1
|
Kalaninova Z, Dvorak J, Dresler J, Volny M, Novak P, Pompach P. Novel activity assay for botulotoxin A1 detection using functionalized chips and matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics 2025; 22:177-184. [PMID: 40105041 DOI: 10.1080/14789450.2025.2482933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Botulinum neurotoxins (BoNTs) are a group of neurotoxins produced by Clostridium bacteria. Their effect on neuro-muscular connections through cleaving proteins of the SNARE complex results in blocking acetylcholine signal transduction. The FDA-approved mouse bioassay, which involves exposing live mice to potentially contaminated food, is the most widely used method. However, this assay is costly, time-consuming, and raises ethical concerns. Therefore, there is a need for alternative assays that can enzymatically measure the activity of BoNTs. RESEARCH DESIGN AND METHODS We present an approach that combines the EndoPep-MS assay with protein affinity chips fabricated using ion soft-landing technology. Toxic activity is indirectly assessed by monitoring the N- and C-terminal fragments of the substrate peptide. This new method employs a protein array with affinity molecules targeting either the BoNT/A1 or the substrate peptide. Both variants enable in-situ reaction and detection of substrate peptides via MALDI-ToF MS on the protein chip. RESULTS This method demonstrated successful detection of active BoNT/A1 in both buffer and complex matrices, achieving a detection limit of 0.5 ng/mL. CONCLUSIONS This study reports the in-situ detection of botulotoxin A1 using functionalized MALDI chips. The advantages of the MALDI chip technology include speed, robustness, cost-effectiveness, and possible automatization.
Collapse
Affiliation(s)
- Zuzana Kalaninova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Josef Dvorak
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiri Dresler
- Department of Microbiology and Biological Defense Research, Military Health Institute, Prague, Czech Republic
| | - Michael Volny
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Petr Novak
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Biotechnology, The Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
2
|
Prygiel M, Mosiej E, Wdowiak K, Zasada AA. Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines 2024; 12:2920. [PMID: 39767826 PMCID: PMC11673946 DOI: 10.3390/biomedicines12122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus. A significant reduction in mortality following the introduction of antitoxins confirmed their efficacy. Serum therapy remains an important measure for post-exposure prophylaxis and for the treatment of unvaccinated or incompletely vaccinated patients. For the botulinum toxin, antitoxin therapy continues to be the sole available treatment. The manuscript contains a summary of the most important information on the passive immunoprophylaxis used in the treatment of diphtheria, tetanus, and botulism, all representing diseases in which symptoms are driven by the activity of highly potent bacterial toxins.
Collapse
Affiliation(s)
- Marta Prygiel
- National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (E.M.); (K.W.); (A.A.Z.)
| | | | | | | |
Collapse
|
3
|
Sadeghian Z, Torkaman Asadi F. Clinicopathological insights into an outbreak of foodborne botulism in Hamadan, Iran, in 2023: A microbiological and laboratory findings. SAGE Open Med 2023; 11:20503121231218888. [PMID: 38144879 PMCID: PMC10748627 DOI: 10.1177/20503121231218888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/18/2023] [Indexed: 12/26/2023] Open
Abstract
Background and Objective Foodborne botulism is one of the potentially fatal forms of food poisoning, usually caused by ingestion of home-canned vegetables, fruits, and dairy and fish products. This study aimed to assess the frequency of signs and symptoms in patients with botulism following the ingestion of homemade Doogh, a traditional milk-based beverage, in Hamadan, Iran in 2023. We also examined the general characteristics of the recruited patients. Methods During an outbreak, 21 patients were referred to the hospital because of food poisoning. All patients had a history of consumption of Doogh. After careful physical examination, all of them were hospitalized. Botulism was suspected in all patients except for the first patient. Results The mean age of admitted patients was 33.09 ± 18.44 years, with 23.80% being males and 76.20% females. Incubation period in our patients was 68 ± 28.48 h. Notable symptoms included diplopia (95.23%), nausea and vomiting (85.71%), blurred vision (80.95%), and dizziness (61.90%). The laboratory results were within the normal range. No deaths occurred in this patient cohort. Furthermore, botulinum spores were detected in Doogh samples collected from the outbreak, confirming the presence of Clostridium botulinum spores as a source of the outbreak. Conclusions This study highlights that the initial manifestations of botulism predominantly involved ophthalmologic abnormalities in most patients. Additionally, symptoms such as nausea, vomiting, and dizziness may manifest in cases of foodborne botulism. Timely diagnosis and treatment of botulism following the consumption of homemade Doogh played a crucial role in achieving positive outcomes, with no fatalities recorded in this patient cohort.
Collapse
Affiliation(s)
- Zohre Sadeghian
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Torkaman Asadi
- Infectious Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Departman of Infectious Diseases, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
5
|
Smith TJ, Schill KM, Williamson CHD. Navigating the Complexities Involving the Identification of Botulinum Neurotoxins (BoNTs) and the Taxonomy of BoNT-Producing Clostridia. Toxins (Basel) 2023; 15:545. [PMID: 37755971 PMCID: PMC10535752 DOI: 10.3390/toxins15090545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins are a varied group of protein toxins that share similar structures and modes of activity. They include at least seven serotypes and over forty subtypes that are produced by seven different clostridial species. These bacterial species are not limited strictly to BoNT-producers as neuro-toxigenic and non-neuro-toxigenic members have been identified within each species. The nomenclature surrounding these toxins and associated bacteria has been evolving as new isolations and discoveries have arisen, resulting in challenges in diagnostic reporting, epidemiology and food safety studies, and in the application of therapeutic products. An understanding of the intricacies regarding the nomenclature of BoNTs and BoNT-producing clostridia is crucial for communication that allows for accurate reporting of information that is pertinent to each situation.
Collapse
Affiliation(s)
- Theresa J. Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Kristin M. Schill
- Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
6
|
Shi DY, Lu JS, Mao YY, Liu FJ, Wang R, Du P, Yu S, Yu YZ, Yang ZX. Characterization of a novel tetravalent botulism antitoxin based on receptor-binding domain of BoNTs. Appl Microbiol Biotechnol 2023; 107:3205-3216. [PMID: 37058230 PMCID: PMC10102682 DOI: 10.1007/s00253-023-12515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Botulinum neurotoxin (BoNTs; serotypes A, B, E, and F) cause botulism disease in humans, which could be effectively treated using antitoxins. Herein, we established a novel receptor-binding domain (RBD)-based antitoxin using recombinant C terminal heavy chain (Hc) domains of BoNTs as immunogens. Immunization of horses with these recombinant Hc domains allowed the purification and digestion of IgGs from hyper-immune sera to produce high-quality and high-efficiency monovalent botulism antitoxin F(ab')2 against each BoNT (M-BATs). However, these M-BATs could not bind or neutralize other serotypes of BoNTs, and that there were no cross-protective effects among these M-BATs. This suggested the need to prepare tetravalent antitoxins to neutralize the four BoNTs simultaneously. Thus, these M-BATs were formulated into a novel tetravalent botulism antitoxin (T-BAT), in which a 10-ml volume contained 10000 IU of BoNT/A and 5000 IU of BoNT/B, BoNT/E, and BoNT/F antitoxins. The novel antitoxin preparation could prevent and treat the four mixed botulinum neurotoxins simultaneously in vivo, representing strong efficacy in an animal poisoning model. Moreover, these antibodies in T-BAT could bind the RBD, whereas conventional antitoxins based on inactivated toxins mainly bind the light chain or heavy chain translocation domain (HN) and weakly bind the important RBD in current experimental conditions. The high levels of RBD-specific novel antitoxins can efficiently bind the RBD and neutralize natural or recombinant toxins containing this RBD. The findings of the present study experimentally support the use of RBD-specific antitoxins to treat BoNT serotype A, B, E, and F-mediated botulism. This study demonstrated the concept of developing potent novel multivalent antitoxins against all BoNTs or other toxins, using the RBD of these toxins as an alternative antigen to inactivated toxins. KEY POINTS: • Antitoxins based on the receptor-binding domains of botulinum neurotoxins were made. • Novel antitoxin binds RBD; traditional antitoxin mainly binds light chain or HN domain. • A tetravalent antitoxin could prevent and treat the four mixed neurotoxins in vivo.
Collapse
Affiliation(s)
- Dan-Yang Shi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Jian-Sheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yun-Yun Mao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Fu-Jia Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shuo Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yun-Zhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Zhi-Xin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
7
|
Wang J, Wu Y, Luo D, Zhuang C, Ning N, Zhang Y, He Z, Gao J, Hong Z, Xv X, Zhang W, Li T, Miao Z, Wang H. Discovery of a Potent Botulinum Neurotoxin A Inhibitor
ZM299
with Effective Protections in Botulism Mice. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Yuelin Wu
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Chunlin Zhuang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Yanming Zhang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Jie Gao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Zhanying Hong
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Xiguo Xv
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Wannian Zhang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Zhenyuan Miao
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| |
Collapse
|
8
|
Ghitani SA, Ghanem MA, Sultan EA, Atef M, Henaidy MF. Outbreak of foodborne botulism in Alexandria, Egypt: modulating indications for administration of heptavalent botulinum antitoxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61547-61553. [PMID: 34184216 DOI: 10.1007/s11356-021-14909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
In October 2019, ninety-four patients were admitted into Alexandria Poison Center (APC) with a history of ingestion of Feseekh (salted fish). In an attempt to allocate the resources, not all patients were given HBAT (botulism antitoxin heptavalent (A, B, C, D, E, F, G) equine immediately. The current study aimed to portray the clinical characteristics of the cases, explore the possible relation between these characteristics and necessity of HBAT administration, explore the reliability of mouse lethal test, and establish a clinical guide for management including preservation of resources. The current prospective study included 94 patients who were admitted to Alexandria Poison Center (APC) in the period from the 29th of September to the 27th of October 2019. The patients' data were recorded using a checklist that includes: personal data, past medical history, clinical assessment, investigations, treatment, and the outcome. The checklist was carried out to assess and follow up each patient. Hospitalized patients were categorized according to symptoms consistent with botulism. The equine HBAT, made by Emergent BioSolutions Canada Inc. (formerly Cangene Corporation), was used in the treatment. HBAT was given to thirty-four patients (36.2%) only out of the total admission. However, eighty-two (87.2%) of patients were completely cured, whereas ten patients (10.6%) were discharged with mild neurological sequels and death occurred only in two cases (2.2%). Sixty cases (63.8%) with suspected foodborne botulism could be managed by supportive treatment only with no need for HBAT, while patients with evident neurological signs received HBAT immediately.
Collapse
Affiliation(s)
- Sara A Ghitani
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha A Ghanem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A Sultan
- Department of Community Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maram Atef
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Maii F Henaidy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Neutralizing Concentrations of Anti-Botulinum Toxin Antibodies Positively Correlate with Mouse Neutralization Assay Results in a Guinea Pig Model. Toxins (Basel) 2021; 13:toxins13090671. [PMID: 34564675 PMCID: PMC8471557 DOI: 10.3390/toxins13090671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known and can induce respiratory failure requiring long-term intensive care. Treatment of botulism includes the administration of antitoxins. Monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics, due to their potency and safety. A three-mAb combination has been developed that specifically neutralizes BoNT serotype A (BoNT/A), and a separate three mAb combination has been developed that specifically neutralizes BoNT serotype B (BoNT/B). A six mAb cocktail, designated G03-52-01, has been developed that combines the anti-BoNT/A and anti-BoNT/B mAbs. The pharmacokinetics and neutralizing antibody concentration (NAC) of G03-52-01 has been determined in guinea pigs, and these parameters were correlated with protection against an inhalation challenge of BoNT/A1 or BoNT/B1. Previously, it was shown that each antibody demonstrated a dose-dependent mAb serum concentration and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intraperitoneal (IP) injection and that a single IM injection of G03-52-01 administered 48 h pre-exposure protected guinea pigs against an inhalation challenge of up to 93 LD50s of BoNT/A1 and 116 LD50s of BoNT/B1. The data presented here advance our understanding of the relationship of the neutralizing NAC to the measured circulating antibody concentration and provide additional support that a single IM or intravenous (IV) administration of G03-52-01 will provide pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A and BoNT/B.
Collapse
|
10
|
A Novel Running Wheel Mouse Model for Botulism and Its Use for the Evaluation of Postsymptom Antitoxin Efficacy. Antimicrob Agents Chemother 2021; 65:e0042121. [PMID: 33972251 DOI: 10.1128/aac.00421-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antitoxin is currently the only approved therapy for botulinum intoxications. The efficacy of antitoxin preparations is evaluated in animals. However, while in practice antitoxin is administered to patients only after symptom onset, in most animal studies, it is tested in relation to time postintoxication. This may be attributed to difficulties in quantitating early botulism symptoms in animals. In the current study, a novel system based on high-resolution monitoring of mouse activity on a running wheel was developed to allow evaluation of postsymptom antitoxin efficacy. The system enables automatic and remote monitoring of 48 mice simultaneously. Based on the nocturnal activity patterns of individual naive mice, two criteria were defined as the onset of symptoms. Postsymptom treatment with a human-normalized dose of antitoxin was fully protective in mice exposed to 4 50% lethal doses (LD50s) of botulinum neurotoxin serotype A (BoNT/A) and BoNT/B. Moreover, for the first time, a high protection rate was obtained in mice treated postsymptomatically, following a challenge with BoNT/E, the fastest-acting BoNT. The running wheel system was further modified to develop a mouse model for the evaluation of next-generation therapeutics for progressive botulism at time points where antitoxin is not effective. Exposure of mice to 0.3 LD50 of BoNT/A resulted in long-lasting paralysis and a reduction in running activity for 16 to 18 days. Antitoxin treatment was no longer effective when administered 72 h postintoxication, defining the time window to evaluate next-generation therapeutics. Altogether, the running wheel systems presented herein offer quantitative means to evaluate the efficacy of current and future antibotulinum drugs.
Collapse
|
11
|
Steinman MQ, Kirson D, Wolfe SA, Khom S, D'Ambrosio SR, Spierling Bagsic SR, Bajo M, Vlkolinský R, Hoang NK, Singhal A, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Importance of sex and trauma context on circulating cytokines and amygdalar GABAergic signaling in a comorbid model of posttraumatic stress and alcohol use disorders. Mol Psychiatry 2021; 26:3093-3107. [PMID: 33087855 PMCID: PMC8058115 DOI: 10.1038/s41380-020-00920-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based "2-hit" rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarah A Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shannon R D'Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roman Vlkolinský
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Noah K Hoang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anshita Singhal
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Christopher S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
McNutt PM, Vazquez-Cintron EJ, Tenezaca L, Ondeck CA, Kelly KE, Mangkhalakhili M, Machamer JB, Angeles CA, Glotfelty EJ, Cika J, Benjumea CH, Whitfield JT, Band PA, Shoemaker CB, Ichtchenko K. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci Transl Med 2021; 13:eabd7789. [PMID: 33408188 PMCID: PMC8176400 DOI: 10.1126/scitranslmed.abd7789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/02/2022]
Abstract
Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Edwin J Vazquez-Cintron
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- City College of City University of New York, NY 10031, USA
| | - Luis Tenezaca
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle E Kelly
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Mangkhalakhili
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - James B Machamer
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Christopher A Angeles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elliot J Glotfelty
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Cesar H Benjumea
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Philip A Band
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- Department of Orthopaedic Surgery, New York University Langone Orthopedic Hospital, New York, NY 10016, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
13
|
Raza N, Dhital S, Espinoza VE, Jariwal R, Chiu CW, Valdez M, Heidari A, Petersen G, Sabetian K. Wound Botulism in Black Tar Heroin Injecting Users: A Case Series. J Investig Med High Impact Case Rep 2021; 9:23247096211028078. [PMID: 34259080 PMCID: PMC8283217 DOI: 10.1177/23247096211028078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
The incidence of wound botulism in injection drug users has increased since the introduction of black tar heroin. Many species of the Clostridium genus, most commonly Clostridium botulinum, Clostridium baratii, and Clostridium butyricum, have been associated with wound botulism. Patients often present with progressive bulbar weakness, including dysphagia, cranial nerve palsies, and loss of speech, in addition to symmetrical descending weakness of the upper extremities that may progress to the chest and lower extremities. In this article, we present 3 cases of wound botulism, in which the patients presented with bulbar weakness and were treated with botulism antitoxin heptavalent. The time to antitoxin administration and its effect on the patients' clinical courses is compared.
Collapse
Affiliation(s)
- Nadia Raza
- UCLA at Kern Medical Center, Bakersfield, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|