1
|
Shrivastav SR, DeVol CR, Landrum VM, Bjornson KF, Roge D, Steele KM, Moritz CT. Transcutaneous Spinal Stimulation and Short-Burst Interval Treadmill Training in Children With Cerebral Palsy: A Pilot Study. IEEE Trans Biomed Eng 2025; 72:1775-1784. [PMID: 40030608 DOI: 10.1109/tbme.2024.3522317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE The purpose of this pilot study was to evaluate the effects of transcutaneous spinal cord stimulation (tSCS) and short-burst interval locomotor treadmill training (SBLTT) on spasticity and mobility in children with cerebral palsy (CP). METHODS We employed a single-arm design with two interventions: SBLTT only, and tSCS + SBLTT, in four children with CP. Children received 24-sessions each of SBLTT only and tSCS + SBLTT. Spasticity, neuromuscular coordination, and walking function were evaluated before, immediately after, and 8-weeks following each intervention. RESULTS Spasticity, measured via the Modified Ashworth Scale (MAS), reduced in four lower-extremity muscles after tSCS + SBLTT (1.40 ± 0.22), more than following SBLTT only (0.43 ± 0.39). One-minute walk test (1-MWT) distance was maintained during both interventions. tSCS + SBLTT led to improvements in peak hip and knee extension (4.9 ± 7.3° and 6.5 ± 7.7°), that drove increases in joint dynamic range of 4.3 ± 2.4° and 3.8 ± 8.7° at the hip and knee, respectively. Children and parents reported reduction in fatigue and improved gait outcomes after tSCS + SBLTT. Improvements in spasticity and walking function were sustained for 8-weeks after tSCS + SBLTT. CONCLUSION These preliminary results suggest that tSCS + SBLTT may improve spasticity while simultaneously maintaining neuromuscular coordination and walking function in ambulatory children with CP. SIGNIFICANCE This work provides preliminary evidence on the effects of tSCS and the combination of tSCS + SBLTT in children with CP.
Collapse
|
2
|
Kim H, Soedirdjo S, Chung YC, Gray K, Fernandes SR, Dhaher YY. Grid-based transcutaneous spinal cord stimulation: probing neuromodulatory effect in spinal flexion reflex circuits. J Neural Eng 2025; 22:026046. [PMID: 40153866 PMCID: PMC11974257 DOI: 10.1088/1741-2552/adc6bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/04/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Objective.Non-invasive spinal stimulation has the potential to modulate spinal excitability. This study explored the modulatory capacity of sub-motor grid-based transcutaneous spinal cord stimulation (tSCS) applied to the lumbar spinal cord in neurologically intact participants. Our objective was to examine the effect of grid spinal stimulation on polysynaptic reflex pathways involving motoneurons and interneurons likely activated by Aβ/δfiber-mediated cutaneous afferents.Approach.Stimulation was delivered using two grid electrode montages, generating a net electric field in transverse or diagonal directions. We administered tSCS with the center of the grid aligned with the T10-T11 spinous process. Participants were seated for the 20 min stimulation duration. At 30 min after the cessation of spinal stimulation, we examined neuromodulatory effects on spinal circuit excitability in the tibialis anterior muscle by employing the classical flexion reflex paradigms. Additionally, we evaluated spinal motoneuron excitability using theH-reflex paradigm in the soleus muscle to explore the differential effects of tSCS on the polysynaptic versus monosynaptic reflex pathway and to test the spatial extent of the grid stimulation.Main results.Our findings indicated significant neuromodulatory effects on the flexion reflex, resulting in a net inhibitory effect, regardless of the grid electrode montages. Our data further indicated that the flexion reflex duration was significantly shortened only by the diagonal montage.Significance.Our results suggest that grid-based tSCS may specifically modulate spinal activities associated with polysynaptic flexion reflex pathways, with the potential for grid-specific targeted neuromodulation.
Collapse
Affiliation(s)
- Hyungtaek Kim
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
- Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States of America
| | - Subaryani Soedirdjo
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Kathryn Gray
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Sofia Rita Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
- Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States of America
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| |
Collapse
|
3
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing transcutaneous spinal stimulation: excitability of evoked spinal reflexes is dependent on electrode montage. J Neuroeng Rehabil 2025; 22:2. [PMID: 39762915 PMCID: PMC11702053 DOI: 10.1186/s12984-024-01524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. METHODS Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5 cm caudal (DM-C), and [6] cathode over T11/12, anode 5 cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. RESULTS Lower reflex thresholds (mA) for dominant (D) and nondominant (ND) soleus muscles were elicited in DV-U (D: 46.7[33.9, 59.4], ND: 45.4[32.5, 58.2]) and DV-I (D: 48.1[35.3, 60.8], ND: 45.4[32.5, 58.2]) montages compared to DV-PU (D: 64.3[51.4, 77.1], ND:61.7[48.8, 74.6]), DV-PI (D:64.9[52.1, 77.7], ND:61.4[48.5, 75.5]), DM-C(D:60.0[46.9, 73.1], ND:63.6[50.8, 76.5]), and DM-R(D:63.1[50.3, 76.0], ND:62.6[49.8, 75.5]). DV-U and DV-I montages demonstrated larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. CONCLUSIONS Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments. CLINICAL TRIAL NUMBER NCT04243044.
Collapse
Affiliation(s)
- Kelly Lynn Thatcher
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
| | - Karen Emily Nielsen
- Department of Population Health Sciences, Georgia State University, 140 Decatur Street, Atlanta, GA, USA
| | - Evan Blake Sandler
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA
| | - Oliver John Daliet
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Jennifer Ann Iddings
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Edelle Carmen Field-Fote
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA.
- Department of Physical Therapy, Emory University, 1462 Clifton Road NE, Atlanta, GA, USA.
| |
Collapse
|
4
|
Veit NC, Yang C, Aalla S, Kishta A, McKenzie K, Roth EJ, Jayaraman A. Spinal motor evoked responses elicited by transcutaneous spinal cord stimulation in chronic stroke: Correlation between spinal cord excitability, demographic characteristics, and functional outcomes. PLoS One 2024; 19:e0312183. [PMID: 39570841 PMCID: PMC11581260 DOI: 10.1371/journal.pone.0312183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/02/2024] [Indexed: 11/24/2024] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) is becoming a promising neuromodulation technique to promote motor recovery in various neurological conditions, including stroke. As this intervention moves forward into clinical practice, it is important to understand how the elicited neurophysiological measures are related to the functional and neuromuscular deficits of the population of interest in order to personalize tSCS interventions and assess its effectiveness. Specifically, neurophysiological measurements of spinal cord excitability can be achieved by recording with EMG spinal motor evoked responses (sMERs) in muscles after applying single pulses of tSCS to the spinal cord. The objective of this study was to investigate potential correlations between baseline spinal cord excitability, as measured by resting motor threshold (RMT) and peak-to-peak (P2P) amplitude of the sMERs, and various factors including demographic characteristics, severity of spasticity, muscle strength, and gait speed in individuals post-stroke. Additionally, the study sought to explore disparities in excitability between the paretic and non-paretic sides. Fifteen participants with chronic stroke underwent sMER assessments. We observed a strong positive correlation between RMT and body weight, indicating weight as a potential confounding variable when comparing RMTs from sMERs between individuals. Furthermore, paretic muscles exhibited lower RMTs and higher P2P amplitudes compared to non-paretic muscles. The results demonstrate that sMERs hold promise in uncovering disparities in spinal excitability in stroke participants. Furthermore, careful interpretation and analysis of sMERs is advised, particularly as higher RMTs were associated with higher body weight and could impact the clinical feasibility of tSCS for some participants. These results should be considered in future tSCS protocols that aim to develop more personalized interventions across different neurological populations and optimize sMERs' utility as an outcome measure.
Collapse
Affiliation(s)
- Nicole C. Veit
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
| | - Chen Yang
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
| | - Shreya Aalla
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
| | - Ameen Kishta
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
| | - Kelly McKenzie
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
| | - Elliot J. Roth
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States of America
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Guo J, Cao J, Wu J, Gao J. Electrical stimulation and conductive materials: electrophysiology-based treatment for spinal cord injury. Biomater Sci 2024; 12:5704-5721. [PMID: 39403758 DOI: 10.1039/d4bm00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Spinal cord injury is a serious disease of the central nervous system. The electrophysiological properties of the spinal cord that are essential to maintaining neurotransmission can be impaired after the injury. Therefore, electrophysiological evaluation is becoming an important indicator of the injury extent or the therapeutic outcomes by reflecting the potential propagation of neural pathways. On the other hand, the repair of damaged nerves is one of the main goals of spinal cord injury treatment. Growing research interest has been concentrated on developing effective therapeutic solutions to restore the normal electrophysiological function of the injured spinal cord by using conductive materials and/or exerting the merits of electrical stimulation. Accordingly, this review introduces the current common electrophysiological evaluation in spinal cord injury. Then the cutting-edge therapeutic strategies aiming at electrophysiological improvement in spinal cord injury are summarized. Finally, the challenges and future prospects of neural restoration after spinal cord injury are presented.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, China
| |
Collapse
|
6
|
Steele AG, Vette AH, Martin C, Masani K, Sayenko DG. Synergistic effects of transcutaneous spinal stimulation and neuromuscular electrical stimulation on lower limb force production: Time to deliver. PLoS One 2024; 19:e0296613. [PMID: 39213293 PMCID: PMC11364223 DOI: 10.1371/journal.pone.0296613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Transcutaneous spinal stimulation (TSS) and neuromuscular electrical stimulation (NMES) can facilitate self-assisted standing in individuals with paralysis. However, individual variability in responses to each modality may limit their effectiveness in generating the necessary leg extension force for full body weight standing. To address this challenge, we proposed combining TSS and NMES to enhance leg extensor muscle activation, with optimizing timing adjustment to maximize the interaction between the two modalities. METHODS To assess the effects of TSS and NMES on knee extension and plantarflexion force, ten neurologically intact participants underwent three conditions: (1) TSS control, (2) NMES control, and (3) TSS + NMES. TSS was delivered between the T10 and L2 vertebrae, while NMES was delivered to the skin over the right knee extensors and plantarflexors. TSS and NMES were administered using a 15 Hz train of three 0.5 ms biphasic pulses. During the TSS + NMES condition, the timing between modalities was adjusted in increments of ¼ the interval within a 15 Hz frequency, i.e., 66, 49.5, 33, 16.5, and 1 ms. RESULTS NMES combined with TSS, produced synergistic effects even on non-targeted muscle groups, thereby promoting leg extension across multiple joints in the kinematic chain. The sequence of NMES or TSS trains relative to each other did not significantly impact motor output. Notably, a delay of 16.5 to 49.5 ms between interleaved TSS and NMES pulses, each delivered at 15 Hz, results in more robust and synergistic responses in knee extensors and plantarflexors. CONCLUSIONS By adjusting the timing between TSS and NMES, we can optimize the combined use of these modalities for functional restoration. Our findings highlight the potential of integrated TSS and NMES protocols to enhance motor function, suggesting promising avenues for therapeutic applications, particularly in the rehabilitation of individuals with SCI.
Collapse
Affiliation(s)
- Alexander G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Albert H. Vette
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
| | - Catherine Martin
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE Research Institute–University Health Network, Toronto, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| |
Collapse
|
7
|
Dalrymple AN, Fisher LE, Weber DJ. A preliminary study exploring the effects of transcutaneous spinal cord stimulation on spinal excitability and phantom limb pain in people with a transtibial amputation. J Neural Eng 2024; 21:046058. [PMID: 39094627 PMCID: PMC11391861 DOI: 10.1088/1741-2552/ad6a8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
Objective. Phantom limb pain (PLP) is debilitating and affects over 70% of people with lower-limb amputation. Other neuropathic pain conditions correspond with increased spinal excitability, which can be measured using reflexes andF-waves. Spinal cord neuromodulation can be used to reduce neuropathic pain in a variety of conditions and may affect spinal excitability, but has not been extensively used for treating PLP. Here, we propose using a non-invasive neuromodulation method, transcutaneous spinal cord stimulation (tSCS), to reduce PLP and modulate spinal excitability after transtibial amputation.Approach. We recruited three participants, two males (5- and 9-years post-amputation, traumatic and alcohol-induced neuropathy) and one female (3 months post-amputation, diabetic neuropathy) for this 5 d study. We measured pain using the McGill Pain Questionnaire (MPQ), visual analog scale (VAS), and pain pressure threshold (PPT) test. We measured spinal reflex and motoneuron excitability using posterior root-muscle (PRM) reflexes andF-waves, respectively. We delivered tSCS for 30 min d-1for 5 d.Main Results. After 5 d of tSCS, MPQ scores decreased by clinically-meaningful amounts for all participants from 34.0 ± 7.0-18.3 ± 6.8; however, there were no clinically-significant decreases in VAS scores. Two participants had increased PPTs across the residual limb (Day 1: 5.4 ± 1.6 lbf; Day 5: 11.4 ± 1.0 lbf).F-waves had normal latencies but small amplitudes. PRM reflexes had high thresholds (59.5 ± 6.1μC) and low amplitudes, suggesting that in PLP, the spinal cord is hypoexcitable. After 5 d of tSCS, reflex thresholds decreased significantly (38.6 ± 12.2μC;p< 0.001).Significance. These preliminary results in this non-placebo-controlled study suggest that, overall, limb amputation and PLP may be associated with reduced spinal excitability and tSCS can increase spinal excitability and reduce PLP.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
- Department of Physical Medicine & Rehabilitation, University of Utah, Salt Lake City, UT, United States of America
- NERVES Lab, University of Utah, Salt Lake City, UT, United States of America
| | - Lee E Fisher
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
8
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing Transcutaneous Spinal Stimulation: Excitability of Evoked Spinal Reflexes is Dependent on Electrode Montage. RESEARCH SQUARE 2024:rs.3.rs-4719031. [PMID: 39149487 PMCID: PMC11326363 DOI: 10.21203/rs.3.rs-4719031/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. Methods Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5cm caudal (DM-C), and [6] cathode over T11/12, anode 5cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. Results DV-U and DV-I montages elicited bilateral reflexes with lower reflex thresholds and larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. Conclusions Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments.
Collapse
|
9
|
Yildiz N, Cecen S, Sancar N, Karacan I, Knikou M, Türker KS. Postsynaptic potentials of soleus motor neurons produced by transspinal stimulation: a human single-motor unit study. J Neurophysiol 2024; 131:1101-1111. [PMID: 38656134 PMCID: PMC11381115 DOI: 10.1152/jn.00077.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Transspinal (or transcutaneous spinal cord) stimulation is a noninvasive, cost-effective, easily applied method with great potential as a therapeutic modality for recovering somatic and nonsomatic functions in upper motor neuron disorders. However, how transspinal stimulation affects motor neuron depolarization is poorly understood, limiting the development of effective transspinal stimulation protocols for rehabilitation. In this study, we characterized the responses of soleus α motor neurons to single-pulse transspinal stimulation using single-motor unit (SMU) discharges as a proxy given the 1:1 discharge activation between the motor neuron and the motor unit. Peristimulus time histogram, peristimulus frequencygram, and surface electromyography (sEMG) were used to characterize the postsynaptic potentials of soleus motor neurons. Transspinal stimulation produced short-latency excitatory postsynaptic potentials (EPSPs) followed by two distinct phases of inhibitory postsynaptic potentials (IPSPs) in most soleus motor neurons and only IPSPs in others. Transspinal stimulation generated double discharges at short interspike intervals in a few motor units. The short-latency EPSPs were likely mediated by muscle spindle group Ia and II afferents, and the IPSPs via excitation of group Ib afferents and recurrent collaterals of motor neurons leading to activation of diverse spinal inhibitory interneuronal circuits. Further studies are warranted to understand better how transspinal stimulation affects depolarization of α motor neurons over multiple spinal segments. This knowledge will be seminal for developing effective transspinal stimulation protocols in upper motor neuron lesions.NEW & NOTEWORTHY Transspinal stimulation produces distinct actions on soleus motor neurons: an early short-latency excitation followed by two inhibitions or only inhibition and doublets. These results show how transspinal stimulation affects depolarization of soleus α motor neurons in healthy humans.
Collapse
Affiliation(s)
- Nilgün Yildiz
- Faculty of Dentistry & Physiology, Istanbul Gelisim University, Istanbul, Türkiye
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Gelisim University, Istanbul, Türkiye
| | - Serpil Cecen
- Department of Physiology, Hamidiye Medical School, Health Science University, Istanbul, Türkiye
| | - Nuray Sancar
- Faculty of Dentistry & Physiology, Istanbul Gelisim University, Istanbul, Türkiye
| | - Ilhan Karacan
- Hamidiye Medical School, Physical Therapy Research and Education Hospital, Health Science University, Istanbul, Türkiye
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, New York, United States
- Department of Physical Therapy, College of Staten Island, The City University of New York, New York, New York, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, New York, New York, United States
| | - Kemal S Türker
- Faculty of Dentistry & Physiology, Istanbul Gelisim University, Istanbul, Türkiye
| |
Collapse
|
10
|
Malloy DC, Côté MP. Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat. Exp Neurol 2024; 376:114754. [PMID: 38493983 PMCID: PMC11519955 DOI: 10.1016/j.expneurol.2024.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.
Collapse
Affiliation(s)
- Dillon C Malloy
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
11
|
Sayed Ahmad AM, Raphael M, Han JF, Ahmed Y, Moustafa M, Solomon SK, Skiadopoulos A, Knikou M. Soleus H-reflex amplitude modulation during walking remains physiological during transspinal stimulation in humans. Exp Brain Res 2024; 242:1267-1276. [PMID: 38366214 DOI: 10.1007/s00221-024-06779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
The soleus H-reflex modulation pattern was investigated during stepping following transspinal stimulation over the thoracolumbar region at 15, 30, and 50 Hz with 10 kHz carry-over frequency above and below the paresthesia threshold. The soleus H-reflex was elicited by posterior tibial nerve stimulation with a single 1 ms pulse at an intensity that the M-wave amplitudes ranged from 0 to 15% of the maximal M-wave evoked 80 ms after the test stimulus, and the soleus H-reflex was half the size of the maximal H-reflex evoked on the ascending portion of the recruitment curve. During treadmill walking, the soleus H-reflex was elicited every 2 or 3 steps, and stimuli were randomly dispersed across the step cycle which was divided in 16 equal bins. For each subject and condition, the soleus M-wave and H-reflex were normalized to the maximal M-wave. The soleus background electromyographic (EMG) activity was estimated as the linear envelope for 50 ms duration starting at 100 ms before posterior tibial nerve stimulation for each bin. The gain was determined as the slope of the relationship between the soleus H-reflex and the soleus background EMG activity. The soleus H-reflex phase-dependent amplitude modulation remained unaltered during transspinal stimulation, regardless frequency, or intensity. Similarly, the H-reflex slope and intercept remained the same for all transspinal stimulation conditions tested. Locomotor EMG activity was increased in knee extensor muscles during transspinal stimulation at 30 and 50 Hz throughout the step cycle while no effects were observed in flexor muscles. These findings suggest that transspinal stimulation above and below the paresthesia threshold at 15, 30, and 50 Hz does not block or impair spinal integration of proprioceptive inputs and increases activity of thigh muscles that affect both hip and knee joint movement. Transspinal stimulation may serve as a neurorecovery strategy to augment standing or walking ability in upper motoneuron lesions.
Collapse
Affiliation(s)
- Abdullah M Sayed Ahmad
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Meghan Raphael
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Jessy Feng Han
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Yoseph Ahmed
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Mohamed Moustafa
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Shammah K Solomon
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
- PhD Program in Biology and Collaborative Neuroscience Program, DPT Department, Graduate Center of The City University of New York and College of Staten Island, Staten Island, NY, USA.
| |
Collapse
|
12
|
Lieu B, Everaert DG, Ho C, Gorassini MA. Skin and not dorsal root stimulation reduces hypertonus in thoracic motor complete spinal cord injury: a single case report. J Neurophysiol 2024; 131:815-821. [PMID: 38505867 DOI: 10.1152/jn.00436.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
On demand and localized treatment for excessive muscle tone after spinal cord injury (SCI) is currently not available. Here, we examine the reduction in leg hypertonus in a person with mid-thoracic, motor complete SCI using a commercial transcutaneous electrical stimulator (TES) applied at 50 or 150 Hz to the lower back and the possible mechanisms producing this bilateral reduction in leg tone. Hypertonus of knee extensors without and during TES, with both cathode (T11-L2) and anode (L3-L5) placed over the spinal column (midline, MID) or 10 cm to the left of midline (lateral, LAT) to only active underlying skin and muscle afferents, was simultaneously measured in both legs with the pendulum test. Spinal reflexes mediated by proprioceptive (H-reflex) and cutaneomuscular reflex (CMR) afferents were examined in the right leg opposite to the applied LAT TES. Hypertonus disappeared in both legs but only during thoracolumbar TES, and even during LAT TES. The marked reduction in tone was reflected in the greater distance both lower legs first dropped to after being released from a fully extended position, increasing by 172.8% and 94.2% during MID and LAT TES, respectively, compared with without TES. Both MID and LAT (left) TES increased H-reflexes but decreased the first burst, and lengthened the onset of subsequent bursts, in the cutaneomuscular reflex of the right leg. Thoracolumbar TES is a promising method to decrease leg hypertonus in chronic, motor complete SCI without activating spinal cord structures and may work by facilitating proprioceptive inputs that activate excitatory interneurons with bilateral projections that in turn recruit recurrent inhibitory neurons.NEW & NOTEWORTHY We present proof of concept that surface stimulation of the lower back can reduce severe leg hypertonus in a participant with motor complete, thoracic spinal cord injury (SCI) but only during the applied stimulation. We propose that activation of skin and muscle afferents from thoracolumbar transcutaneous electrical stimulation (TES) may recruit excitatory spinal interneurons with bilateral projections that in turn recruit recurrent inhibitory networks to provide on demand suppression of ongoing involuntary motoneuron activity.
Collapse
Affiliation(s)
- Brandon Lieu
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dirk G Everaert
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Kumru H, Ros-Alsina A, García Alén L, Vidal J, Gerasimenko Y, Hernandez A, Wrigth M. Improvement in Motor and Walking Capacity during Multisegmental Transcutaneous Spinal Stimulation in Individuals with Incomplete Spinal Cord Injury. Int J Mol Sci 2024; 25:4480. [PMID: 38674065 PMCID: PMC11050444 DOI: 10.3390/ijms25084480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Transcutaneous multisegmental spinal cord stimulation (tSCS) has shown superior efficacy in modulating spinal locomotor circuits compared to single-site stimulation in individuals with spinal cord injury (SCI). Building on these findings, we hypothesized that administering a single session of tSCS at multiple spinal segments may yield greater enhancements in muscle strength and gait function during stimulation compared to tSCS at only one or two segments. In our study, tSCS was applied at single segments (C5, L1, and Coc1), two segments (C5-L1, C5-Coc1, and L1-Coc1), or multisegments (C5-L1-Coc1) in a randomized order. We evaluated the 6-m walking test (6MWT) and maximum voluntary contraction (MVC) and assessed the Hmax/Mmax ratio during stimulation in ten individuals with incomplete motor SCI. Our findings indicate that multisegmental tSCS improved walking time and reduced spinal cord excitability, as measured by the Hmax/Mmax ratio, similar to some single or two-site tSCS interventions. However, only multisegmental tSCS resulted in increased tibialis anterior (TA) muscle strength. These results suggest that multisegmental tSCS holds promise for enhancing walking capacity, increasing muscle strength, and altering spinal cord excitability in individuals with incomplete SCI.
Collapse
Affiliation(s)
- Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de NeurorehabilitacióAdscrit a la UAB, 08916 Badalona, Spain; (A.R.-A.); (L.G.A.); (J.V.); (A.H.); (M.W.)
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Aina Ros-Alsina
- Fundación Institut Guttmann, Institut Universitari de NeurorehabilitacióAdscrit a la UAB, 08916 Badalona, Spain; (A.R.-A.); (L.G.A.); (J.V.); (A.H.); (M.W.)
| | - Loreto García Alén
- Fundación Institut Guttmann, Institut Universitari de NeurorehabilitacióAdscrit a la UAB, 08916 Badalona, Spain; (A.R.-A.); (L.G.A.); (J.V.); (A.H.); (M.W.)
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Joan Vidal
- Fundación Institut Guttmann, Institut Universitari de NeurorehabilitacióAdscrit a la UAB, 08916 Badalona, Spain; (A.R.-A.); (L.G.A.); (J.V.); (A.H.); (M.W.)
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Yury Gerasimenko
- Pavlov Institute of Physiology, St. Petersburg 199034, Russia;
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | - Agusti Hernandez
- Fundación Institut Guttmann, Institut Universitari de NeurorehabilitacióAdscrit a la UAB, 08916 Badalona, Spain; (A.R.-A.); (L.G.A.); (J.V.); (A.H.); (M.W.)
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mark Wrigth
- Fundación Institut Guttmann, Institut Universitari de NeurorehabilitacióAdscrit a la UAB, 08916 Badalona, Spain; (A.R.-A.); (L.G.A.); (J.V.); (A.H.); (M.W.)
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
14
|
Tajali S, Balbinot G, Pakosh M, Sayenko DG, Zariffa J, Masani K. Modulations in neural pathways excitability post transcutaneous spinal cord stimulation among individuals with spinal cord injury: a systematic review. Front Neurosci 2024; 18:1372222. [PMID: 38591069 PMCID: PMC11000807 DOI: 10.3389/fnins.2024.1372222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Transcutaneous spinal cord stimulation (TSCS), a non-invasive form of spinal cord stimulation, has been shown to improve motor function in individuals living with spinal cord injury (SCI). However, the effects of different types of TSCS currents including direct current (DC-TSCS), alternating current (AC-TSCS), and spinal paired stimulation on the excitability of neural pathways have not been systematically investigated. The objective of this systematic review was to determine the effects of TSCS on the excitability of neural pathways in adults with non-progressive SCI at any level. Methods The following databases were searched from their inception until June 2022: MEDLINE ALL, Embase, Web of Science, Cochrane Library, and clinical trials. A total of 4,431 abstracts were screened, and 23 articles were included. Results Nineteen studies used TSCS at the thoracolumbar enlargement for lower limb rehabilitation (gait & balance) and four studies used cervical TSCS for upper limb rehabilitation. Sixteen studies measured spinal excitability by reporting different outcomes including Hoffmann reflex (H-reflex), flexion reflex excitability, spinal motor evoked potentials (SMEPs), cervicomedullay evoked potentials (CMEPs), and cutaneous-input-evoked muscle response. Seven studies measured corticospinal excitability using motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS), and one study measured somatosensory evoked potentials (SSEPs) following TSCS. Our findings indicated a decrease in the amplitude of H-reflex and long latency flexion reflex following AC-TSCS, alongside an increase in the amplitudes of SMEPs and CMEPs. Moreover, the application of the TSCS-TMS paired associative technique resulted in spinal reflex inhibition, manifested by reduced amplitudes in both the H-reflex and flexion reflex arc. In terms of corticospinal excitability, findings from 5 studies demonstrated an increase in the amplitude of MEPs linked to lower limb muscles following DC-TSCS, in addition to paired associative stimulation involving repetitive TMS on the brain and DC-TSCS on the spine. There was an observed improvement in the latency of SSEPs in a single study. Notably, the overall quality of evidence, assessed by the modified Downs and Black Quality assessment, was deemed poor. Discussion This review unveils the systematic evidence supporting the potential of TSCS in reshaping both spinal and supraspinal neuronal circuitries post-SCI. Yet, it underscores the critical necessity for more rigorous, high-quality investigations.
Collapse
Affiliation(s)
- Shirin Tajali
- KITE Research Institute – University Health Network, Toronto, ON, Canada
| | - Gustavo Balbinot
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application – CRANIA, University Health Network, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, University Health Network, Toronto Rehabilitation Institute, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Jose Zariffa
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Massey S, Konig D, Upadhyay P, Evcil ZB, Melin R, Fatima M, Hannah R, Duffell L. The effects of transcutaneous spinal cord stimulation delivered with and without high-frequency modulation on spinal and corticospinal excitability. Artif Organs 2024; 48:297-308. [PMID: 37840354 DOI: 10.1111/aor.14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Transcutaneous spinal cord stimulation (TSCS) has been shown to improve motor recovery in people with spinal cord injury (SCI). Some groups deliver TSCS modulated with a kHz-frequency (TSCS-kHz); the intensity used for TSCS-kHz is usually set based on the motor threshold for TSCS, even though TSCS-kHz threshold is considerably higher than TSCS. As a result, TSCS-kHz interventions tend to be delivered at low intensities with respect to the motor threshold (~40%). In this study, we compared the effects of sub-threshold TSCS and TSCS-kHz, when delivered at similar intensity relative to their own motor threshold. Experiment I compared the after-effects of 20 min of sub-threshold (40% threshold) TSCS and TSCS-kHz on spinal and corticospinal excitability in able-bodied participants. Experiment II assessed the dose-response relationship of delivering short (10-pulse) trains of TSCS and TSCS-kHz at three different current intensities relative to the threshold (40%, 60%, and 80%). Experiment I found that 20 min of TSCS-kHz at a 40% threshold decreased posterior root reflex amplitude (p < 0.05), whereas TSCS did not. In experiment II, motor-evoked potential (MEP) amplitude increased following short trains of TSCS and TSCS-kHz of increasing intensity. MEP amplitude was significantly greater for TSCS-kHz compared with TSCS when delivered at 80% of the threshold (p < 0.05). These results suggest that TSCS and TSCS-kHz have different effects when delivered at similar intensity relative to their own threshold; both for immediate effects on corticospinal excitability and following prolonged stimulation on spinal excitability. These different effects may be utilized for optimal rehabilitation in people with SCI.
Collapse
Affiliation(s)
- Sarah Massey
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
- Aspire Centre for Rehabilitation Engineering and Assistive Technology, UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, London, UK
| | - Danielle Konig
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Pratham Upadhyay
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Zehra Beril Evcil
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Rebbekha Melin
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Memoona Fatima
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Ricci Hannah
- Centre for Human and Applied Physiological Sciences, Kings College London, London, UK
| | - Lynsey Duffell
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
- Aspire Centre for Rehabilitation Engineering and Assistive Technology, UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, London, UK
| |
Collapse
|
16
|
Gordineer EA, Stokic DS, Krenn MJ. Distinguishing reflex from non-reflex responses elicited by transcutaneous spinal stimulation targeting the lumbosacral cord in healthy individuals. Exp Brain Res 2024:10.1007/s00221-024-06790-2. [PMID: 38416179 DOI: 10.1007/s00221-024-06790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Transcutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine. In six participants, unipolar TSS was repeated 2-3 months later and also compared to a bipolar TSS configuration (cathode 2.5 cm below T11-12, anode 5 cm above cathode). EMG signals were recorded from 16 leg muscles. A paired-pulse paradigm was applied at interstimulus intervals (ISIs) of 25, 50, 100, 200, and 400 ms. Responses were categorized by three assessors into reflexes, motor responses, or their combination (mixed responses) based on the visual presence/absence of paired-pulse suppression across ISIs. The paired-pulse ratio that best discriminated between response types was derived for each ISI. These cutoffs were validated by repeating unipolar TSS 2-3 months later and with bipolar TSS. Unipolar TSS evoked only reflexes (90%) and mixed responses (10%), which were mainly recorded in the quadriceps muscles (25-42%). Paired-pulse ratios of 0.51 (25-ms ISI) and 0.47 (50-ms ISI) best distinguished reflexes from mixed responses (100% sensitivity, > 99.2% specificity). These cutoffs performed well in the repeated unipolar TSS session (100% sensitivity, > 89% specificity). Bipolar TSS exclusively elicited reflexes which were all correctly classified. These results can be utilized in future studies to ensure that the input to the spinal cord originates from the depolarization of large afferents. This knowledge can be applied to improve the design of future neurophysiological studies and increase the fidelity of neuromodulation interventions.
Collapse
Affiliation(s)
- Elizabeth A Gordineer
- School of Graduate Studies in the Health Sciences, Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Matthias J Krenn
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
17
|
Malloy DC, Côté MP. Multi-session transcutaneous spinal cord stimulation prevents chloridehomeostasis imbalance and the development of spasticity after spinal cordinjury in rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563419. [PMID: 37961233 PMCID: PMC10634766 DOI: 10.1101/2023.10.24.563419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.
Collapse
Affiliation(s)
- Dillon C. Malloy
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
18
|
Alvarado-Navarrete MDC, Pliego-Carrillo AC, Ledesma-Ramírez CI, Cuellar CA. Post-activation depression of the Hoffman reflex is not altered by galvanic vestibular stimulation in healthy subjects. Front Integr Neurosci 2023; 17:1234613. [PMID: 37711909 PMCID: PMC10499171 DOI: 10.3389/fnint.2023.1234613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
The comprehension of the neural elements interacting in the spinal cord affected by vestibular input will contribute to the understanding of movement execution in normal and pathological conditions. In this context, Hoffman's reflex (H-reflex) has been used to evaluate transient excitability changes on the spinal cord descending pathways. The post-activation depression (P-AD) of the H-reflex consists of evoking consecutive responses (>1 Hz) provoking an amplitude depression, which has been shown to diminish in pathological conditions (i.e., spasticity, diabetic neuropathy). Galvanic Vestibular Stimulation (GVS) is a non-invasive method that activates the vestibular afferents and has been used to study the excitability of the H-reflex applied as a conditioning pulse. To our knowledge, there are no reports evaluating the P-AD during and after GVS. Our primary aim was to determine if GVS alters the P-AD evoked by stimulating the tibial nerve at 0.1, 1, 5, and 10 Hz, recording in the gastrocnemius and soleus muscles. Direct current stimulation of 2.0 ± 0.6 mA with the cathode ipsilateral (Ipsi) or contralateral (Contra) to the H-reflex electrode montage was applied bilaterally over the mastoid process in 19 healthy subjects. The P-AD's immediate post-GVS response (P Ipsi, P Contra) was also analyzed. Secondarily, we analyzed the excitability of the H-reflex during GVS. Responses evoked at 0.1 Hz with GVS, post-GVS, and a Control (no GVS) condition were used for comparisons. Our results show that P-AD persisted in all subjects despite increased excitability induced by GVS: statistical significance was found when comparing P-AD at 1, 5, and 10 Hz with the corresponding condition (Control, Ipsi, P Ipsi, Contra, P Contra) at 0.1 Hz (p < 0.001). Additionally, the increase in excitability produced by GVS was quantified for the first H-reflex of each P-AD stimulation frequency. The percentage change for all GVS conditions surpassed the Control by at least 20%, being statistically significant for Contra compared to Control (p < 0.01). In summary, although GVS increases the excitability of the vestibulospinal pathway at a premotor level, the neural inhibitory mechanism present in P-AD remains unaltered in healthy subjects.
Collapse
Affiliation(s)
| | - Adriana C. Pliego-Carrillo
- Biomedical Engineering, School of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | | | - Carlos A. Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Huixquilucan, Mexico
| |
Collapse
|
19
|
Mundra A, Varma Kalidindi K, Chhabra HS, Manghwani J. Spinal cord stimulation for spinal cord injury - Where do we stand? A narrative review. J Clin Orthop Trauma 2023; 43:102210. [PMID: 37663171 PMCID: PMC10470322 DOI: 10.1016/j.jcot.2023.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
Recovery of function following a complete spinal cord injury (SCI) or an incomplete SCI where recovery has plateaued still eludes us despite extensive research. Epidural spinal cord stimulation (SCS) was initially used for managing neuropathic pain. It has subsequently demonstrated improvement in motor function in otherwise non-recovering chronic spinal cord injury in animal and human trials. The mechanisms of how it is precisely effective in doing so will need further research, which would help refine the technology for broader application. Transcutaneous spinal cord stimulation (TSCS) is also emerging as a modality to improve the functional outcome in SCI individuals, especially when coupled with appropriate rehabilitation. Apart from motor recovery, ESCS and TSCS have also shown improvement in autonomic, metabolic, genitourinary, and pulmonary function. Since the literature on this is still in its infancy, with no large-scale randomised trials and different studies using different protocols in a wide range of patients, a review of the present literature is imperative to better understand the latest developments in this field. This article examines the existing literature on the use of SCS for SCI individuals with the purpose of enabling functional recovery. It also examines the voids in the present research, thus providing future directions.
Collapse
Affiliation(s)
- Anuj Mundra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | | | - Harvinder Singh Chhabra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | - Jitesh Manghwani
- Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, 110070, India
| |
Collapse
|
20
|
Sharma P, Panta T, Ugiliweneza B, Bert RJ, Gerasimenko Y, Forrest G, Harkema S. Multi-Site Spinal Cord Transcutaneous Stimulation Facilitates Upper Limb Sensory and Motor Recovery in Severe Cervical Spinal Cord Injury: A Case Study. J Clin Med 2023; 12:4416. [PMID: 37445450 DOI: 10.3390/jcm12134416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Individuals with cervical spinal cord injury (SCI) rank regaining arm and hand function as their top rehabilitation priority post-injury. Cervical spinal cord transcutaneous stimulation (scTS) combined with activity-based recovery training (ABRT) is known to effectively facilitate upper extremity sensorimotor recovery in individuals with residual arm and hand function post SCI. However, scTS effectiveness in facilitating upper extremity recovery in individuals with severe SCI with minimal to no sensory and motor preservation below injury level remains largely unknown. We herein introduced a multimodal neuro-rehabilitative approach involving scTS targeting systematically identified various spinal segments combined with ABRT. We hypothesized that multi-site scTS combined with ABRT will effectively neuromodulate the spinal networks, resulting in improved integration of ascending and descending neural information required for sensory and motor recovery in individuals with severe cervical SCI. To test the hypothesis, a 53-year-old male (C2, AIS A, 8 years post-injury) received 60 ABRT sessions combined with continuous multi-site scTS. Post-training assessments revealed improved activation of previously paralyzed upper extremity muscles and sensory improvements over the dorsal and volar aspects of the hand. Most likely, altered spinal cord excitability and improved muscle activation and sensations resulted in observed sensorimotor recovery. However, despite promising neurophysiological evidence pertaining to motor re-activation, we did not observe visually appreciable functional recovery on obtained upper extremity motor assessments.
Collapse
Affiliation(s)
- Pawan Sharma
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Tudor Panta
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY 40202, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Department of Health Management and Systems Science, University of Louisville, Louisville, KY 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Robert J Bert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Gail Forrest
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07052, USA
- Kessler Foundation, Newark, NJ 07052, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
- Department of Bioengineering, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agarwal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. Trials 2023; 24:145. [PMID: 36841773 PMCID: PMC9960224 DOI: 10.1186/s13063-023-07193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Grace O. Famodimu
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA
| | - Shammah K. Solomon
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Parul Agarwal
- grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Noam Y. Harel
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA ,grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY, USA. .,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA. .,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Manhattan & Staten Island, NY, USA.
| |
Collapse
|
22
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agrawal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. RESEARCH SQUARE 2023:rs.3.rs-2527617. [PMID: 36824823 PMCID: PMC9949167 DOI: 10.21203/rs.3.rs-2527617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.
Collapse
Affiliation(s)
| | | | | | - Parul Agrawal
- Icahn School of Medicine at Mount Sinai Department of Population Health Science and Policy
| | - Noam Y Harel
- James J Peters VAMC: James J Peters VA Medical Center
| | - Maria Knikou
- College of Staten Island School of Health Sciences
| |
Collapse
|
23
|
Dalrymple AN, Hooper CA, Kuriakose MG, Capogrosso M, Weber DJ. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation. J Neural Eng 2023; 20. [PMID: 36595241 DOI: 10.1088/1741-2552/acabe8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.Spinal cord neuromodulation has gained much attention for demonstrating improved motor recovery in people with spinal cord injury, motivating the development of clinically applicable technologies. Among them, transcutaneous spinal cord stimulation (tSCS) is attractive because of its non-invasive profile. Many tSCS studies employ a high-frequency (10 kHz) carrier, which has been reported to reduce stimulation discomfort. However, these claims have come under scrutiny in recent years. The purpose of this study was to determine whether using a high-frequency carrier for tSCS is more comfortable at therapeutic amplitudes, which evoke posterior root-muscle (PRM) reflexes.Approach.In 16 neurologically intact participants, tSCS was delivered using a 1 ms long monophasic pulse with and without a high-frequency carrier. Stimulation amplitude and pulse duration were varied and PRM reflexes were recorded from the soleus, gastrocnemius, and tibialis anterior muscles. Participants rated their discomfort during stimulation from 0 to 10 at PRM reflex threshold.Main Results.At PRM reflex threshold, the addition of a high-frequency carrier (0.87 ± 0.2) was equally comfortable as conventional stimulation (1.03 ± 0.18) but required approximately double the charge to evoke the PRM reflex (conventional: 32.4 ± 9.2µC; high-frequency carrier: 62.5 ± 11.1µC). Strength-duration curves for tSCS with a high-frequency carrier had a rheobase that was 4.8× greater and a chronaxie that was 5.7× narrower than the conventional monophasic pulse, indicating that the addition of a high-frequency carrier makes stimulation less efficient in recruiting neural activity in spinal roots.Significance.Using a high-frequency carrier for tSCS is equally as comfortable and less efficient as conventional stimulation at amplitudes required to stimulate spinal dorsal roots.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Minna G Kuriakose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Marco Capogrosso
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America.,NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, United States of America.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
24
|
Chakraborty A, Sharma MC, Vishnubhatla S, Jain S. Electromagnetic field stimulation facilitates motor neuron excitability, myogenesis and muscle contractility in spinal cord transected rats. J Biosci 2022. [DOI: 10.1007/s12038-022-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Skiadopoulos A, Pulverenti TS, Knikou M. Physiological effects of cathodal electrode configuration for transspinal stimulation in humans. J Neurophysiol 2022; 128:1663-1682. [PMID: 36416443 PMCID: PMC9762966 DOI: 10.1152/jn.00342.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transspinal stimulation modulates neuronal excitability and promotes recovery in upper motoneuron lesions. The recruitment input-output curves of transspinal evoked potentials (TEPs) recorded from knee and ankle muscles, and their susceptibility to spinal inhibition, were recorded when the position, size, and number of the cathode electrode were arranged in four settings or protocols (Ps). The four Ps were the following: 1) one rectangular electrode placed at midline (KNIKOU-LAB4Recovery or K-LAB4Recovery; P-KLAB), 2) one square electrode placed at midline (P-2), 3) two square electrodes 1 cm apart placed at midline (P-3), and 4) one square electrode placed on each paravertebral side (P-4). P-KLAB and P-3 required less current to reach TEP threshold or maximal amplitudes. A rightward shift in TEP recruitment curves was evident for P-4, whereas the slope was increased for P-2 and P-4 compared with P-KLAB and P-3. TEP depression upon single and paired transspinal stimuli was pronounced in ankle TEPs but was less prominent in knee TEPs. TEP depression induced by single transspinal stimuli at 1.0 Hz was similar for most TEPs across protocols, but TEP depression induced by paired transspinal stimuli was different between protocols and was replaced by facilitation at 100-ms interstimulus interval for P-4. Our results suggest that P-KLAB and P-3 are preferred based on excitability threshold of motoneurons. P-KLAB produced more TEP depression, thereby maximizing the engagement of spinal neuronal pathways. We recommend P-KLAB to study neurophysiological mechanisms underlying transspinal stimulation or when used as a neuromodulation method for recovery in neurological disorders.NEW & NOTEWORTHY Transspinal stimulation with a rectangular cathode electrode (P-KLAB) requires less current to produce transspinal evoked potentials and maximizes spinal inhibition. We recommend P-KLAB for neurophysiological studies or when used as a neuromodulation method to enhance motor output and normalize muscle tone in neurological disorders.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, New York
| | - Timothy S Pulverenti
- Klab4Recovery Research Program, The City University of New York, New York, New York
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, New York
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Staten Island, New York
| |
Collapse
|
26
|
Pulverenti TS, Zaaya M, Grabowski E, Grabowski M, Knikou M. Brain and spinal cord paired stimulation coupled with locomotor training facilitates motor output in human spinal cord injury. Front Neurol 2022; 13:1000940. [PMID: 36313489 PMCID: PMC9612520 DOI: 10.3389/fneur.2022.1000940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Combined interventions for neuromodulation leading to neurorecovery have gained great attention by researchers to resemble clinical rehabilitation approaches. In this randomized clinical trial, we established changes in the net output of motoneurons innervating multiple leg muscles during stepping when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal (transspinal) stimulation over the thoracolumbar region during locomotor training. TMS was delivered before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Ten individuals with chronic incomplete or complete SCI received at least 20 sessions of training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic assisted step training on a motorized treadmill. Body weight support, leg guidance force and treadmill speed were adjusted based on each subject's ability to step without knee buckling or toe dragging. Most transspinal evoked potentials (TEPs) recorded before and after each intervention from ankle and knee muscles during assisted stepping were modulated in a phase-dependent pattern. Transspinal-TMS and locomotor training affected motor neuron output of knee and ankle muscles with ankle TEPs to be modulated in a phase-dependent manner. TMS-transspinal and locomotor training increased motor neuron output for knee but not for ankle muscles. Our results support that targeted brain and spinal cord stimulation alters responsiveness of neurons over multiple spinal segments in people with chronic SCI. Noninvasive stimulation of the brain and spinal cord along with locomotor training is a novel neuromodulation method that can become a promising modality for rehabilitation in humans after SCI.
Collapse
Affiliation(s)
- Timothy S. Pulverenti
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| | - Monika Grabowski
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States,Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States,*Correspondence: Maria Knikou
| |
Collapse
|
27
|
Lin A, Shaaya E, Calvert JS, Parker SR, Borton DA, Fridley JS. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine 2022; 19:703-734. [PMID: 36203296 PMCID: PMC9537842 DOI: 10.14245/ns.2244652.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury often leads to loss of sensory, motor, and autonomic function below the level of injury. Recent advancements in spinal cord electrical stimulation (SCS) for spinal cord injury have provided potential avenues for restoration of neurologic function in affected patients. This review aims to assess the efficacy of spinal cord stimulation, both epidural (eSCS) and transcutaneous (tSCS), on the return of function in individuals with chronic spinal cord injury. The current literature on human clinical eSCS and tSCS for spinal cord injury was reviewed. Seventy-one relevant studies were included for review, specifically examining changes in volitional movement, changes in muscle activity or spasticity, or return of cardiovascular pulmonary, or genitourinary autonomic function. The total participant sample comprised of 327 patients with spinal cord injury, each evaluated using different stimulation protocols, some for sensorimotor function and others for various autonomic functions. One hundred eight of 127 patients saw improvement in sensorimotor function, 51 of 70 patients saw improvement in autonomic genitourinary function, 32 of 32 patients saw improvement in autonomic pulmonary function, and 32 of 36 patients saw improvement in autonomic cardiovascular function. Although this review highlights SCS as a promising therapeutic neuromodulatory technique to improve rehabilitation in patients with SCI, further mechanistic studies and stimulus parameter optimization are necessary before clinical translation.
Collapse
Affiliation(s)
- Alice Lin
- Warren Alpert Medical School, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA
| | | | | | - David A. Borton
- School of Engineering, Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI, USA,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jared S. Fridley
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA,Corresponding Author Jared S. Fridley Department of Neurosurgery, Brown University, Rhode Island Hospital, 593 Eddy St # 1, Providence, RI 02903, USA
| |
Collapse
|
28
|
Brain and spinal cord paired stimulation coupled with locomotor training affects polysynaptic flexion reflex circuits in human spinal cord injury. Exp Brain Res 2022; 240:1687-1699. [PMID: 35513720 DOI: 10.1007/s00221-022-06375-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
Neurorecovery from locomotor training is well established in human spinal cord injury (SCI). However, neurorecovery resulting from combined interventions has not been widely studied. In this randomized clinical trial, we established the tibialis anterior (TA) flexion reflex modulation pattern when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal cord (transspinal) stimulation over the thoracolumbar region during assisted step training. Single pulses of TMS were delivered either before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Eight individuals with chronic incomplete or complete SCI received at least 20 sessions of paired stimulation during assisted step training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic-assisted step training with the Lokomat6 Pro®. Body weight support, leg guidance force and treadmill speed were adjusted based on each participant's ability to step without knee buckling or toe dragging. Both the early and late TA flexion reflex remained unaltered after TMS-transspinal and locomotor training. In contrast, the early and late TA flexion reflexes were significantly depressed during stepping after transspinal-TMS and locomotor training. Reflex changes occurred at similar slopes and intercepts before and after training. Our findings support that targeted brain and spinal cord stimulation coupled with locomotor training reorganizes the function of flexion reflex pathways, which are a part of locomotor networks, in humans with varying levels of sensorimotor function after SCI.Trial registration number NCT04624607; Registered on November 12, 2020.
Collapse
|
29
|
Rong ZJ, Cai HH, Wang H, Liu GH, Zhang ZW, Chen M, Huang YL. Ursolic Acid Ameliorates Spinal Cord Injury in Mice by Regulating Gut Microbiota and Metabolic Changes. Front Cell Neurosci 2022; 16:872935. [PMID: 35602557 PMCID: PMC9115468 DOI: 10.3389/fncel.2022.872935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 02/02/2023] Open
Abstract
Background: Spinal cord injury (SCI) damages the autonomic nervous system and affects the homeostasis of gut microbiota. Ursolic acid (UA) is a candidate drug for treating nervous system injury due to its neuroprotective and antioxidant functions. The purpose of our study was to investigate the role of UA on SCI and its mechanism. Methods: UA was administered to SCI mice and the solvent corn oil was used as control. The weight of the mice was recorded daily. Mice feces were collected 21 days after surgery for 16S rRNA-amplicon sequencing and untargeted metabolomics analysis. The expressions of NF-κB, IL-1β, and TNF-α in the spinal cord and colon tissues of mice were detected by Western blot and Enzyme-linked immunosorbent assay, respectively. Immunohistochemistry was used to analyze the expression of NeuN, NF-200, and synapsin in the spinal cord tissues. Results: UA treatment increased body weight and soleus muscle weight of SCI mice. UA treatment inhibited inflammatory response and protected neuronal activity in SCI mice. UA improved the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, and Alloprevotell genus in the gut tract of SCI mice. SCI destroyed the Glutamine_and_D-glutamate_metabolism, Nitrogen_metabolism, Aminoacyl-tRNA_biosynthesis, and Taurine_and_hypotaurine_metabolism in the gut of mice, which might be alleviated by UA. Conclusions: UA treatment could inhibit SCI progression by improving the gut environment and metabolic changes, promoting synaptic regeneration and anti-inflammatory effects.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhi-Wen Zhang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Min Chen Yu-Liang Huang
| | - Yu-Liang Huang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Min Chen Yu-Liang Huang
| |
Collapse
|
30
|
Adapting Human-Based Transcutaneous Spinal Cord Stimulation to Develop a Clinically Relevant Animal Model. J Clin Med 2022; 11:jcm11072023. [PMID: 35407636 PMCID: PMC8999945 DOI: 10.3390/jcm11072023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) as a neuromodulatory strategy has received great attention as a method to promote functional recovery after spinal cord injury (SCI). However, due to the noninvasive nature of tSCS, investigations have primarily focused on human applications. This leaves a critical need for the development of a suitable animal model to further our understanding of this therapeutic intervention in terms of functional and neuroanatomical plasticity and to optimize stimulation protocols. The objective of this study is to establish a new animal model of thoracolumbar tSCS that (1) can accurately recapitulate studies in healthy humans and (2) can receive a repeated and stable tSCS treatment after SCI with minimal restraint, while the electrode remains consistently positioned. We show that our model displays bilateral evoked potentials in multisegmental leg muscles characteristically comparable to humans. Our data also suggest that tSCS mainly activates dorsal root structures like in humans, thereby accounting for the different electrode-to-body-size ratio between the two species. Finally, a repeated tSCS treatment protocol in the awake rat after a complete spinal cord transection is feasible, tolerable, and safe, even with minimal body restraint. Additionally, repeated tSCS was capable of modulating motor output after SCI, providing an avenue to further investigate stimulation-based neuroplasticity and optimize treatment.
Collapse
|
31
|
Tefertiller C, Rozwod M, VandeGriend E, Bartelt P, Sevigny M, Smith AC. Transcutaneous Electrical Spinal Cord Stimulation to Promote Recovery in Chronic Spinal Cord Injury. FRONTIERS IN REHABILITATION SCIENCES 2022; 2. [PMID: 36004322 PMCID: PMC9396932 DOI: 10.3389/fresc.2021.740307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective: To evaluate the impact of using transcutaneous electrical spinal cord stimulation (TSCSTSCS) on upper and lower extremity function in individuals with chronic spinal cord injury (SCI). Design: Prospective case series. Setting: SCI specific rehabilitation hospital. Participants: A convenience sample (N = 7) of individuals with tetraplegia who had previously been discharged from outpatient therapy due to a plateau in progress. Interventions: Individuals participated in 60 min of upper extremity (UE) functional task-specific practice (FTP) in combination with TSCS and 60 min of locomotor training in combination with TSCS 5x/week. Main Outcome Measures: The primary outcome for this analysis was the Capabilities of Upper Extremity Test (CUE-T). Secondary outcomes include UE motor score (UEMS), LE motor score (LEMS), sensation (light touch and pin prick), Nine-Hole Peg Test, 10 meter walk test, 6 min walk test, and 5 min stand test. Results: Seven individuals (four motor complete; three motor incomplete) completed 20–80 sessions UE and LE training augmented with TSCS and without any serious adverse events. Improvements were reported on the CUE-T in all seven individuals. Two individuals improved their ASIA impairment scale (AIS) classification (B to C; C to D) and two individuals improved their neurologic level of injury by one level (C4–C5; C5–C6). Sensation improved in five individuals and all four who started out with motor complete SCIs were able to voluntarily activate their LEs on command in the presence of stimulation. Conclusion: Individuals with chronic SCI who had previously demonstrated a plateau in function after an intensive outpatient therapy program were able to improve in a variety of UE and LE outcomes in response to TSCS without any adverse events. This was a small pilot study and future fully powered studies with comparative interventions need to be completed to assess efficacy.
Collapse
Affiliation(s)
- Candace Tefertiller
- Craig Hospital, Englewood, CO, United States
- *Correspondence: Candace Tefertiller
| | | | | | | | | | - Andrew C. Smith
- Department of Physical Medicine and Rehabilitation, University of Colorado, Denver, CO, United States
| |
Collapse
|
32
|
Zaaya M, Pulverenti TS, Knikou M. Transspinal stimulation and step training alter function of spinal networks in complete spinal cord injury. Spinal Cord Ser Cases 2021; 7:55. [PMID: 34218255 DOI: 10.1038/s41394-021-00421-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
STUDY DESIGN Pilot study (case series). OBJECTIVE The objective of this study was to establish spinal neurophysiological changes following high-frequency transspinal stimulation during robot-assisted step training in individuals with chronic motor complete spinal cord injury (SCI). SETTING University research laboratory (Klab4Recovery). METHODS Four individuals with motor complete SCI received an average of 18 sessions of transspinal stimulation over the thoracolumbar region with a pulse train at 333 Hz during robotic-assisted step training. Each session lasted ~1 h, with an average of 240 stimulations delivered during each training session. Before and after the combined intervention, we evaluated the amplitude modulation of the long-latency tibialis anterior (TA) flexion reflex and transspinal evoked potentials (TEP) recorded from flexors and extensors during assisted stepping, and the TEP recruitment curves at rest. RESULTS The long-latency TA flexion reflex was depressed in all phases of the step cycle and the phase-dependent amplitude modulation of TEPs was altered during assisted stepping, while spinal motor output based on TEP recruitment curves was increased after the combined intervention. CONCLUSION This is the first study documenting noninvasive transspinal stimulation coupled with locomotor training depresses flexion reflex excitability and concomitantly increases motoneuron output over multiple spinal segments for both flexors and extensors in people with motor complete SCI. While both transspinal stimulation and locomotor training may act via similar activity-dependent neuroplasticity mechanisms, combined interventions for rehabilitation of neurological disorders has not been systematically assessed. Our current findings support locomotor training induced neuroplasticity may be augmented with transspinal stimulation.
Collapse
Affiliation(s)
- Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, New York, NY, USA
| | - Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, New York, NY, USA.
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, New York, NY, USA.,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
33
|
Pulverenti TS, Zaaya M, Grabowski M, Grabowski E, Islam MA, Li J, Murray LM, Knikou M. Neurophysiological Changes After Paired Brain and Spinal Cord Stimulation Coupled With Locomotor Training in Human Spinal Cord Injury. Front Neurol 2021; 12:627975. [PMID: 34040572 PMCID: PMC8141587 DOI: 10.3389/fneur.2021.627975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological changes that involve activity-dependent neuroplasticity mechanisms via repeated stimulation and locomotor training are not commonly employed in research even though combination of interventions is a common clinical practice. In this randomized clinical trial, we established neurophysiological changes when transcranial magnetic stimulation (TMS) of the motor cortex was paired with transcutaneous thoracolumbar spinal (transspinal) stimulation in human spinal cord injury (SCI) delivered during locomotor training. We hypothesized that TMS delivered before transspinal (TMS-transspinal) stimulation promotes functional reorganization of spinal networks during stepping. In this protocol, TMS-induced corticospinal volleys arrive at the spinal cord at a sufficient time to interact with transspinal stimulation induced depolarization of alpha motoneurons over multiple spinal segments. We further hypothesized that TMS delivered after transspinal (transspinal-TMS) stimulation induces less pronounced effects. In this protocol, transspinal stimulation is delivered at time that allows transspinal stimulation induced action potentials to arrive at the motor cortex and affect descending motor volleys at the site of their origin. Fourteen individuals with motor incomplete and complete SCI participated in at least 25 sessions. Both stimulation protocols were delivered during the stance phase of the less impaired leg. Each training session consisted of 240 paired stimuli delivered over 10-min blocks. In transspinal-TMS, the left soleus H-reflex increased during the stance-phase and the right soleus H-reflex decreased at mid-swing. In TMS-transspinal no significant changes were found. When soleus H-reflexes were grouped based on the TMS-targeted limb, transspinal-TMS and locomotor training promoted H-reflex depression at swing phase, while TMS-transspinal and locomotor training resulted in facilitation of the soleus H-reflex at stance phase of the step cycle. Furthermore, both transspinal-TMS and TMS-transspinal paired-associative stimulation (PAS) and locomotor training promoted a more physiological modulation of motor activity and thus depolarization of motoneurons during assisted stepping. Our findings support that targeted non-invasive stimulation of corticospinal and spinal neuronal pathways coupled with locomotor training produce neurophysiological changes beneficial to stepping in humans with varying deficits of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Monika Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Jeffrey Li
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Lynda M Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States.,Ph.D. Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
34
|
Islam MA, Pulverenti TS, Knikou M. Neuronal Actions of Transspinal Stimulation on Locomotor Networks and Reflex Excitability During Walking in Humans With and Without Spinal Cord Injury. Front Hum Neurosci 2021; 15:620414. [PMID: 33679347 PMCID: PMC7930001 DOI: 10.3389/fnhum.2021.620414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigated the neuromodulatory effects of transspinal stimulation on soleus H-reflex excitability and electromyographic (EMG) activity during stepping in humans with and without spinal cord injury (SCI). Thirteen able-bodied adults and 5 individuals with SCI participated in the study. EMG activity from both legs was determined for steps without, during, and after a single-pulse or pulse train transspinal stimulation delivered during stepping randomly at different phases of the step cycle. The soleus H-reflex was recorded in both subject groups under control conditions and following single-pulse transspinal stimulation at an individualized exactly similar positive and negative conditioning-test interval. The EMG activity was decreased in both subject groups at the steps during transspinal stimulation, while intralimb and interlimb coordination were altered only in SCI subjects. At the steps immediately after transspinal stimulation, the physiological phase-dependent EMG modulation pattern remained unaffected in able-bodied subjects. The conditioned soleus H-reflex was depressed throughout the step cycle in both subject groups. Transspinal stimulation modulated depolarization of motoneurons over multiple segments, limb coordination, and soleus H-reflex excitability during assisted stepping. The soleus H-reflex depression may be the result of complex spinal inhibitory interneuronal circuits activated by transspinal stimulation and collision between orthodromic and antidromic volleys in the peripheral mixed nerve. The soleus H-reflex depression by transspinal stimulation suggests a potential application for normalization of spinal reflex excitability after SCI.
Collapse
Affiliation(s)
- Md. Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Timothy S. Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
35
|
Thabit MN, Ezat A, Ismael MA, Hadad S. Altered Spinal Excitability in Patients with Primary Fibromyalgia: A Case-Control Study. J Clin Neurol 2021; 17:121-127. [PMID: 33480207 PMCID: PMC7840322 DOI: 10.3988/jcn.2021.17.1.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Abnormal excitability of the central nervous system, both spinal and supraspinal, has previously been described as a pathophysiological plastic mechanism for chronic pain syndromes. Primary fibromyalgia (FM) as one extreme of this spectrum of diseases. This case-control study aimed to determine the changes in the spinal excitability by investigating the Hoffman reflex (H-reflex) in patients with FM. Methods Thirty-eight patients with FM and 30 healthy controls participated in this case-control study. We measured the H-reflex bilaterally in the upper limbs (flexor carpi radialis) and the lower limbs (gastrocnemius and soleus). Moreover, pain-related variables were measured, including pain severity (using a visual analogue scale), pain duration, Widespread Pain Index, and the score on the Symptom Severity Scale. Various psychiatric comorbidities and quality-of-life parameters were measured for each patient, including scores on the Hamilton Depression Rating Scale, Taylor's Manifest Anxiety Scale, and the Revised Fibromyalgia Impact Questionnaire. Results A significant increase in the ratio of the maximum baseline-to-peak amplitudes of H and M waves (Hmax/Mmax) but not in the H-wave minimum latency was found in patients with FM compared with healthy controls. There were no significant correlations between this ratio in both muscles and the various pain-related measures, psychiatric comorbidity, and quality of life in patients with FM. Patients with FM suffered more depression and anxiety than did the controls. Conclusions We found increased spinal excitability in patients with FM, which was not confined to the site of maximum pain. This information may help in the diagnosis of FM and supports the hypothesis of central sensitization.
Collapse
Affiliation(s)
- Mohamed N Thabit
- Department of Neurology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt.
| | - Ahmad Ezat
- Department of Neurology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed A Ismael
- Department of Rheumatology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Saber Hadad
- Department of Psychiatry, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
36
|
Fadeev F, Eremeev A, Bashirov F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kalistratova J, Khalitova A, Garifulin R, Islamov R, Lavrov I. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs. Brain Sci 2020; 10:brainsci10100744. [PMID: 33081405 PMCID: PMC7650717 DOI: 10.3390/brainsci10100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.
Collapse
Affiliation(s)
- Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anton Eremeev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Roman Shevchenko
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Julia Kalistratova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anastasiia Khalitova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Ravil Garifulin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
- Correspondence: (R.I.); (I.L.)
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (R.I.); (I.L.)
| |
Collapse
|
37
|
Al’joboori Y, Massey SJ, Knight SL, Donaldson NDN, Duffell LD. The Effects of Adding Transcutaneous Spinal Cord Stimulation (tSCS) to Sit-To-Stand Training in People with Spinal Cord Injury: A Pilot Study. J Clin Med 2020; 9:jcm9092765. [PMID: 32858977 PMCID: PMC7565331 DOI: 10.3390/jcm9092765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal cord stimulation may enable recovery of volitional motor control in people with chronic Spinal Cord Injury (SCI). In this study we explored the effects of adding SCS, applied transcutaneously (tSCS) at vertebral levels T10/11, to a sit-to-stand training intervention in people with motor complete and incomplete SCI. Nine people with chronic SCI (six motor complete; three motor incomplete) participated in an 8-week intervention, incorporating three training sessions per week. Participants received either tSCS combined with sit-to-stand training (STIM) or sit-to-stand training alone (NON-STIM). Outcome measures were carried out before and after the intervention. Seven participants completed the intervention (STIM N = 5; NON-STIM N = 2). Post training, improvements in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor scores were noted in three STIM participants (range 1.0–7.0), with no change in NON-STIM participants. Recovery of volitional lower limb muscle activity and/or movement (with tSCS off) was noted in three STIM participants. Unassisted standing was not achieved in any participant, although standing with minimal assistance was achieved in one STIM participant. This pilot study has shown that the recruitment of participants, intervention and outcome measures were all feasible in this study design. However, some modifications are recommended for a larger trial.
Collapse
Affiliation(s)
- Yazi Al’joboori
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
- Correspondence: ; Tel.: +44-020-3108-4083
| | | | - Sarah L. Knight
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Nick de N. Donaldson
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
| | - Lynsey D. Duffell
- Department of Medical Physics & Biomedical Engineering, UCL, London WC1E 6BT, UK; (N.d.N.D.); (L.D.D.)
- Aspire CREATe, UCL, Stanmore HA7 4LP, UK;
| |
Collapse
|
38
|
Petrosyan H, Liang L, Tesfa A, Sisto SA, Fahmy M, Arvanian VL. Modulation of H-reflex responses and frequency-dependent depression by repetitive spinal electromagnetic stimulation: From rats to humans and back to chronic spinal cord injured rats. Eur J Neurosci 2020; 52:4875-4889. [PMID: 32594554 PMCID: PMC7818466 DOI: 10.1111/ejn.14885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022]
Abstract
The lack of propagation of signals through survived fibers is among the major reasons for functional loss after incomplete spinal cord injury (SCI). Our recent results of animal studies demonstrate that spinal electromagnetic stimulation (SEMS) can enhance transmission in damaged spinal cord, and this type of modulation depends on the function of NMDA receptors at the neuronal networks below the injury level. Here, our pilot human study revealed that administration of repetitive SEMS induced long‐lasting modulation of H‐responses in both healthy and participants with chronic SCI. In order to understand the mechanisms underlying these effects, we have used an animal model and examined effects of SEMS on H‐responses. Effects of SEMS on H‐responses, frequency‐dependent depression (FDD) of H‐reflex, and possible underlying mechanisms have been examined in both naïve and rats with SCI. Our results demonstrate that consistent with the effects of SEMS on H‐reflex seen in humans, repetitive SEMS induced similar modulation in excitability of peripheral nerve responses in both non‐injured and rats with SCI. Importantly, our results confirmed the reduced FDD of H‐reflex in SCI animals and revealed that SEMS was able to recover FDD in rats with chronic SCI. Using intraspinal injections of the NMDA receptor blocker MK‐801, we have identified NMDA receptors as an important contributor to these SEMS‐induced effects in rats with SCI. These results identify SEMS as a novel non‐invasive technique for modulation of neuro‐muscular circuits and, importantly, modulation of spinal networks after chronic SCI.
Collapse
Affiliation(s)
- Hayk Petrosyan
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Li Liang
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Asrat Tesfa
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Sue A Sisto
- Department of Physical Therapy, Division of Rehabilitation Sciences, Stony Brook University, Stony Brook, New York, USA.,Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Magda Fahmy
- Physical Medicine and Rehabilitation Services, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Victor L Arvanian
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
39
|
Duffell LD, Donaldson NDN. A Comparison of FES and SCS for Neuroplastic Recovery After SCI: Historical Perspectives and Future Directions. Front Neurol 2020; 11:607. [PMID: 32714270 PMCID: PMC7344227 DOI: 10.3389/fneur.2020.00607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that neuroplastic changes can occur even years after spinal cord injury, leading to reduced disability and better health which should reduce the cost of healthcare. In motor-incomplete spinal cord injury, recovery of leg function may occur if repetitive training causes afferent input to the lumbar spinal cord. The afferent input may be due to activity-based therapy without electrical stimulation but we present evidence that it is faster with electrical stimulation. This may be spinal cord stimulation or peripheral nerve stimulation. Recovery is faster if the stimulation is phasic and that the patient is trying to use their legs during the training. All the published studies are small, so all conclusions are provisional, but it appears that patients with more disability (AIS A and B) may need to continue using stimulation and for them, an implanted stimulator is likely to be convenient. Patients with less disability (AIS C and D) may make useful recovery and improve their quality of life from a course of therapy. This might be locomotion therapy but we argue that cycling with electrical stimulation, which uses biofeedback to encourage descending drive, causes rapid recovery and might be used with little supervision at home, making it much less expensive. Such an electrical therapy followed by conventional physiotherapy might be affordable for the many people living with chronic SCI. To put this in perspective, we present some information about what treatments are funded in the UK and the US.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Implanted Devices Group, University College London, London, United Kingdom.,Aspire CREATe, University College London, London, United Kingdom
| | | |
Collapse
|
40
|
Gogeascoechea A, Kuck A, van Asseldonk E, Negro F, Buitenweg JR, Yavuz US, Sartori M. Interfacing With Alpha Motor Neurons in Spinal Cord Injury Patients Receiving Trans-spinal Electrical Stimulation. Front Neurol 2020; 11:493. [PMID: 32582012 PMCID: PMC7296155 DOI: 10.3389/fneur.2020.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Trans-spinal direct current stimulation (tsDCS) provides a non-invasive, clinically viable approach to potentially restore physiological neuromuscular function after neurological impairment, e.g., spinal cord injury (SCI). Use of tsDCS has been hampered by the inability of delivering stimulation patterns based on the activity of neural targets responsible to motor function, i.e., α-motor neurons (α-MNs). State of the art modeling and experimental techniques do not provide information about how individual α-MNs respond to electrical fields. This is a major element hindering the development of neuro-modulative technologies highly tailored to an individual patient. For the first time, we propose the use of a signal-based approach to infer tsDCS effects on large α-MNs pools in four incomplete SCI individuals. We employ leg muscles spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-MNs discharges across multiple lumbosacral segments during isometric plantar flexion sub-maximal contractions. This is done before, immediately after and 30 min after sub-threshold cathodal stimulation. We deliver sham tsDCS as a control measure. First, we propose a new algorithm for removing compromised information from decomposed α-MNs spike trains, thereby enabling robust decomposition and frequency-domain analysis. Second, we propose the analysis of α-MNs spike trains coherence (i.e., frequency-domain) as an indicator of spinal response to tsDCS. Results showed that α-MNs spike trains coherence analysis sensibly varied across stimulation phases. Coherence analyses results suggested that the common synaptic input to α-MNs pools decreased immediately after cathodal tsDCS with a persistent effect after 30 min. Our proposed non-invasive decoding of individual α-MNs behavior may open up new avenues for the design of real-time closed-loop control applications including both transcutaneous and epidural spinal electrical stimulation where stimulation parameters are adjusted on-the-fly.
Collapse
Affiliation(s)
- Antonio Gogeascoechea
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Alexander Kuck
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Edwin van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Jan R Buitenweg
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Utku S Yavuz
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| |
Collapse
|