1
|
Zhao Y, Wang Y, Lu J, Zhu B, Li AD. Exploring the Ecological Impacts of Herbicides on Antibiotic Resistance Genes and Microbial Communities. Life (Basel) 2025; 15:547. [PMID: 40283102 PMCID: PMC12028981 DOI: 10.3390/life15040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
The widespread application of herbicides has profound ecological consequences, particularly regarding the distribution of antibiotic resistance genes (ARGs) and microbial communities. In this study, we analyzed herbicide-related metagenomic data to assess the impact of herbicide exposure on ARGs and microbial populations. Our results demonstrate that herbicide application significantly increased the abundance of ARGs, particularly those associated with multidrug resistance, sulfonamides, and bacitracin, with notable increases in subtypes such as bacA and sul1. Microbial community analyses revealed a dominance of Pseudomonadota and Actinomycetota, along with a significant down-regulation of genera like Fibrisoma, Gilsonvirus, Limnobacter, and Wilnyevirus in the experimental group. Additionally, herbicide exposure led to a marked reduction in biodiversity. When threshold values were relaxed, correlation analyses revealed a co-occurrence pattern between multiple genes and sul1, suggesting that horizontal gene transfer plays a pivotal role in the spread of antibiotic resistance in herbicide-contaminated soils. Moreover, environmental factors were found to significantly influence both microbial community composition and ARG distribution. These findings highlight the complex ecological effects of herbicides on microbial diversity and the dissemination of resistance genes, emphasizing the need for further research into the long-term environmental and public health implications of herbicide use.
Collapse
Affiliation(s)
- Yunfei Zhao
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (Y.W.)
| | - Yixiao Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (Y.W.)
| | - Jie Lu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China;
| | - Baoli Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (Y.W.)
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - An-Dong Li
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (Y.W.)
- Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| |
Collapse
|
2
|
Bearson BL, Douglass CH, Duke SO, Moorman TB, Tranel PJ. Effects of glyphosate on antibiotic resistance in soil bacteria and its potential significance: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:160-180. [PMID: 39587768 PMCID: PMC11718153 DOI: 10.1002/jeq2.20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The evolution and spread of antibiotic resistance are problems with important consequences for bacterial disease treatment. Antibiotic use in animal production and the subsequent export of antibiotic resistance elements in animal manure to soil is a concern. Recent reports suggest that exposure of pathogenic bacteria to glyphosate increases antibiotic resistance. We review these reports and identify soil processes likely to affect the persistence of glyphosate, antibiotic resistance elements, and their interactions. The herbicide molecular target of glyphosate is not shared by antibiotics, indicating that target-site cross-resistance cannot account for increased antibiotic resistance. The mechanisms of bacterial resistance to glyphosate and antibiotics differ, and bacterial tolerance or resistance to glyphosate does not coincide with increased resistance to antibiotics. Glyphosate in the presence of antibiotics can increase the activity of efflux pumps, which confer tolerance to glyphosate, allowing for an increased frequency of mutation for antibiotic resistance. Such effects are not unique to glyphosate, as other herbicides and chemical pollutants can have the same effect, although glyphosate is used in much larger quantities on agricultural soils than most other chemicals. Most evidence indicates that glyphosate is not mutagenic in bacteria. Some studies suggest that glyphosate enhances genetic exchange of antibiotic-resistance elements through effects on membrane permeability. Glyphosate and antibiotics are often present together in manure-treated soil for at least part of the crop-growing season, and initial studies indicate that glyphosate may increase abundance of antibiotic resistance genes in soil, but longer term investigations under realistic field conditions are needed. Although there are demonstratable interactions among glyphosate, bacteria, and antibiotic resistance, there is limited evidence that normal use of glyphosate poses a substantial risk for increased occurrence of antibiotic-resistant, bacterial pathogens. Longer term field studies using environmentally relevant concentrations of glyphosate and antibiotics are needed.
Collapse
Affiliation(s)
- Bradley L. Bearson
- USDA‐ARS, National Laboratory for Agriculture and the EnvironmentAmesIowaUSA
| | - Cameron H. Douglass
- USDA, Office of the Chief Economist, Office of Pest Management PolicyWashingtonDistrict of ColumbiaUSA
| | - Stephen O. Duke
- National Center of Natural Products Research, School of PharmacyUniversity of MississippiUniversityMississippiUSA
| | - Thomas B. Moorman
- USDA‐ARS, National Laboratory for Agriculture and the EnvironmentAmesIowaUSA
| | | |
Collapse
|
3
|
Gao X, Zhang H, Xu L, Wang L, Li X, Jiang Y, Yu H, Zhu G. Impact of earthworms on antibiotic resistance genes removal in ampicillin-contaminated soil through bacterial community alteration. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:521-534. [PMID: 38708516 DOI: 10.1002/jeq2.20567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) as contaminants in soil poses a significant threat to public health. Earthworms (Eisenia foetida), which are common inhabitants of soil, have been extensively studied for their influence on ARGs. However, the specific impact of earthworms on penicillin-related ARGs remains unclear. In this study, we investigate the role of earthworms in mitigating ARGs, specifically penicillin-related ARGs, in ampicillin-contaminated soil. Utilizing high-throughput quantitative PCR (HT-qPCR), we quantified a significant reduction in the relative abundance of penicillin-related ARGs in soil treated with earthworms, showing a decrease with a p-value of <0.01. Furthermore, high-throughput 16S rRNA gene sequencing revealed that earthworm intervention markedly alters the microbial community structure, notably enhancing the prevalence of specific bacterial phyla such as Proteobacteria, Firmicutes, Chloroflexi, and Tenericutes. Our findings not only demonstrate the effectiveness of earthworms in reducing the environmental load of penicillin-related ARGs but also provide insight into the alteration of microbial communities as a potential mechanism. This research contributes to our understanding of the role of earthworms in mitigating the spread of antibiotic resistance and provides valuable insights for the development of strategies to combat this global health issue.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Hong Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Longhui Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Lida Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
- Hefei Yuanzai Biotechnology Co., Ltd., Hefei, China
| | - Xiqing Li
- Hefei Yuanzai Biotechnology Co., Ltd., Hefei, China
| | - Yongbin Jiang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, China
| | - Hongmei Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal Unversity, Wuhu, China
| |
Collapse
|
4
|
Gunasekara YD, Kottawatta SA, Nisansala T, Wijewickrama IJB, Basnayake YI, Silva-Fletcher A, Kalupahana RS. Antibiotic resistance through the lens of One Health: A study from an urban and a rural area in Sri Lanka. Zoonoses Public Health 2024; 71:84-97. [PMID: 37880923 DOI: 10.1111/zph.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to investigate and compare the proportion of AMR Escherichia coli (E. coli) between urban (Dompe in the Western province) and rural (Dambana in the Sabaragamuwa province) areas in Sri Lanka. The overall hypothesis of the study is that there is a difference in the proportion of AMR E. coli between the urban and the rural areas. Faecal samples were collected from healthy humans (n = 109), dairy animals (n = 103), poultry (n = 35), wild mammals (n = 81), wild birds (n = 76), soil (n = 80) and water (n = 80) from both areas. A total of 908 E. coli isolates were tested for susceptibility to 12 antimicrobials. Overall, E. coli isolated from urban area was significantly more likely to be resistant than those isolated from rural area. The human domain of the area had a significantly higher prevalence of AMR E. coli, but it was not significantly different in urban (98%) and rural (97%) areas. AMR E. coli isolated from dairy animals, wild animals and water was significantly higher in the urban area compared with the rural area. There was no significant difference in the proportion of multidrug resistance (MDR) E. coli isolated from humans, wild animals and water between the two study sites. Resistant isolates found from water and wild animals suggest contamination of the environment. A multi-sectorial One Health approach is urgently needed to control the spread of AMR and prevent the occurrences of AMR in Sri Lanka.
Collapse
Affiliation(s)
- Yasodhara Deepachandi Gunasekara
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sanda Arunika Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Thilini Nisansala
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Baru, Kelantan, Malaysia
| | - Isuru Jayamina Bandara Wijewickrama
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Yasodha I Basnayake
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Ruwani Sagarika Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
5
|
Yang L, Lyu J, Zhang L, Wang L, Yu J, Cao Z, Tudi M, Meng M. Spatial distribution of antibiotics and antibiotic resistance genes in tidal flat reclamation areas in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112863-112876. [PMID: 37843708 DOI: 10.1007/s11356-023-30087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Tidal flat areas are important resources for land development and are becoming antibiotic resistance receivers that trigger major health concerns. The spatial distributions of forty-nine antibiotics, nine antibiotic resistance genes (ARGs), one mobile gene element (MGE) gene, and nine available metals in the soils and sediments along the coastlines of the Yellow Sea in China were quantified. Hierarchical linear model analysis was used to explore relationships between the antibiotics and ARGs across multiple effects resulting from human activities and environmental factors. Fish farm sediments and farmland soils showed high levels of quinolones (QNs) (maximum 637 ng·g-1), sulfonamides (SAs) (maximum 221 ng·g-1), and corresponding ARGs. Significant positive correlations (P from 5.47 × 10-14 to 0.0487) were observed between the antibiotics (QNs, SAs, and chlortetracycline) and their corresponding ARGs (qnrA, qnrD, aac(6')-Ib-cr, dfrA, sul2, and tetA), indicating the selective pressure from antibiotics in soils and sediments. Nine available metals had positive correlations with at least one ARG, indicating heavy metal pollution could enhance the ARGs. Sheep and poultry husbandry and marine aquaculture contribute the most to the antibiotic resistance in the coastlines. In conclusion, antibiotic pollutions have promoting effects at sub-inhibitory concentrations and more attention should be given to inhibit the enrichment of ARGs during tidal flat reclamation processes. The study also suggests the induction effects from metal pollutions, MGE spread, and the antibiotic pollutions from the usage in livestock and aquaculture.
Collapse
Affiliation(s)
- Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Beijing, 101408, China
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Beijing, 101408, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing, 100050, China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing, 100050, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China.
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
| | - Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
| | - Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No.11 Datun Road, Beijing, 100101, China
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, No.27 Shanda Nanlu, Jinan, 250100, China
| |
Collapse
|
6
|
Lin Z, Lu P, Wang R, Liu X, Yuan T. Sulfur: a neglected driver of the increased abundance of antibiotic resistance genes in agricultural reclaimed subsidence land located in coal mines with high phreatic water levels. Heliyon 2023; 9:e14364. [PMID: 36994396 PMCID: PMC10040520 DOI: 10.1016/j.heliyon.2023.e14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the shallow burial of groundwater in coal mines with a high phreatic water level, a large area of subsidence lakes is formed after the mine collapses. Agricultural and fishery reclamation activities have been carried out, which introduced antibiotics and exacerbated the contamination of antibiotic resistance genes (ARGs), but this has received limited attention. This study analyzed ARG occurrence in reclaimed mining areas, the key impact factors, and the underlying mechanism. The results show that sulfur is the most critical factor impacting the abundance of ARGs in reclaimed soil, which is due to changes in the microbial community. The species and abundance of ARGs in the reclaimed soil were higher than those in the controlled soil. The relative abundances of most ARGs increased with the depth of reclaimed soil (from 0 to 80 cm). In addition, the microbial structures of the reclaimed and controlled soils were significantly different. Proteobacteria, was the most dominant microbial phylum in the reclaimed soil. This difference is likely related to the high abundance of sulfur metabolism functional genes in the reclaimed soil. Correlation analysis showed that the differences in ARGs and microorganisms in the two soil types were highly correlated with the sulfur content. High levels of sulfur promoted the proliferation of sulfur-metabolizing microbial populations such as Proteobacteria and Gemmatimonadetes in the reclaimed soils. Remarkably, these microbial phyla were the main antibiotic-resistant bacteria in this study, and their proliferation created conditions for the enrichment of ARGs. Overall, this study underscores the risk of the abundance and spread of ARGs driven by high-level sulfur in reclaimed soils and reveals the mechanisms.
Collapse
|
7
|
Zhang Y, Hao X, Thomas BW, McAllister TA, Workentine M, Jin L, Shi X, Alexander TW. Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130136. [PMID: 36444046 DOI: 10.1016/j.jhazmat.2022.130136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Manure can be a source of antibiotic resistance genes (ARGs) that enter the soil. However, previous studies assessing ARG persistence in soil have generally lacked continuity over sampling times, consistency of location, and assessing the impact of discontinuing manure application. We evaluated both short- and long-term ARG accumulation dynamics in soil with a 40-year known history of manure use. Manure application caused a greater abundance of tetracycline, macrolide, and sulfonamide ARGs in the soil. There was an initial spike in ARG abundance resulting from manure bacteria harboring ARGs being introduced to soil, followed by resident soil bacteria out-competing them, which led to ARG dissipation within a year. However, over four decades, annual manure application caused linear or exponential ARG accumulation, and bacteria associated with ARGs differed compared to those in the short term. Eleven years after discontinuing manure application, most soil ARG levels declined but remained elevated. We systematically explored the historical accumulation of ARGs in manured soil, and provide insight into factors that affect their persistence.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Ben W Thomas
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, BC V0M 1A0, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Matthew Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Long Jin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Xiaojun Shi
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Academy of Agriculture Science, Southwest University, Chongqing 400716, China
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
8
|
Wu Y, Song S, Chen X, Shi Y, Cui H, Liu Y, Yang S. Source-specific ecological risks and critical source identification of PPCPs in surface water: Comparing urban and rural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158792. [PMID: 36113789 DOI: 10.1016/j.scitotenv.2022.158792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
To control the concentrations of pharmaceutical and personal care products (PPCPs) in the surface water of urban and rural areas, it is important to explore the spatial variation in source-specific ecological risks and identify critical sources. Here, we focused on 22 PPCPs found in the effluent from wastewater treatment plants and surface water in Tianjin, and source-specific risk was quantitatively apportioned combining positive matrix factorization with ecological risk assessment. Results showed that rural areas exhibited a more severe contamination level than urban areas. Medical wastewater (30.1 %) accounted for the highest proportion, while domestic sewage posed the greatest threat to aquatic ecosystems. The incidence of potential risks (RQ > 0.01) caused by domestic sewage in urban areas (88.9 %) was higher than that in rural areas (75.9 %). However, PPCP risks caused by farmland drainage, aquaculture, and livestock discharge were mainly distributed in rural areas. The critical source identified in the entire region was domestic sewage (weight, 0.36), and its weight (0.51) in urban areas was greater than that in rural areas (0.32). The impact of aquaculture (weight, 0.16) in rural areas was noteworthy. These findings may contribute to developing environmental management strategies in key areas to help alleviate PPCP contamination worldwide.
Collapse
Affiliation(s)
- Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; School of Civil Engineering and Architecture, Guangxi University, Nanning City, Guangxi 530004, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinchuang Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- School of Civil Engineering and Architecture, Guangxi University, Nanning City, Guangxi 530004, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
9
|
Impact of Swine and Cattle Manure Treatment on the Microbial Composition and Resistome of Soil and Drainage Water. Microorganisms 2022; 11:microorganisms11010017. [PMID: 36677309 PMCID: PMC9865870 DOI: 10.3390/microorganisms11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Evaluating potential environmental and clinical impacts of industrial antibiotic use is critical in mitigating the spread of antimicrobial resistance. Using soil columns to simulate field application of swine or cattle manure and subsequent rain events, and a targeted qPCR-based approach, we tracked resistance genes from source manures and identified important differences in antimicrobial resistance gene transport and enrichment over time in the soil and water of artificially drained cropland. The source manures had distinct microbial community and resistance gene profiles, and these differences were also reflected in the soil columns after manure application. Antibiotic resistance genes (ARGs) were only significantly enriched in effluent samples following the first rain event (day 11) for both soil types compared to the control columns, illustrating the high background level of resistance present in the control soils chosen. For swine, the genes tetQ, tet(36), tet44, tetM, sul2 and ant(6)-ib persisted in the soil columns, whereas tetO, strB and sul1 persisted in effluent samples. Conversely, for cattle manure sul2 and strB persisted in both soil and effluent. The distinct temporal dynamics of ARG distribution between soil and effluent water for each manure type can be used to inform potential mitigation strategies in the future.
Collapse
|
10
|
Mahlake SK, Mnisi CM, Kumanda C, Mthiyane DMN, Montso PK. Green Tea ( Camellia sinensis) Products as Alternatives to Antibiotics in Poultry Nutrition: A Review. Antibiotics (Basel) 2022; 11:565. [PMID: 35625209 PMCID: PMC9137694 DOI: 10.3390/antibiotics11050565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
The overuse and misuse of antibiotics in poultry feeds increase the total cost of production and compromise the quality of poultry products, which poses a serious threat to human health. Globally, health-conscious poultry consumers have long called for the alternate use of natural additives to mitigate the development and spread of multidrug resistant pathogens. Phytogenic plants, such as green tea (Camellia sinensis) products, contain putative nutraceuticals with antibiotic properties that can be used as alternatives to therapeutic, metaphylactic, prophylactic, and growth-promoting antibiotics. However, there are limited studies in the literature that have evaluated the potential of green tea (GT) products when used as replacements to in-feed antibiotics, with most studies focusing on their potential as sources of dietary nutrients in poultry feeds. Thus, this review paper discusses the potential of GT products to replace various antibiotics in poultry diets while presenting GT bioactive substances that can improve the growth performance, carcass and meat quality traits, and health status of the birds. We postulate that the utilisation of GT products in place of antibiotics could deliver sustainable, organic poultry production systems that would contribute significantly to global food and nutrition security.
Collapse
Affiliation(s)
- Steve Kgotlelelo Mahlake
- Department of Animal Science, School of Agricultural Science, North-West University, Mafikeng 2745, South Africa; (S.K.M.); (D.M.N.M.)
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Science, North-West University, Mafikeng 2745, South Africa; (S.K.M.); (D.M.N.M.)
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng 2745, South Africa;
| | - Cebisa Kumanda
- Department of Animal Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Science, North-West University, Mafikeng 2745, South Africa; (S.K.M.); (D.M.N.M.)
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng 2745, South Africa;
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng 2745, South Africa;
- Department of Microbiology, School of Biological Sciences, North-West University, Mafikeng 2745, South Africa
| |
Collapse
|
11
|
Flater JS, Alt LM, Soupir M, Moorman TB, Howe A. Prairie strips' effect on transport of antimicrobial resistance indicators in poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:260-271. [PMID: 35112354 DOI: 10.1002/jeq2.20333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Poultry litter is a valuable nutrient resource for agricultural production but is also a potential source for introducing antibiotic resistance genes (ARGs) and litter-associated bacteria (LAB) to the environment. Prairie strips have been demonstrated as an effective conservation practice to improve environmental quality in agroecosystems. This research aims to assess prairie strips' potential for reducing the transport of LAB and ARGs in runoff after litter application. Plot-scale rainfall simulations were performed using a replicated block design, with soil and surface runoff samples taken during the rainfall event. Microbial taxa and ARGs were characterized in the litter, soil, and water samples. In plots with litter application, LAB and ARGs were mainly detected in runoff, with very low detection in soils. Detection of ARGs in runoff, irrespective of strip installations, is consistent with previous observations of litter as a source of antimicrobial resistance (AMR) risks. The effectiveness of prairie strips to remove LAB and ARGs varied. In two of the three prairie strip plots, fewer AMR indicators were detected relative to control plots, suggesting that the prairie strips can potentially reduce these risks. In one plot, which was also associated with increased flow rate, we observed increased AMR indicators despite the installation of a prairie strip. Our observations highlight the need to prioritize understanding of soil properties even within the same site. Although we show that prairie strips can potentially reduce AMR risks, further research is needed to better understand the influence of rainfall timing, soil, and litter characteristics.
Collapse
Affiliation(s)
- Jared S Flater
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| | - Laura M Alt
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| | - Michelle Soupir
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| | - Thomas B Moorman
- USDA-ARS, National Laboratory for Agriculture and the Environment, 1015 N University Blvd., Ames, IA, 50011, USA
| | - Adina Howe
- Dep. of Agriculture and Biosystems Engineering, Iowa State Univ., Elings Hall, 605 Bissell Rd, Ames, IA, 50011, USA
| |
Collapse
|
12
|
Fatoba DO, Amoako DG, Akebe ALK, Ismail A, Essack SY. Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet(M), Tet(L) and Erm(B) genes from chicken litter to agricultural soil in South Africa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114101. [PMID: 34800768 DOI: 10.1016/j.jenvman.2021.114101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Manure from food animals exposed to antibiotics is often used as soil fertiliser, potentially releasing antibiotic-resistant bacteria (ARB) with diverse antibiotic-resistance genes (ARGs) into the soil. To determine the impact of chicken litter application on the soil resistome, Enterococcus spp. isolated from chicken litter and soil samples collected before and after the soil amendment were characterised, using whole-genome sequencing and bioinformatics tools. Nineteen Enterococcus spp. isolates from the three sources were sequenced on Illumina Miseq platform to ascertain the isolates' resistome, mobilome, virulome, clonality, and phylogenomic relationships. Multilocus sequence typing (MLST) analysis revealed eight novel sequence types (STs) (ST1700, ST1752, ST1753, ST1754, ST1755, ST1756, ST1004, and ST1006). The isolates harboured multiple resistance genes including those conferring resistance to inter alia macrolides-lincosamide-streptogramin (erm(B), lnu(B), lnu(G), lsaA, lsaE, eat(A), msr(C)), tetracycline (tet(M), tet(L), tet(S)), aminoglycosides (aac(6')-Ii, aac(6')-Iih, ant(6)-Ia, aph(3')-III, ant(9)-Ia), fluoroquinolones (efmA, and emeA), vancomycin (VanC {VanC-2, VanXY, VanXYC-3, VanXYC-4, VanRC}), and chloramphenicol (cat). The litter-amended soil harboured new ARB (particularly E. faecium) and ARGs (ant(6)-Ia, aac(6')-Ii, aph(3')-III), lnu(G), msr(C), and eat(A), efmA) that were not previously detected in the soil. The identified ARGs were associated with diverse mobile genetic elements (MGEs) such as insertion sequences (IS6, ISL3, IS256, IS30), transposons (Tn3 and Tn916) and plasmids (repUS43, repUS1, rep9b, and rep 22). Twenty-eight virulence genes encoding adherence/biofilm formation (ebpA, ebpB, ebpC), antiphagocytosis (elrA) and bacterial sex pheromones (Ccf10, cOB1, cad, and camE), were detected in the genomes of the isolates. Phylogenomic analysis revealed a close relationship between a few isolates from litter-amended soil and the chicken litter isolates. The differences in the ARG and ARB profiles in the soil before and after the litter amendment and their association with diverse MGEs indicate the mobilisation and transmission of ARGs and ARB from the litter to the soil.
Collapse
Affiliation(s)
- Dorcas Oladayo Fatoba
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa.
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Abia Luther King Akebe
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Howe AC, Soupir ML. Antimicrobial resistance in integrated agroecosystems: State of the science and future opportunities. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1255-1265. [PMID: 34528726 DOI: 10.1002/jeq2.20289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
As the Journal of Environmental Quality (JEQ) celebrates 50 years of publication, the division of environmental microbiology is one of the newest additions to the journal. During this time, significant advances in understanding of the interconnected microbial community and impact of the microbiome on natural and designed environmental systems have occurred. In this review, we highlight the intractable challenge of antimicrobial resistance (AMR) on humans, animals, and the environment, with particular emphasis on the role of integrated agroecosystems and by highlighting contributions published in JEQ. From early studies of phenotypic resistance of indicator organisms in waters systems to current calls for integrating AMR assessment across "One Health," publications in JEQ have advanced our understanding of AMR. As we reflect on the state of the science, we emphasize future opportunities. First, integration of phenotypic and molecular tools for assessing environmental spread of AMR and human health risk continues to be an urgent research need for a one health approach to AMR. Second, monitoring AMR levels in manure is recommended to understand inputs and potential spread through agroecosystems. Third, baseline knowledge of AMR levels is important to realize the impact of manure inputs on water quality and public health risk; this can be achieved through background monitoring or identifying the source-related genes or organisms. And finally, conservation practices designed to meet nutrient reduction goals should be explored for AMR reduction potential.
Collapse
Affiliation(s)
- Adina C Howe
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| | - Michelle L Soupir
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|
14
|
Shafranskaya D, Chori A, Korobeynikov A. Graph-Based Approaches Significantly Improve the Recovery of Antibiotic Resistance Genes From Complex Metagenomic Datasets. Front Microbiol 2021; 12:714836. [PMID: 34690959 PMCID: PMC8528159 DOI: 10.3389/fmicb.2021.714836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
The lack of control over the usage of antibiotics leads to propagation of the microbial strains that are resistant to many antimicrobial substances. This situation is an emerging threat to public health and therefore the development of approaches to infer the presence of resistant strains is a topic of high importance. The resistome construction of an isolate microbial species could be considered a solved task with many state-of-the-art tools available. However, when it comes to the analysis of the resistome of a microbial community (metagenome), then there exist many challenges that influence the accuracy and precision of the predictions. For example, the prediction sensitivity of the existing tools suffer from the fragmented metagenomic assemblies due to interspecies repeats: usually it is impossible to recover conservative parts of antibiotic resistance genes that belong to different species that occur due to e.g., horizontal gene transfer or residing on a plasmid. The recent advances in development of new graph-based methods open a way to recover gene sequences of interest directly from the assembly graph without relying on cumbersome and incomplete metagenomic assembly. We present GraphAMR—a novel computational pipeline for recovery and identification of antibiotic resistance genes from fragmented metagenomic assemblies. The pipeline involves the alignment of profile hidden Markov models of target genes directly to the assembly graph of a metagenome with further dereplication and annotation of the results using state-of-the art tools. We show significant improvement of the quality of the results obtained (both in terms of accuracy and completeness) as compared to the analysis of an output of ordinary metagenomic assembly as well as different read mapping approaches. The pipeline is freely available from https://github.com/ablab/graphamr.
Collapse
Affiliation(s)
- Daria Shafranskaya
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, Sochi, Russia.,Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Chori
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia.,ITMO University, Saint Petersburg, Russia
| | - Anton Korobeynikov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, Sochi, Russia.,Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
15
|
Alt LM, Iverson AN, Soupir ML, Moorman TB, Howe A. Antibiotic resistance gene dissipation in soil microcosms amended with antibiotics and swine manure. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:911-922. [PMID: 33982299 DOI: 10.1002/jeq2.20240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The use of antibiotics in animal agriculture has exacerbated the presence of both antibiotic resistance genes (ARGs) and residual antibiotics excreted in animal manure. Field application of this manure is a common practice because its nutrient rich material can benefit crop growth. However, this practice can also introduce antibiotics and ARGs into nonagricultural settings. The integration of prairie buffer strips within and at the edge of crop fields is a potential management solution to reduce concentrations of ARGs commonly transported via water runoff and infiltration. An incubation experiment was conducted to investigate the fate of ARGs in directly manured crop field soils and the surrounding affected prairie strip soils. Row crop and prairie strip soils sampled from three sites received either an antibiotic spike and swine manure addition or a control water addition. The concentrations of select ARGs were then monitored over a 72-d period. Although soil vegetation and site location were not observed to influence ARG dissipation, the select genes did display different half-lives from one another. For example, tetM demonstrated the fastest dissipation of the genes quantified (average half-life, 5.18 d). Conversely, sul1 did not conform to the first-order linear regression kinetics used to describe the other investigated genes and was highly abundant in control prairie strip soils. The quantified half-lives of these select ARGs are comparable to previous studies and can inform monitoring and mitigative efforts aimed at reducing the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Laura M Alt
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| | - Alyssa N Iverson
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| | - Michelle L Soupir
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| | - Thomas B Moorman
- National Lab. for Agriculture and the Environment, USDA-ARS, 1015 N University Blvd., Ames, IA, 50011, USA
| | - Adina Howe
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| |
Collapse
|
16
|
Sukhum KV, Vargas RC, Boolchandani M, D'Souza AW, Patel S, Kesaraju A, Walljasper G, Hegde H, Ye Z, Valenzuela RK, Gunderson P, Bendixsen C, Dantas G, Shukla SK. Manure Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from Those in Fertilized Field Soil. mBio 2021; 12:e00798-21. [PMID: 33975936 PMCID: PMC8262906 DOI: 10.1128/mbio.00798-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
In agricultural settings, microbes and antimicrobial resistance genes (ARGs) have the potential to be transferred across diverse environments and ecosystems. The consequences of these microbial transfers are unclear and understudied. On dairy farms, the storage of cow manure in manure pits and subsequent application to field soil as a fertilizer may facilitate the spread of the mammalian gut microbiome and its associated ARGs to the environment. To determine the extent of both taxonomic and resistance similarity during these transitions, we collected fresh manure, manure from pits, and field soil across 15 different dairy farms for three consecutive seasons. We used a combination of shotgun metagenomic sequencing and functional metagenomics to quantitatively interrogate taxonomic and ARG compositional variation on farms. We found that as the microbiome transitions from fresh dairy cow manure to manure pits, microbial taxonomic compositions and resistance profiles experience distinct restructuring, including decreases in alpha diversity and shifts in specific ARG abundances that potentially correspond to fresh manure going from a gut-structured community to an environment-structured community. Further, we did not find evidence of shared microbial community or a transfer of ARGs between manure and field soil microbiomes. Our results suggest that fresh manure experiences a compositional change in manure pits during storage and that the storage of manure in manure pits does not result in a depletion of ARGs. We did not find evidence of taxonomic or ARG restructuring of soil microbiota with the application of manure to field soils, as soil communities remained resilient to manure-induced perturbation.IMPORTANCE The addition of dairy cow manure-stored in manure pits-to field soil has the potential to introduce not only organic nutrients but also mammalian microbial communities and antimicrobial resistance genes (ARGs) to soil communities. Using shotgun sequencing paired with functional metagenomics, we showed that microbial community composition changed between fresh manure and manure pit samples with a decrease in gut-associated pathobionts, while ARG abundance and diversity remained high. However, field soil communities were distinct from those in manure in both microbial taxonomic and ARG composition. These results broaden our understanding of the transfer of microbial communities in agricultural settings and suggest that field soil microbial communities are resilient against the deposition of ARGs or microbial communities from manure.
Collapse
Affiliation(s)
- Kimberley V Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Akhil Kesaraju
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gretchen Walljasper
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Harshad Hegde
- Center for Oral Systemic Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Zhan Ye
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert K Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Paul Gunderson
- Lake Region State College, Devils Lake, North Dakota, USA
| | - Casper Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
- Computation and Informatics in Biology Program, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Wind L, Krometis LA, Hession WC, Pruden A. Cross-comparison of methods for quantifying antibiotic resistance in agricultural soils amended with dairy manure and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144321. [PMID: 33477102 DOI: 10.1016/j.scitotenv.2020.144321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Agricultural soils are often amended with livestock manure, making them a key reservoir of antibiotic resistance genes (ARGs). Given that soils are among the most microbially-diverse environments on the planet; effective characterization and quantification of the effects of manure-derived amendments on soil resistomes is a major challenge. This study examined the effects of dairy manure-derived amendments on agricultural soils via two strategies: quantification of anthropogenic ARG markers via qPCR and shotgun metagenomic resistome profiling; and these strategies were compared to a previously published antibiotic resistant fecal coliform dataset. Soil samples were collected throughout a 120 day complete block field experiment to compare the effects of amendment type on antibiotic resistance. Results of all three measurements were consistent with the hypothesis that the application of composted manure reduced antibiotic resistance in soil relative to the application of raw manure, although some differences were noted in comparing the patterns of the three measurements with time. Raw dairy manure-amended soils yielded high sul1 and tet(W) relative abundances on Day 0 (following amendment application), but significantly decreased to background levels by Day 67 (harvest) and Day 120 (study completion). Shotgun metagenomics similarly detected a decrease in the relative abundances of sulfonamide and tetracycline-associated ARGs over time in the raw manure- and compost-amended soils; however, these levels were significantly lower than those estimated by qPCR. Interestingly, although patterns of sulfonamide and tetracycline resistance among culturable fecal coliforms echoed those observed via qPCR and metagenomics; erythromycin resistant coliforms were directly recovered by culture in amended soils, but corresponding ARGs were not detected by qPCR or metagenomics. This study supports both composting and time restrictions as means of reducing the potential for antibiotic resistance in manure to spread via soil application. Results suggest some differences in finer conclusions drawn depending on which antibiotic resistance monitoring target is selected.
Collapse
Affiliation(s)
- Lauren Wind
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA.
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, 1145 Perry St, Durham Hall RM 403, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Congilosi JL, Aga DS. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123634. [PMID: 33153790 DOI: 10.1016/j.jhazmat.2020.123634] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
While manure has been used as nutrient-rich fertilizer for centuries, anaerobic digestion (AD) of manure has only been recognized recently as a promising renewable energy source for producing methane-rich biogas. Various forms of AD have been evaluated for the removal of manure contaminants, such as antimicrobials, antimicrobial resistance genes (ARGs), hormones, and pesticides that pose risks to human health and the environment. Increasing demand for cleaner energy prompts examination of the fate of manure contaminants in conventional and advanced AD techniques. This review reveals that removal of contaminants differs based on type (e.g. antimicrobials vs hormones) or class (e.g. tetracyclines vs sulfonamides) of chemicals being treated. Increasingly, pre-treatment techniques are incorporated into AD systems to enhance biogas production and degrade manure contaminants. For instance, activated carbon with microwave pretreatment removed 87-95% of ARGs. Advanced anaerobic digestion and solid-state anaerobic digestion reduced various ARGs associated with sulfonamides, macrolides, and tetracyclines. Further, total hormone reduction improved using high-temperature pretreatment prior to mesophilic AD. Finally, several studies revealed partial removal of antimicrobials and ARGs during managed composting. Although AD can independently decrease manure contaminants prior to use as fertilizer, augmenting AD with composting and other physical treatment processes can further enhance their removal.
Collapse
Affiliation(s)
- Jena L Congilosi
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
19
|
Abstract
Antimicrobial resistance (AMR) has emerged as an obstacle in the supple administration of antimicrobial agents to critical diarrheal patients. Most diarrheal pathogens have developed resistance against the major classes of antibiotics commonly used for assuaging diarrheal symptoms. Antimicrobial resistance develops when pathogens acquire antimicrobial resistance genes (ARGs) through genetic recombination from commensals and pathogens. These are the constituents of the complex microbiota in all ecological niches. The recombination events may occur in the environment or in the gut. Containment of AMR can be achieved through a complete understanding of the complex and diverse structure and function of the microbiota. Its taxonomic entities serve as focal points for the dissemination of antimicrobial resistance genetic determinants. Molecular methods complemented with culture-based diagnostics have been historically implemented to document these natural events. However, the advent of next-generation sequencing has revolutionized the field of molecular epidemiology. It has revolutionized the method of addressing relevant problems like diagnosis and surveillance of infectious diseases and the issue of antimicrobial resistance. Metagenomics is one such next-generation technique that has proved to be a monumental advancement in the area of molecular taxonomy. Current understanding of structure, function and dysbiosis of microbiota associated with antimicrobial resistance was realized due to its conception. This review describes the major milestones achieved due to the advent and implementation of this new technique in the context of antimicrobial resistance. These achievements span a wide panorama from the discovery of novel microorganisms to invention of translational value.
Collapse
|