1
|
LaPointe G, Wilson T, Tarrah A, Gagnon M, Roy D. BIOFILM DAIRY FOODS REVIEW: Microbial Community Tracking from Dairy Farm to Factory: Insights on Biofilm Management for Enhanced Food Safety and Quality. J Dairy Sci 2025:S0022-0302(24)01451-6. [PMID: 39788184 DOI: 10.3168/jds.2024-25397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
This review aimed to assess the scope of the literature on tracking the microbial community of biofilms, focusing on the dairy farm and processing environments. The majority of studies focused on either production, storage, transport or processing of milk, while 5 combined the investigation of both production and processing facilities. Factors influencing short-term changes in dairy microbiota such as the occurrence of mastitis and season were distinguished from factors revealed through long-term studies, such as feed and weather, rather than the milking equipment. Knowledge gaps were identified in relation to the study design, methods, data analysis and interpretation. The application of DNA sequencing technologies is particularly challenging with respect to samples with low microbial load (milk, swabs). There are few studies on the microbial composition of in situ biofilms, which might require new technologies for detection before sampling. Fundamental studies on the structure of biofilms are needed to identify the on-farm practices impacting the cycle of biofilm development in milking systems.
Collapse
Affiliation(s)
- Gisèle LaPointe
- Dairy at Guelph, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.
| | - Tara Wilson
- Dairy at Guelph, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Armin Tarrah
- Dairy at Guelph, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Mérilie Gagnon
- Département des sciences des aliments, Université Laval, Québec, Québec, Canada, G1K 7P4
| | - Denis Roy
- Département des sciences des aliments, Université Laval, Québec, Québec, Canada, G1K 7P4
| |
Collapse
|
2
|
Baer M, Höppe L, Seel W, Lipski A. Impact of DNA extraction, PCR amplification, sequencing, and bioinformatic analysis on food-associated mock communities using PacBio long-read amplicon sequencing. BMC Microbiol 2024; 24:521. [PMID: 39643893 PMCID: PMC11622462 DOI: 10.1186/s12866-024-03677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Long-read 16S rRNA gene amplicon sequencing has a high potential for characterizing food-associated microbiomes. The advantage results from sequencing the full-length (1,500 bp) gene, enabling taxonomic resolution at species level. Here we present a benchmarking study using mock communities representative of milking machine biofilms and raw meat, revealing challenges relevant to food-associated habitats. These were varying species abundances, reliable intra-genus differentiation of species, and detection of novel species with < 98.7% sequence identity to type strains. By using mock communities at different levels of preparation - as mixed whole cells, mixed extracted DNA, and mixed PCR products - we systematically investigated the influence of DNA extraction using two different kits, PCR amplification of 16S rRNA genes, sequencing, and bioinformatics analysis including reference database and gene copy number normalization on bacterial composition and alpha diversity. RESULTS We demonstrated that PacBio ccs-reads allowed for correct taxonomic assignment of all species present within the mock communities using a custom Refseq database. However, choice of percent identity values for taxonomic assignment had a strong influence on identification and processing of reads from novel species. PCR amplification of 16S rRNA genes produced the strongest bias on the observed community composition, while sequencing alone reproduced the preset composition well. The PCR bias can in part be attributed to differences in mol% G + C content of 16S rRNA genes resulting in preferred amplification of low mol% G + C-containing taxa. CONCLUSIONS This study underlines the importance of benchmarking studies with mock communities representing the habitat of interest to evaluate the methodology prior to analyzing real samples of unknown composition. It demonstrates the advantage of long-read sequencing over short-read sequencing, as species level identification enables in-depth characterization of the habitat. One benefit is improved risk assessment by enabling differentiation between pathogenic and apathogenic species of the same genus.
Collapse
Affiliation(s)
- Mareike Baer
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Lisa Höppe
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Waldemar Seel
- Institute of Nutritional and Food Sciences, Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115, Bonn, Germany
| | - André Lipski
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| |
Collapse
|
3
|
Bücher C, Burtscher J, Rudavsky T, Zitz U, Domig KJ. Sources of propionic acid bacteria contamination in the milking parlor environment on Alpine dairy farms. J Dairy Sci 2024; 107:8947-8960. [PMID: 38908712 DOI: 10.3168/jds.2024-24752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024]
Abstract
High-quality raw milk is an important prerequisite for the production of long-ripened raw milk cheeses. This implies not only the absence of pathogenic microorganisms in raw milk, but also low levels of spoilage bacteria, including dairy propionic acid bacteria (dPAB), that can cause blowing and sensory defects in cheese, resulting in severe economic losses for producers. Raw milk contamination with dPAB has been primarily associated with improperly cleaned milking systems, but dPAB have also been detected in feed, soil, feces, and on the teat skin. The objective of this study was to identify potential sources of raw milk contamination with dPAB in the barn and milking parlor environments. We also wanted to know more about the prevalence of the dPAB species in these environments and the levels of contamination. For this purpose, 16 small scale Alpine dairy farms were visited in August 2022. Samples were taken from the barn environment (e.g., swab samples, air, feed, bedding) and the milking system (swab samples, residual cleaning water, cleaning sponges, milk filters), and milk samples were collected at various sampling points along the milking system. Samples were analyzed for dPAB contamination, and results showed contamination at multiple sampling locations. We observed potential adverse effects of improperly set cleaning parameters of the milking system, as well as of farm-specific practices. In addition, we identified cleaning water residues as an important source of contamination. Based on these findings, we propose potential mitigation strategies to reduce the risk of raw milk contamination with cheese spoilage bacteria, thereby contributing to a more sustainable food production.
Collapse
Affiliation(s)
- Carola Bücher
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), 3430 Tulln, Austria
| | - Johanna Burtscher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, 1190 Vienna, Austria.
| | - Tamara Rudavsky
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), 3430 Tulln, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, 1190 Vienna, Austria
| | - Ulrike Zitz
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, 1190 Vienna, Austria
| | - Konrad J Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, 1190 Vienna, Austria
| |
Collapse
|
4
|
Yalcin S, Ozgen A, Simsir M. Molecular characteristics and antimicrobial susceptibility profiles of bovine mastitis agents in western Türkiye. J Vet Sci 2024; 25:e72. [PMID: 39363660 PMCID: PMC11450396 DOI: 10.4142/jvs.24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 10/05/2024] Open
Abstract
IMPORTANCE Identifying bovine mastitis agents using molecular methods to reveal their phylogenetic relationships and antimicrobial resistance profiles is essential for developing up-to-date databases in mastitis cases that cause severe economic losses. OBJECTIVE This study examined bacterial mastitis agents in cows with clinical and subclinical mastitis observed in various dairy cattle farms to reveal their phylogenetic relationships and antibiotic resistance properties. METHODS Sixty-two clinical and subclinical bovine mastitis milk samples were collected from 15 dairy farms. The polymerase chain reaction (PCR) was used to amplify the 16S rRNA gene regions of the bacteria. The 16S rRNA gene sequences obtained from sequencing include the V4-V6 regions. The strains were compared using a similarity analysis method that produced phylogenetic trees using the Molecular Evolutionary Genetics Analysis 11 program. Antibiotic susceptibilities were determined using the Kirby-Bauer disk diffusion method. RESULTS Sixty-three bacteria were isolated and identified in this study. The most isolated bacteria from all mastitis cases were Staphylococcus spp. (30.2%), Escherichia coli (25.4%), Streptococcus spp. (14.3%), and Aerococcus spp. (7.9%), respectively. The phylogenetic trees were drawn from the 16S rRNA sequences. Some of these bacteria showed resistance to different types of antibiotics at varying rates. CONCLUSIONS AND RELEVANCE The bacteria isolated in this study originated from environmental sources. Regular cleaning of barns and proper hygiene practices are essential. Regular screenings for mastitis should be conducted in herds instead of the random or empirical use of antibiotics.
Collapse
Affiliation(s)
- Semiha Yalcin
- Departments of Microbiology and Preclinical Sciences, Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Türkiye.
| | - Arzu Ozgen
- Department of Medical Laboratory Techniques, Vocational School of Health, Istanbul Gelisim University, Istanbul 34310, Türkiye
| | - Metehan Simsir
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Türkiye
| |
Collapse
|
5
|
Wilson T, Siddiqi M, Xi Y, LaPointe G. Tracking the microbial communities from the farm to the processing facility of a washed-rind cheese operation. Front Microbiol 2024; 15:1404795. [PMID: 39268533 PMCID: PMC11390512 DOI: 10.3389/fmicb.2024.1404795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Milk residue and the accompanying biofilm accumulation in milking systems can compromise the microbial quality of milk and the downstream processes of cheese production. Over a six-month study, the microbial ecosystems of milk (n = 24), tap water (n = 24) and environmental swabs (n = 384) were cultured by plating decimal dilutions to obtain viable counts of total aerobic mesophilic lactose-utilizing bacteria (lactose-M17), lactic acid bacteria (MRS), yeasts and molds (Yeast, Glucose, Chloramphenicol (YGC) medium). Viable aerobic lactose-M17 plate counts of milk remained well below 4.7 log CFU/ml over five of the months, except for 1 week in November where milk at the facility exceeded 5 log CFU/ml. Swab samples of the farm milking equipment showed consistent viable counts after sanitation, while the bulk tank swabs contained the lowest counts. Viable counts from swabs of the facility were generally below the detection limit in the majority of samples with occasional residual contamination on some food contact surfaces. Extracted DNA was amplified using primers targeting the V3-V4 region of the 16S rRNA gene, and the amplicons were sequenced by MiSeq to determine the shared microbiota between the farm and the processing facility (8 genera). Culture independent analysis of bacterial taxa in milk, water and residual contamination after sanitation with swab samples revealed the shared and distinct microbiota between the sample types of both facilities. Amplicon sequence variants (ASVs) of the V3-V4 region of the 16S rRNA gene revealed that the microbiota of milk samples had lower diversity than water or environmental swabs (279 ASVs compared to 3,444 in water and 8,747 in environmental swabs). Brevibacterium and Yaniella (both Actinomycetota) were observed in all sampling types. Further studies will include whole genome sequencing of Brevibacterium spp. isolates to determine their functionality and diversity within the system.
Collapse
Affiliation(s)
- Tara Wilson
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Myra Siddiqi
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Yueqi Xi
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Gisèle LaPointe
- Dairy at Guelph, Canadian Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Sanschagrin L, Paniconi T, Sanchez Martinez AC, Jubinville E, Goulet-Beaulieu V, Goetz C, Labrie S, Dufour S, Jean J. Identification and Characterization of Microorganisms Isolated from Non-compliant and/or Atypical Dairy Products in Canada. J Dairy Sci 2024:S0022-0302(24)00934-2. [PMID: 38908709 DOI: 10.3168/jds.2023-24506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 06/24/2024]
Abstract
Despite good manufacturing practices and rigorous cleaning and sanitizing procedures established in dairy processing plants, microbiological contamination remains the main cause of products being non-compliant and/or atypical and hence not fit for human consumption. The objective of this study was to isolate, identify and characterize bacteria, yeasts and molds associated with substandard dairy products in Canada and to create a collection of reference isolates. In addition to conventional microbiological characterization, each isolate was tested for biofilm-forming ability and susceptibility to heat, antimicrobial agents, and common industrial disinfectants. Among the 105 microbial strains isolated from pasteurized milk, cream, and cheese samples, 24 bacterial isolates, belonging mainly to the genus Pseudomonas, were shown to be moderate or strong biofilm producers in 96-well plates and highly resistant to peracetic acid (100 ppm, 5 min contact time) and sodium hypochlorite (70 ppm, 5 min contact time). In addition, 56 bacterial isolates, including Acinetobacter baumannii, Enterobacter bugandensis, Klebsiella pneumoniae and Pseudomonas spp., were found resistant to ampicillin, fosfomycin and/or ceftriaxone, while 14 others, such as Bacillus spp. and Macrococcus spp., withstood a heat treatment equivalent to low-temperature long-time pasteurization (63°C for 30 min). This descriptive study provides new information on potential problematic microorganisms in dairies and will guide the development of novel control strategies intended to prevent and reduce microbiological contamination and the associated economic losses.
Collapse
Affiliation(s)
- Laurie Sanschagrin
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada; Regroupement de recherche pour un lait de qualité optimale (Op+lait), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Teresa Paniconi
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Anhely Carolina Sanchez Martinez
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Valérie Goulet-Beaulieu
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Coralie Goetz
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada; Regroupement de recherche pour un lait de qualité optimale (Op+lait), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Steve Labrie
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Simon Dufour
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Université de Montréal, Saint-Hyacinthe, QC, Canada; Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada; Centre de recherche en sciences et technologie du lait (STELA), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada; Regroupement de recherche pour un lait de qualité optimale (Op+lait), Université de Montréal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
7
|
Yi S, Song H, Kim WH, Lee S, Guk JH, Woo J, Cho S. Dynamics of microbiota and antimicrobial resistance in on-farm dairy processing plants using metagenomic and culture-dependent approaches. Int J Food Microbiol 2024; 417:110704. [PMID: 38640816 DOI: 10.1016/j.ijfoodmicro.2024.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
On-farm dairy processing plants, which are situated close to farms and larger dairy processing facilities, face unique challenges in maintaining environmental hygiene. This can impact various stages of dairy processing. These plants operate on smaller scales and use Low-Temperature-Long-Time (LTLT) pasteurization, making them more susceptible to microbial contamination through direct and indirect contact. Antimicrobial-resistant bacteria found on dairy farms pose risks to human health by potentially transferring resistance via dairy products. Our study aimed to investigate microbial distribution and antimicrobial resistance at four key stages: the farm, pre-pasteurization, post-pasteurization, and processing environments. We assessed microbial distribution by quantifying indicator bacteria and conducting metagenomic analysis. Antimicrobial resistance was examined by identifying resistance phenotypes and detecting resistance genes in bacterial isolates and metagenomes. Our results showed that the indicator bacteria were detected at all stages of on-farm dairy processing. We observed a significant reduction in aerobic microbes and coliforms post-pasteurization. However, contamination of the final dairy products increased, suggesting potential cross-contamination during post-pasteurization. Metagenomic analysis revealed that Pseudomonas, a representative psychrotrophic bacterium, was predominant in both the farm (24.1 %) and pre-pasteurization (65.9 %) stages, indicating microbial transfer from the farms to the processing plants. Post-pasteurization, Pseudomonas and other psychrotrophs like Acinetobacter and Enterobacteriaceae remained dominant. Core microbiota analysis identified 74 genera in total, including 13 psychrotrophic bacteria, across all stages. Of the 59 strains isolated from these plants, 49 were psychrotrophic. Antimicrobial resistance analysis showed that 74.6 % (44/59) of isolates were resistant to at least one antibiotic, with cefoxitin-, ampicillin-, amoxicillin-, and ticarcillin-resistant bacteria present at all stages. Identical antimicrobial resistance patterns were observed in isolates from serial stages of the same farm and season, suggesting bacterial transmission across stages. Additionally, 27.1 % (16/59) of isolates carried plasmid-mediated resistance genes, which were also detected in the metagenomes of non-isolated samples, indicating potential antimicrobial resistance gene transmission and their presence in uncultured bacteria. These findings reveal the persistence of antimicrobial-resistant psychrotrophic bacteria in on-farm dairy processing plants, which pose potential health risks via dairy consumption. Our study underscores the importance of both culture-dependent and culture-independent methods to fully understand their distribution and impact.
Collapse
Affiliation(s)
- Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - JungHa Woo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Sadiq FA, De Reu K, Yang N, Burmølle M, Heyndrickx M. Interspecies interactions in dairy biofilms drive community structure and response against cleaning and disinfection. Biofilm 2024; 7:100195. [PMID: 38639000 PMCID: PMC11024912 DOI: 10.1016/j.bioflm.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Interspecies interactions within a biofilm community influence population dynamics and community structure, which in turn may affect the bacterial stress response to antimicrobials. This study was conducted to assess the impact of interactions between Kocuria salsicia and a three-species biofilm community (comprising Stenotrophomonas rhizophila, Bacillus licheniformis, and Microbacterium lacticum) on biofilm mass, the abundance of individual species, and their survival under a laboratory-scale cleaning and disinfection (C&D) regime. The presence of K. salsicia enhanced the cell numbers of all three species in pairwise interactions. The outcomes derived from summing up pairwise interactions did not accurately predict the bacterial population dynamics within communities of more than two species. In four-species biofilms, we observed the dominance of S. rhizophila and B. licheniformis, alongside a concurrent reduction in the cell counts of K. salsicia and M. lacticum. This pattern suggests that the underlying interactions are not purely non-transitive; instead, a more complex interplay results in the dominance of specific species. We observed that bacterial spatial organization and matrix production in different mixed-species combinations affected survival in response to C&D. Confocal microscopy analysis of spatial organization showed that S. rhizophila localized on the biofilm formed by B. licheniformis and M. lacticum, and S. rhizophila was more susceptible to C&D. Matrix production in B. licheniformis, evidenced by alterations in biofilm mass and by scanning electron microscopy, demonstrated its protective role against C&D, not only for this species itself, but also for neighbouring species. Our findings emphasise that various social interactions within a biofilm community not only affect bacterial population dynamics but also influence the biofilm community's response to C&D stress.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Nan Yang
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
- Ghent University, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, B-9820, Merelbeke, Belgium
| |
Collapse
|
9
|
Didouh N, Khadidja M, Campos C, Sampaio-Maia B, Boumediene MB, Araujo R. Assessment of biofilm, enzyme production and antibiotic susceptibility of bacteria from milk pre- and post-pasteurization pipelines in Algeria. Int J Food Microbiol 2023; 407:110389. [PMID: 37708608 DOI: 10.1016/j.ijfoodmicro.2023.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Bacterial biofilm is a major concern of dairy industry due to its association with milk contamination and its derived products. Algerian pasteurized milk shelf-life does not exceed one day, which may reflect the high level of contamination of this product and presence of extracellular enzymes such as lipases and proteases. This work aimed to investigate the microbial biodiversity in milk-processing surfaces of a dairy plant in Algeria. Therefore, stainless steel cylinders were placed in piping system of the dairy system before and after pasteurization of the milk, being removed after 7 days, for biofilm maturation and microorganism isolation and identification by mass spectrometry. Fifty-nine Gram-positive isolates were identified, namely Bacillus altitudinis, Bacillus cereus, Bacillus pumilus, Bacillus subtilis, Bacillus weithenstephanensis, Enterococcus casseliflavus, Enterococcus faecium, and Staphylococcus epidermidis. In addition, twenty-four Gram-negative isolates were identified, namely Acinetobacter schindleri Enterobacter cloacae, Enterobacter xiangfangensis, Leclercia adecarboxylata, and Raoultella ornithinolytica. Bacterial isolates showed ability for production of extracellular enzymes, being 49 % capable of both proteolytic and lipolytic activities. Milk isolates were tested for the ability to form biofilms on stainless steel. The cell numbers recovered on plate count agar plates from stainless steel biofilms ranged from 3.52 to 6.92 log10 CFU/cm2, being the maximum number detected for Enterococcus casseliflavus. Bacterial isolates showed intermediate and/or resistant profiles to multiple antibiotics. Resistance to amoxicillin, cefoxitin and/or erythromycin was commonly found among the bacterial isolates.
Collapse
Affiliation(s)
- Nassima Didouh
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - Medjahdi Khadidja
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria; Université Hassiba Benbouali Chlef, Algeria
| | - Carla Campos
- Instituto Português de Oncologia (IPO) do Porto Francisco Gentil, Porto, Portugal
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R&D Group, INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | - Moussa Boudjemaa Boumediene
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - Ricardo Araujo
- Nephrology & Infectious Diseases R&D Group, INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
10
|
Nahusenay H, Tola A, Sisay Tessema T, Vipham J, Woldegiorgis AZ. Seasonal Comparison of Microbial Hygiene Indicators in Raw and Pasteurized Milk and Cottage Cheese Collected across Dairy Value Chain in Three Regions of Ethiopia. Foods 2023; 12:4377. [PMID: 38137180 PMCID: PMC10743099 DOI: 10.3390/foods12244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
A longitudinal design with a simple random sampling method was used to collect and compare microbial hygiene levels between the dry season (January to April) and wet season (June to August). A total of 456 milk and cottage cheese samples were collected from each site along the dairy value chain from three regions. Enumeration of total aerobic mesophilic bacteria (APC), total coliforms (TCC), and Escherichia coli (EC) was performed according to standard methods. Independent t-tests were employed to assess the significant variation at (p < 0.05) between the two seasons. The cumulative result of APC of 7.61 log cfu/mL and g and TCC of 3.50 log cfu/mL in the dry season were significantly higher than the wet season of 7.15 log cfu/mL and 2.49 log cfu/mL, respectively, whereas generic E. coli count (EC) was significantly higher in the wet season (0.70 log cfu/mL and g) than that in the dry season (0.40 log cfu/mL and g). The results of hygienic indicator microbial load significantly varied with season. Hence, hygienic milk production and handling practices that comprehend seasonal influence should be implemented to improve the safety of milk.
Collapse
Affiliation(s)
- Henok Nahusenay
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, New Graduate Building, Addis Ababa P.O. Box 1176, Ethiopia;
- Food Science and Nutrition Research Directorate, Ethiopian Institute of Agricultural Research, Addis Ababa P.O. Box 036, Ethiopia
| | - Alganesh Tola
- Holeta Agricultural Centre, Ethiopian Institute of Agricultural Research, Holeta P.O. Box 036, Ethiopia;
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, New Graduate Building, Addis Ababa University, New Graduate Building, Addis Ababa P.O. Box 1176, Ethiopia;
| | - Jessie Vipham
- Department of Animal Science and Industry, Kansas State University, 247 Weber Hall, Manhattan, KS 66506, USA;
| | - Ashagrie Zewdu Woldegiorgis
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, New Graduate Building, Addis Ababa P.O. Box 1176, Ethiopia;
| |
Collapse
|
11
|
Sadiq FA, De Reu K, Steenackers H, Van de Walle A, Burmølle M, Heyndrickx M. Dynamic social interactions and keystone species shape the diversity and stability of mixed-species biofilms - an example from dairy isolates. ISME COMMUNICATIONS 2023; 3:118. [PMID: 37968339 PMCID: PMC10651889 DOI: 10.1038/s43705-023-00328-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Identifying interspecies interactions in mixed-species biofilms is a key challenge in microbial ecology and is of paramount importance given that interactions govern community functionality and stability. We previously reported a bacterial four-species biofilm model comprising Stenotrophomonas rhizophila, Bacillus licheniformis, Microbacterium lacticum, and Calidifontibacter indicus that were isolated from the surface of a dairy pasteuriser after cleaning and disinfection. These bacteria produced 3.13-fold more biofilm mass compared to the sum of biofilm masses in monoculture. The present study confirms that the observed community synergy results from dynamic social interactions, encompassing commensalism, exploitation, and amensalism. M. lacticum appears to be the keystone species as it increased the growth of all other species that led to the synergy in biofilm mass. Interactions among the other three species (in the absence of M. lacticum) also contributed towards the synergy in biofilm mass. Biofilm inducing effects of bacterial cell-free-supernatants were observed for some combinations, revealing the nature of the observed synergy, and addition of additional species to dual-species combinations confirmed the presence of higher-order interactions within the biofilm community. Our findings provide understanding of bacterial interactions in biofilms which can be used as an interaction-mediated approach for cultivating, engineering, and designing synthetic bacterial communities.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Hans Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Ann Van de Walle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.
- Ghent University, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
12
|
Reydams H, Toledo-Silva B, Mertens K, Piepers S, de Souza FN, Haesebrouck F, De Vliegher S. Comparison of non-aureus staphylococcal and mammaliicoccal species found in both composite milk and bulk-tank milk samples of dairy cows collected in tandem. J Dairy Sci 2023; 106:7974-7990. [PMID: 37641265 DOI: 10.3168/jds.2022-23092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 08/31/2023]
Abstract
Non-aureus staphylococci and the closely related mammaliicoccal species (NASM) are the most common causes of bovine subclinical mastitis on modern dairy farms and are highly prevalent in bulk-tank milk. The purpose of this study was to determine the distribution of NASM in both composite cow milk (CCM) and bulk-tank milk (BTM) samples collected in tandem in commercial Flemish dairy herds and to estimate the origin of the different (subgroups of) NASM species present in BTM by applying strain typing (random amplification of polymorphic DNA or random amplified DNA [RAPD]). A single cross-sectional sampling was performed over 5 herds that volunteered to participate in the study. Composite cow milk samples (n = 356) were collected from all lactating cows (except those with clinical mastitis) during a milking in tandem with 6 BTM samples per herd sequentially collected immediately post that milking (n = 30). In total, 421 and 80 NASM isolates were recovered and identified by MALDI-TOF mass spectrometry from the CCM and BTM samples, respectively and a total of 21 and 12 different NASM species were identified from CCM and BTM samples, respectively. Staphylococcus cohnii was the most prevalent NASM species found in BTM followed by Staphylococcus haemolyticus, Staphylococcus epidermidis, Mammaliicoccus lentus, and Staphylococcus equorum, whereas from CCM samples the most common species were S. hemolyticus, S. cohnii, S. equorum, S. epidermidis, and Staphylococcus chromogenes. The prevalent NASM species in both CCM and BTM samples was distinct for each herd, corroborating other studies observing a herd-specific NASM microbiota. Random amplified DNA analysis was performed on 9 NASM species (S. chromogenes, S. epidermidis, S. haemolyticus, S. equorum, Mammaliicoccus sciuri, Staphylococcus xylosus, S. cohnii, Staphylococcus debuckii, and M. lentus) because these species were isolated from both sample types in a herd. The same RAPD types were found in both sample types for all NASM species selected for strain typing in varying degrees. When assessing the distribution of NASM species, differences within NASM species should be examined meaning a closer look should be taken at the strain level rather than at the species level only.
Collapse
Affiliation(s)
- H Reydams
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - B Toledo-Silva
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - K Mertens
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - S Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F N de Souza
- Veterinary Clinical Immunology Research Group, Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Prof. Orlando Marques de Paiva Av. 87, São Paulo 05508-270, Brazil
| | - F Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - S De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
13
|
Weber M, Göpfert B, von Wezyk S, Savin-Hoffmeyer M, Lipski A. Correlation between Bacterial Cell Density and Abundance of Antibiotic Resistance on Milking Machine Surfaces Assessed by Cultivation and Direct qPCR Methods. MICROBIAL ECOLOGY 2023; 86:1676-1685. [PMID: 37166501 PMCID: PMC10497690 DOI: 10.1007/s00248-023-02225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The relative abundance of antibiotic-resistant bacteria and antibiotic-resistance genes was surveyed for different parts of a milking machine. A cultivation approach based on swab samples showed a highly diverse microbiota, harboring resistances against cloxacillin, ampicillin, penicillin, and tetracycline. This approach demonstrated a substantial cloxacillin resistance of numerous taxa within milking machine microbiota coming along with regular use of cloxacillin for dry-off therapy of dairy cows. For the less abundant tetracycline-resistant bacteria we found a positive correlation between microbial cell density and relative abundance of tetracycline-resistant microorganisms (R2 = 0.73). This indicated an accelerated dispersion of resistant cells for sampling locations with high cell density. However, the direct quantification of the tetM gene from the swap samples by qPCR showed the reverse relation to bacterial density if normalized against the abundance of 16S rRNA genes (R2 = 0.88). The abundance of 16S rRNA genes was analyzed by qPCR combined with a propidium monoazide treatment, which eliminates 16S rRNA gene signals in negative controls.
Collapse
Affiliation(s)
- Mareike Weber
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Bettina Göpfert
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Sina von Wezyk
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Michael Savin-Hoffmeyer
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - André Lipski
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Bonsaglia ECR, Rossi RS, Latosinski G, Rossi BF, Campos FC, Junior AF, Pantoja JCF, Rall VLM. Relationship between Biofilm Production and High Somatic Cell Count in Streptococcus agalactiae Isolated from Milk of Cows with Subclinical Mastitis. Pathogens 2023; 12:pathogens12020311. [PMID: 36839583 PMCID: PMC9966988 DOI: 10.3390/pathogens12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is one of the main agents that causes mastitis in dairy cows, mainly inducing the subclinical form, which is characterized by a high somatic cell count (SCC). The aim of this study was to correlate the increase in SCC caused by S. agalactiae in cows with subclinical mastitis to the presence of genes related to adhesion and invasion in bovine mammary epithelial cells (BMEC) and biofilm formation. Considering the 145 isolates tested, 57.2% presented the capsular type Ia and 42.8% presented type III. We identified the virulence genes among the isolates and determined nine genetic profiles. The most common profile was identified in 69 isolates (47.5%): Ia, fbsA+, fbsB-, pI1-, pI2a-, pI2b+, and hylb+. All isolates produced biofilm, with 58.6% classified as strong producers, 29% as moderate producers and 12.4% as weak producers. No statistical correlation was found between the presence of virulence genes and increased SCC or biofilm production. However, biological evidence was observed between increased SCC and biofilm production. One isolate from each profile was randomly subjected to adhesion and invasion assays, and all of them adhered to BEMC, but none were able to invade. Our results showed that different genetic profiles do not provide advantages for bacteria to invade BMEC in vitro. In addition, biofilm production appears to be related to high SCC.
Collapse
Affiliation(s)
- Erika Carolina Romão Bonsaglia
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
- Correspondence: (E.C.R.B.); (V.L.M.R.); Tel.: +5514-3880-0438 (V.L.M.R.)
| | - Rodolfo S. Rossi
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | - Giulia Latosinski
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | - Bruna Fernanda Rossi
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | - Fernanda Cristina Campos
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | - Ary Fernandes Junior
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | - José Carlos F. Pantoja
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
| | - Vera Lucia Mores Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil
- Correspondence: (E.C.R.B.); (V.L.M.R.); Tel.: +5514-3880-0438 (V.L.M.R.)
| |
Collapse
|
15
|
Sadiq FA, De Reu K, Burmølle M, Maes S, Heyndrickx M. Synergistic interactions in multispecies biofilm combinations of bacterial isolates recovered from diverse food processing industries. Front Microbiol 2023; 14:1159434. [PMID: 37125177 PMCID: PMC10133454 DOI: 10.3389/fmicb.2023.1159434] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Most biofilms within the food industry are formed by multiple bacterial species which co-exist on surfaces as a result of interspecies interactions. These ecological interactions often make these communities tolerant against antimicrobials. Our previous work led to the identification of a large number (327) of highly diverse bacterial species on food contact surfaces of the dairy, meat, and egg industries after routine cleaning and disinfection (C&D) regimes. In the current study, biofilm-forming ability of 92 bacterial strains belonging to 26 genera and 42 species was assessed and synergistic interactions in biofilm formation were investigated by coculturing species in all possible four-species combinations. Out of the total 455 four-species biofilm combinations, greater biofilm mass production, compared to the sum of biofilm masses of individual species in monoculture, was observed in 34 combinations. Around half of the combinations showed synergy in biofilm mass > 1.5-fold and most of the combinations belonged to dairy strains. The highest synergy (3.13-fold) was shown by a combination of dairy strains comprising Stenotrophomonas rhizophila, Bacillus licheniformis, Microbacterium lacticum, and Calidifontibacter indicus. The observed synergy in mixed biofilms turned out to be strain-specific rather than species-dependent. All biofilm combinations showing remarkable synergy appeared to have certain common species in all combinations which shows there are keystone industry-specific bacterial species which stimulate synergy or antagonism and this may have implication for biofilm control in the concerned food industries.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Faizan Ahmed Sadiq,
| | - Koen De Reu
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sharon Maes
- The Department of Ecotechnology and Sustainable Building Engineering, Mid Sweden University, Östersund, Sweden
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Marc Heyndrickx,
| |
Collapse
|
16
|
Latorre AA, Oliva R, Pugin J, Estay A, Nualart F, Salazar K, Garrido N, Muñoz MA. Biofilms in hoses utilized to divert colostrum and milk on dairy farms: A report exploring their potential role in herd health, milk quality, and public health. Front Vet Sci 2022; 9:969455. [PMID: 36090175 PMCID: PMC9458949 DOI: 10.3389/fvets.2022.969455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms in milking equipment on dairy farms have been associated with failures in cleaning and sanitizing protocols. These biofilms on milking equipment can be a source of contamination for bulk tank milk and a concern for animal and public health, as biofilms can become on-farm reservoirs for pathogenic bacteria that cause disease in cows and humans. This report describes a cross-sectional study on 3 dairy farms, where hoses used to divert waste milk, transition milk, and colostrum were analyzed by culture methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to assess the presence of pathogenic bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella spp. In addition, the presence of biofilms was analyzed using scanning electron microscopy and confocal spectral microscopy. Biofilms composed of multispecies microbial communities were observed on the surfaces of all milk hoses. In two dairy farms, S. aureus, P. aeruginosa, Klebsiella pneumoniae, and Klebsiella oxytoca were isolated from the milk hose samples collected. Cleaning and sanitation protocols of all surfaces in contact with milk or colostrum are crucial. Hoses used to collect waste milk, colostrum, and transition milk can be a source of biofilms and hence pathogenic bacteria. Waste milk used to feed calves can constitute a biosecurity issue and a source of pathogens, therefore an increased exposure and threat for the whole herd health and, potentially, for human health.
Collapse
Affiliation(s)
- Alejandra A. Latorre
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
- *Correspondence: Alejandra A. Latorre
| | - Ricardo Oliva
- Centro de Espectroscopía y Microscopía Electrónica, Universidad de Concepción, Concepción, Chile
| | - Julio Pugin
- Centro de Espectroscopía y Microscopía Electrónica, Universidad de Concepción, Concepción, Chile
| | - Alexis Estay
- Centro de Espectroscopía y Microscopía Electrónica, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Célular, Facultad de Ciencias Biológicas, Centro de Microscopía Avanzada, Universidad de Concepción, Concepción, Chile
| | - Katterine Salazar
- Departamento de Biología Célular, Facultad de Ciencias Biológicas, Centro de Microscopía Avanzada, Universidad de Concepción, Concepción, Chile
| | - Natacha Garrido
- Hospital Dr. Víctor Ríos, Servicio de Salud Bío Bío, Los Ángeles, Chile
| | - Marcos A. Muñoz
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
17
|
Tarrah A, Callegaro S, Pakroo S, Finocchiaro R, Giacomini A, Corich V, Cassandro M. New insights into the raw milk microbiota diversity from animals with a different genetic predisposition for feed efficiency and resilience to mastitis. Sci Rep 2022; 12:13498. [PMID: 35931716 PMCID: PMC9356063 DOI: 10.1038/s41598-022-17418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The main objective of this study was to assess the microbiota diversity in milk samples collected from Holstein cows with different estimated breeding values for predicted feed efficiency, milk coagulation, resilience to mastitis, and consequently, to study its effects on milk quality. One hundred and twenty milk samples were collected in two seasons (summer and winter) from different commercial dairy farms in the Nord-east of Italy. For each trait, 20 animals divided into two groups of the high (10 cows) and the low (10 cows) were selected to study the microbiota profile using 16S rRNA metabarcoding sequencing. The alpha and beta diversity analysis revealed significant differences between the high and the low groups for feed efficiency and resilience to mastitis, while no significant difference was detected for milk coagulation. Moreover, remarkable differences among the taxa were detected between the two seasons, where the winter was more diverse than summer when applied the Chao1 index. Lastly, the linear discriminant analysis (LDA) effect size (LEfSe) indicated Aerococcus, Corynebacterium, Facklamia, and Psychrobacter taxa with more abundance in the high group of feed efficiency, whereas, in resilience to mastitis, only two genera of Mycoplana and Rhodococcus were more abundant in the low group. In addition, LEfSe analysis between the seasons showed significant differences in the abundance of Bacteroides, Lactobacillus, Corynebacterium, Escherichia, Citrobacter, Pantoea, Pseudomonas, and Stenotrophomonas. These findings indicate that the different genetic predisposition for feed efficiency and resilience to mastitis could affect the raw milk microbiota and, consequently, its quality. Moreover, we found more abundance of mastitis-associated bacteria in the milk of dairy cows with a higher feed efficiency index.
Collapse
Affiliation(s)
- Armin Tarrah
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy.,Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Simone Callegaro
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy.,Associazione Nazionale Allevatori Delle Razze Bovine Charolaise E Limousine Italiane (ANACLI), 00187, Roma, Italy
| | - Shadi Pakroo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Raffaella Finocchiaro
- Associazione Nazionale Allevatori Razza Frisona, Bruna e Jersey Italiana-ANAFIBJ, 26100, Cremona, Italy
| | - Alessio Giacomini
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Viviana Corich
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Martino Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy.,Associazione Nazionale Allevatori Razza Frisona, Bruna e Jersey Italiana-ANAFIBJ, 26100, Cremona, Italy
| |
Collapse
|
18
|
Ouamba AJK, Gagnon M, LaPointe G, Chouinard PY, Roy D. Graduate Student Literature Review: Farm management practices: Potential microbial sources that determine the microbiota of raw bovine milk. J Dairy Sci 2022; 105:7276-7287. [PMID: 35863929 DOI: 10.3168/jds.2021-21758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Environmental and herd-associated factors such as geographical location, climatic conditions, forage types, bedding, soil, animal genetics, herd size, housing, lactation stage, and udder health are exploited by farmers to dictate specific management strategies that ensure dairy operation profitability and enhance the sustainability of milk production. Along with milking routines, milking systems, and storage conditions, these farming practices greatly influence the microbiota of raw milk, as evidenced by several recent studies. During the past few years, the increased interest in high-throughput sequencing technologies combined with culture-dependent methods to investigate dairy microbial ecology has improved our understanding of raw milk community dynamics throughout storage and processing. However, knowledge is still lacking on the niche-specific communities in the farm environment, and on the factors that determine bacteria transfer to the raw milk. This review summarizes findings from the past 2 decades regarding the effects of farm management practices on the diversity of bacterial species that determine the microbiological quality of raw cow milk.
Collapse
Affiliation(s)
- Alexandre J K Ouamba
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada.
| | - Mérilie Gagnon
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada
| | - Gisèle LaPointe
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada; Department of Food Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - P Yvan Chouinard
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada; Département des Sciences Animales, Université Laval, Québec, G1V 0A6, Canada
| | - Denis Roy
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, J2S 2M2, Canada
| |
Collapse
|
19
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
20
|
Gordonia species as a rare pathogen isolated from milk of dairy cows with mastitis. Sci Rep 2022; 12:6028. [PMID: 35411009 PMCID: PMC9001696 DOI: 10.1038/s41598-022-09340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
While Gordonia species have long been known to cause severe inflammation in humans, the pathogenic effects of Gordonia species in veterinary medicine have rarely been described. Between 2010 and 2019, we collected microorganisms of the genus Gordonia isolated from milk samples from dairy cows with mastitis. We describe the growth properties of these microorganisms and their prevalence, virulence factors and susceptibility to antimicrobial agents. From 31,534 quarter milk samples processed by standard culture methods, 27 isolates of Gordonia species (0.086% prevalence) were identified by a molecular phenotyping method. The isolates originated from 17 farms in 12 districts of the Czech Republic. Twenty-one isolates were tested for susceptibility to 7 antimicrobials by the disc diffusion method. Notably, 100% of these isolates were susceptible to streptomycin and neomycin, 85.7% to cefovecin and tetracycline, 76.2% to penicillin G, 47.6% to trimethoprim/sulfamethoxazole and 0% to clindamycin. The species was determined to be Gordonia paraffinivorans by whole genome sequencing for 9 isolates (from 8 farms in 7 districts). These isolates showed the highest similarity to two reference strains from the environment. In all these isolates, we identified genes encoding virulence factors that are very similar to genes encoding virulence factors expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. However, genome analysis revealed 61 unique genes in all 9 sequenced isolates.
Collapse
|
21
|
Alonso VPP, Ferreira RCDC, Cotta MA, Kabuki DY. Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
23
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
24
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
25
|
El-Zamkan MA, Mohamed HMA. Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis. PLoS One 2021; 16:e0259584. [PMID: 34780540 PMCID: PMC8592430 DOI: 10.1371/journal.pone.0259584] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023] Open
Abstract
This study is designed to discuss the antimicrobial resistance, virulence determinants and biofilm formation capacity of Enterococcus spp. isolated from milk of sheep and goat with subclinical mastitis in Qena, Egypt. The obtained isolates were identified by the VITEK2 system and 16S rDNA sequencing as E. faecalis, E. faecium, E. casseliflavus and E. hirae. Overall, E. faecalis and E. faecium were the dominant species recovered from mastitic milk samples. The antimicrobial susceptibility test evidenced multidrug resistance of the isolates against the following antimicrobials: oxacillin (89.2.%), followed by vancomycin (75.7%) and linezolid (70.3%). Also, most of these isolates (73%) could form biofilms. For example, 18.9% of Enterococcus strains formed strong biofilm, whereas 32.4% of isolates formed moderate biofilm and 21.6% of isolates formed weak biofilm. The most prevalent resistance genes found in our isolates were blaZ (54%), vanA (40%), ermB (51.4%), tetM (13.5%) and optrA (10.8%). Moreover, asa1 (37.8%), cylA (42.3%), gelE (78.4%), esp (32.4%), EF3314(48.6%) and ace (75.5%) were the most common virulence genes. A significant correlation was found between biofilm formation, multidrug resistance and virulence genes of the isolates. This study highlights several aspects of virulence and harmfulness of Enterococcus strains isolated from subclinical mastitic milk, which necessitates continuous inspection and monitoring of dairy animals.
Collapse
Affiliation(s)
- Mona A. El-Zamkan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Control, South Valley University, Qena, Egypt
- * E-mail:
| | - Hams M. A. Mohamed
- Faculty of Veterinary Medicine, Department of Microbiology, South Valley University, Qena, Egypt
| |
Collapse
|
26
|
Twardy BS, Yasmin M, Bej T, Wera GD, Marshall SH, Rojas LJ, Bonomo RA, Jump RLP. Orthopedic Implant-Associated and Central Venous Catheter-Associated Infections Caused by Microbacterium spp. in the Veterans Affairs Healthcare System from 2000 to 2020. Surg Infect (Larchmt) 2021; 23:84-88. [PMID: 34668786 DOI: 10.1089/sur.2021.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: A 72-year-old male developed a late-onset infection of an internal fixation device caused by Microbacterium oxydans. Although often considered contaminants, bacteria from the genus Microbacterium may also be pathogens. We also summarize cases from the Veteran Health Administration (VHA) from which Microbacterium isolates were recovered and review the relevant literature. Patients and Methods: Using the national VHA database, we identified patients with cultures that grew Microbacterium spp. We also review published clinical reports describing Microbacterium spp. as a cause of infections. Results: Between January 2000 and September 2020, 18 cases had Microbacterium spp. Of those, Microbacterium isolates were regarded as pathogens for seven cases; all involved prosthetic material that was consequently removed. Two patients had internal fixation devices whereas the remaining five were patients with a central venous catheter. Conclusions: For patients with prosthetic material, recovery of Microbacterium spp. from device-related clinical cultures should prompt consideration of device removal when possible.
Collapse
Affiliation(s)
- Brandon S Twardy
- Division of Infectious Diseases, MetroHealth Medical Center, Cleveland, Ohio, USA.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mohamad Yasmin
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA.,Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Taissa Bej
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Glenn D Wera
- Orthopedic Surgery, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Steven H Marshall
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Laura J Rojas
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA.,Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA.,Departments of Pathology, Pharmacology, Biochemistry, Molecular Biology and Microbiology, and Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robin L P Jump
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA.,Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
27
|
S. aureus Biofilm Protein Expression Linked to Antimicrobial Resistance: A Proteomic Study. Animals (Basel) 2021; 11:ani11040966. [PMID: 33807139 PMCID: PMC8065610 DOI: 10.3390/ani11040966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Biofilm formation represents one of the most effective forms of bacterial persistence in surfaces where nutrients are available or in the tissues of living hosts as humans or animals. Such persistence is due to the high rate of antimicrobial resistance of this shell conformation. It often represents a burden when the pathogen colonizes niches from where it is not removable such as food facilities, farm facilities or parts of living organisms. In this study, we investigated biofilm formation mechanisms and enhanced antimicrobial resistance of 6 different S. aureus strains. The detected mechanisms were primarily related to the control of catabolites, the production of proteins with moonlighting activities and the detoxification of compounds with antimicrobial activities (i.e., alcohol). Glycolysis and aerobic metabolisms were found to be less active in the biofilm conformation. Consequently, less H2O2 production from aerobic metabolism was translated into a measurable under-representation of catalase protein. Abstract Antimicrobial resistance (AMR) represents one of the most critical challenges that humanity will face in the following years. In this context, a “One Health” approach with an integrated multidisciplinary effort involving humans, animals and their surrounding environment is needed to tackle the spread of AMR. One of the most common ways for bacteria to live is to adhere to surfaces and form biofilms. Staphylococcus aureus (S. aureus) can form biofilm on most surfaces and in a wide heterogeneity of environmental conditions. The biofilm guarantees the survival of the S. aureus in harsh environmental conditions and represents an issue for the food industry and animal production. The identification and characterization of biofilm-related proteins may provide interesting insights into biofilm formation mechanisms in S. aureus. In this regard, the aims of this study were: (i) to use proteomics to compare proteomes of S. aureus growing in planktonic and biofilm forms in order to investigate the common features of biofilm formation properties of different strains; (ii) to identify specific biofilm mechanisms that may be involved in AMR. The proteomic analysis showed 14 differentially expressed proteins among biofilm and planktonic forms of S. aureus. Moreover, three proteins, such as alcohol dehydrogenase, ATP-dependent 6-phosphofructokinase, and fructose-bisphosphate aldolase, were only differentially expressed in strains classified as high biofilm producers. Differentially regulated catabolites metabolisms and the switch to lower oxygen-related metabolisms were related to the sessile conformation analyzed.
Collapse
|
28
|
Zand E, Pfanner H, Domig KJ, Sinn G, Zunabovic-Pichler M, Jaeger H. Biofilm-Forming Ability of Microbacterium lacticum and Staphylococcus capitis Considering Physicochemical and Topographical Surface Properties. Foods 2021; 10:foods10030611. [PMID: 33805651 PMCID: PMC8001712 DOI: 10.3390/foods10030611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilm characteristics of Microbacterium lacticum D84 (M. lacticum) and Staphylococcus capitis subsp. capitis (S. capitis) on polytetrafluoroethylene and AISI-304 stainless steel at early- (24, 48 h) and late-stage (144, 192 h) biofilm formation were investigated. M. lacticum biofilm structure was more developed compared to S. capitis, representing vastly mature biofilms with a strongly developed amorphous matrix, possibly extracellular polymeric substances (EPSs), at late-stage biofilm formation. S. capitis showed faster growth behavior but still resulted in a relatively flat biofilm structure. Strong correlations were found between several roughness parameters and S. capitis surface coverage (r ≥ 0.98), and between total surface free energy (γs) and S. capitis surface coverage (r = 0.89), while M. lacticum remained mostly unaffected. The pronounced ubiquitous biofilm characteristics make M. lacticum D84 a suitable model for biofilm research. Studying biofilm formation of these bacteria may help one understand bacterial adhesion on interfaces and hence reduce biofilm formation in the food industry.
Collapse
Affiliation(s)
- Elena Zand
- Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (E.Z.); (H.P.); (H.J.)
| | - Hedwig Pfanner
- Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (E.Z.); (H.P.); (H.J.)
| | - Konrad J. Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Gerhard Sinn
- Institute of Physics and Material Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Marija Zunabovic-Pichler
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
- Correspondence:
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria; (E.Z.); (H.P.); (H.J.)
| |
Collapse
|
29
|
Rather MA, Gupta K, Bardhan P, Borah M, Sarkar A, Eldiehy KSH, Bhuyan S, Mandal M. Microbial biofilm: A matter of grave concern for human health and food industry. J Basic Microbiol 2021; 61:380-395. [PMID: 33615511 DOI: 10.1002/jobm.202000678] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Pathogenic microorganisms have adapted different strategies during the course of time to invade host defense mechanisms and overcome the effect of potent antibiotics. The formation of biofilm on both biotic and abiotic surfaces by microorganisms is one such strategy to resist and survive even in presence of antibiotics and other adverse environmental conditions. Biofilm is a safe home of microorganisms embedded within self-produced extracellular polymeric substances comprising of polysaccharides, extracellular proteins, nucleic acid, and water. It is because of this adaptation strategy that pathogenic microorganisms are taking a heavy toll on the health and life of organisms. In this review, we discuss the colonization of pathogenic microorganisms on tissues and medically implanted devices in human beings. We also focus on food spoilage, disease outbreaks, biofilm-associated deaths, burden on economy, and other major concerns of biofilm-forming pathogenic microorganisms in food industries like dairy, poultry, ready-to-eat food, meat, and aquaculture.
Collapse
Affiliation(s)
- Muzamil A Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Pritam Bardhan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Khalifa S H Eldiehy
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
30
|
Bellassi P, Cappa F, Fontana A, Morelli L. Phenotypic and Genotypic Investigation of Two Representative Strains of Microbacterium Species Isolated From Micro-Filtered Milk: Growth Capacity and Spoilage-Potential Assessment. Front Microbiol 2020; 11:554178. [PMID: 33193134 PMCID: PMC7642513 DOI: 10.3389/fmicb.2020.554178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
The microbiota that spoil long-life micro-filtered milk generally includes species of the genus Microbacterium. The metabolic properties of this of microorganisms that could potentially modify the quality of micro-filtered milk are still unexplored when compared to better-known microorganisms, such as the spore-forming Bacillus and Paenibacillus spp., and Gram-negative contaminants, such as species of the genera Pseudomonas and Acinetobacter. In this preliminary study, two strains of Microbacterium (M. lacticum 18H and Microbacterium sp. 2C) isolated from micro-filtered milk were characterized in depth, both phenotypically and genotypically, to better understand their role in long-term milk spoilage. The study highlights the ability of these strains to produce high cell numbers and low acidification in micro-filtered milk under storage and shelf-life conditions. Phenotypic analyses of the two Microbacterium sp. isolates revealed that both strains have low proteolytic and lipolytic activity. In addition, they have the ability to form biofilms. This study aims to be a preliminary investigation of milk-adapted strains of the Microbacterium genus, which are able to grow to high cellular levels and perform slight but not negligible acidification that could pose a potential risk to the final quality of micro-filtered milk. Furthermore, M. lacticum 18H and Microbacterium sp. 2C were genotypically characterized in relation to the characteristics of interest in the milk environment. Some protein-encoding genes involved in lactose metabolism were found in the genomes, such as β-galactosidase, lactose permease, and L-lactate dehydrogenase. The phenotypically verified proteolytic ability was supported in the genomes by several genes that encode for proteases, peptidases, and peptide transferases.
Collapse
Affiliation(s)
- Paolo Bellassi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Cappa
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Biotechnology Research Centre (CRB), Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Biotechnology Research Centre (CRB), Cremona, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Biotechnology Research Centre (CRB), Cremona, Italy
| |
Collapse
|
31
|
Sekoai PT, Feng S, Zhou W, Ngan WY, Pu Y, Yao Y, Pan J, Habimana O. Insights into the Microbiological Safety of Wooden Cutting Boards Used for Meat Processing in Hong Kong's Wet Markets: A Focus on Food-Contact Surfaces, Cross-Contamination and the Efficacy of Traditional Hygiene Practices. Microorganisms 2020; 8:E579. [PMID: 32316436 PMCID: PMC7232214 DOI: 10.3390/microorganisms8040579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
Hong Kong's wet markets play a crucial role in the country's supply of safe, fresh meat to satisfy the dietary needs of its population. Whilst food safety regulations have been introduced over the past few years to maintain the microbial safety of foods sold from these wet markets, it remains unclear whether the hygiene maintenance that is performed on the wooden cutting boards used for meat-processing is effective. In fact, hygiene maintenance may often be overlooked, and hygiene standards may be insufficient. If so, this may lead to the spread of harmful pathogens through cross-contamination, thereby causing severe risks to public health. The aim of this study was to determine the level of microbial transfer between wooden cutting boards and swine meat of various qualities, using 16S metagenomic sequencing, strain identification and biofilm screening of isolated strains. The results established that: (a) the traditional hygiene practices used for cleaning wooden cutting boards in Hong Kong's wet markets expose the surfaces to potentially harmful microorganisms; (b) the processing of microbially contaminated meat on cutting boards cleaned using traditional practices leads to cross-contamination; and (c) several potentially pathogenic microorganisms found on the cutting boards have good biofilm-forming abilities. These results reinforce the need to review the traditional methods used to clean wooden cutting boards after the processing of raw meat in Hong Kong' wet markets so as to prevent cross-contamination events. The establishment of proper hygiene protocols may reduce the spread of disease-causing microorganisms (including antibiotic-resistant microorganisms) in food-processing environments.
Collapse
Affiliation(s)
- Patrick T Sekoai
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Shiqi Feng
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Wenwen Zhou
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Wing Y Ngan
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yang Pu
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yuan Yao
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| |
Collapse
|