominant model, OR = 1.04, 95% CI: 0.64-1.68, P = .89; recessive model, OR = 0.98, 95% CI: 0.65-1.49, P = .93). Subgroup analysis obtained similar negative results in Chinese patients, and the diagnostic criteria of ATDH may be the source of heterogeneity. Based on the meta-analysis described in this report, we did not observe any association between NR1I2 gene polymorphisms and ATDH susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and the relatively small sample size.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yunliang Qiu
- Department of Criminal Science and TechnologyNanjing Forest Police CollegeNanjingChina
| | - Yanyu Jin
- School of PediatricsNanjing Medical UniversityNanjingChina
| | - Wenpei Liu
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Qingliang Wang
- Department of Medical AffairsQilu Hospital of Shandong UniversityJinanChina
| | - Honggang Yi
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Shaowen Tang
- Department of Epidemiology and BiostatisticsSchool of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
13
|
Shao YY, Guo Y, Feng XJ, Liu JJ, Chang ZP, Deng GF, Xu D, Gao JP, Hou RG. Oridonin Attenuates TNBS-induced Post-inflammatory Irritable Bowel Syndrome via PXR/NF-κB Signaling. Inflammation 2020; 44:645-658. [PMID: 33125572 DOI: 10.1007/s10753-020-01364-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
To investigate the beneficial effects of oridonin, a diterpenoid compound isolated from Rabdosia rubescens, on the inflammatory response in TNBS-induced post-inflammatory irritable bowel syndrome (PI-IBS) model and the underlying mechanism. Using the PI-IBS rat model and Caco-2 cell lines, we found that intestinal barrier function reflected by lactulose/mannitol (L/M) ratio and tight junction protein level was significantly ameliorated by oridonin. We also demonstrated that oridonin abrogated inflammation through inhibiting the phosphorylation of NF-κBp65 as well as its downstream gene (iNOS, COX-2, IL-1β, and IL-6) level. Molecular docking studies confirmed the good binding activity between oridonin and PXR. In Caco-2 cell lines, oridonin markedly inhibited LPS-induced NF-κB activation in a PXR-dependent manner. Meanwhile, PXR and its target genes CYP3A4 and P-gp were induced by oridonin, which was associated with the decreased expression of NF-κB and the recovery of intestinal barrier. This study indicated that the therapeutic effect of oridonin on experimental PI-IBS through repairing intestinal barrier function may be closely associated with the regulatory role of PXR/NF-κB signaling pathway. Oridonin may serve as a PXR ligand for the development of drugs in the therapy for PI-IBS.
Collapse
Affiliation(s)
- Yun-Yun Shao
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Yao Guo
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Xiao-Juan Feng
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Jun-Jin Liu
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China. .,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China.
| | - Zhuang-Peng Chang
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Gui-Feng Deng
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Ding Xu
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Jian-Ping Gao
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.
| | - Rui-Gang Hou
- School of Pharmaceutical, Shanxi Medical University, Taiyuan, 030000, Shanxi, China. .,Department of Pharmacy, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China.
| |
Collapse
|
14
|
Yang M, Pan H, Chen H, Liu W, Lu L, He X, Yi H, Tang S. Association between NR1I2 polymorphisms and susceptibility to anti-tuberculosis drug-induced hepatotoxicity in an Eastern Chinese Han population: A case-control study. INFECTION GENETICS AND EVOLUTION 2020; 83:104349. [DOI: 10.1016/j.meegid.2020.104349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
|