1
|
Iqbal Z, Rehman K, Mahmood A, Shabbir M, Liang Y, Duan L, Zeng H. Exosome for mRNA delivery: strategies and therapeutic applications. J Nanobiotechnology 2024; 22:395. [PMID: 38965553 PMCID: PMC11225225 DOI: 10.1186/s12951-024-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Messenger RNA (mRNA) has emerged as a promising therapeutic molecule with numerous clinical applications in treating central nervous system disorders, tumors, COVID-19, and other diseases. mRNA therapies must be encapsulated into safe, stable, and effective delivery vehicles to preserve the cargo from degradation and prevent immunogenicity. Exosomes have gained growing attention in mRNA delivery because of their good biocompatibility, low immunogenicity, small size, unique capacity to traverse physiological barriers, and cell-specific tropism. Moreover, these exosomes can be engineered to utilize the natural carriers to target specific cells or tissues. This targeted approach will enhance the efficacy and reduce the side effects of mRNAs. However, difficulties such as a lack of consistent and reliable methods for exosome purification and the efficient encapsulation of large mRNAs into exosomes must be addressed. This article outlines current breakthroughs in cell-derived vesicle-mediated mRNA delivery and its biomedical applications.
Collapse
Affiliation(s)
- Zoya Iqbal
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Khurrum Rehman
- Department of Allied Health Sciences, The University of Agriculture, D.I.Khan, Pakistan
| | - Ayesha Mahmood
- Department of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Maryam Shabbir
- Department of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Hui Zeng
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
2
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
3
|
Lotfi M, Ashouri A, Mojarrad M, Mozaffari-Jovin S, Abbaszadegan MR. Design Principles of a Novel Construct for HBB Gene-Editing and Investigation of Its Gene-Targeting Efficiency in HEK293 Cells. Mol Biotechnol 2024; 66:517-530. [PMID: 37266832 DOI: 10.1007/s12033-023-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/27/2023] [Indexed: 06/03/2023]
Abstract
Beta-thalassemia is one of the most common monogenic inherited disorders worldwide caused by different mutations in the hemoglobin subunit beta (HBB) gene. Genome-editing based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has raised the hope for life-long gene therapy of beta-thalassemia. In a proof-of-concept study, we describe the detailed design and assess the efficacy of a novel homology-directed repair (HDR)-based CRISPR construct for targeting the HBB locus. The selected sgRNAs were designed and cloned into an optimized CRISPR plasmid. The HDR donor templates containing a reporter and a selection marker flanked by the piggyBac Inverted Tandem Repeat (ITRs), the homology arms and the delta thymidine kinase (ΔTK) gene for negative selection were constructed. The efficiency of on-target mutagenesis by the eSpCas9/sgRNAs was assessed by mismatch assays. HDR-positive cells were isolated by treatment with G418 or selection based on truncated Neuron Growth Factor Receptor (tNGFR) expression using the Magnetic Activated Cell Sorting (MACS) method followed by ganciclovir (GCV) treatment to eliminate cells with random genomic integration of the HDR donor template. In-out PCR and sanger sequencing confirmed HDR in the isolated cells. Our data showed ~ 50% efficiency for co-transfection of CRISPR/donor template plasmids in HEK293 cells and following G418 treatment, the HDR efficiency was detected at ~ 37.5%. Moreover, using a clinically-relevant strategy, HDR events were validated after selection for tNGFR+ cells followed by negative selection for ΔTK by GCV treatment. Thus, our HDR-based gene-editing strategy could efficiently target the HBB locus and enrich for HDR-positive cells.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Lotfi M, Morshedi Rad D, Mashhadi SS, Ashouri A, Mojarrad M, Mozaffari-Jovin S, Farrokhi S, Hashemi M, Lotfi M, Ebrahimi Warkiani M, Abbaszadegan MR. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells. Stem Cell Rev Rep 2023; 19:2576-2596. [PMID: 37723364 PMCID: PMC10661828 DOI: 10.1007/s12015-023-10585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/20/2023]
Abstract
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/Cas9 delivery in stem cells.
Collapse
Affiliation(s)
- Malihe Lotfi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Samaneh Sharif Mashhadi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10492. [PMID: 37206219 PMCID: PMC10189457 DOI: 10.1002/btm2.10492] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA (mRNA) holds great potential in developing immunotherapy, protein replacement, and genome editing. In general, mRNA does not have the risk of being incorporated into the host genome and does not need to enter the nucleus for transfection, and it can be expressed even in nondividing cells. Therefore, mRNA-based therapeutics provide a promising strategy for clinical treatment. However, the efficient and safe delivery of mRNA remains a crucial constraint for the clinical application of mRNA therapeutics. Although the stability and tolerability of mRNA can be enhanced by directly retouching the mRNA structure, there is still an urgent need to improve the delivery of mRNA. Recently, significant progress has been made in nanobiotechnology, providing tools for developing mRNA nanocarriers. Nano-drug delivery system is directly used for loading, protecting, and releasing mRNA in the biological microenvironment and can be used to stimulate the translation of mRNA to develop effective intervention strategies. In the present review, we summarized the concept of emerging nanomaterials for mRNA delivery and the latest progress in enhancing the function of mRNA, primarily focusing on the role of exosomes in mRNA delivery. Moreover, we outlined its clinical applications so far. Finally, the key obstacles of mRNA nanocarriers are emphasized, and promising strategies to overcome these obstacles are proposed. Collectively, nano-design materials exert functions for specific mRNA applications, provide new perception for next-generation nanomaterials, and thus revolution of mRNA technology.
Collapse
Affiliation(s)
- De‐feng Li
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Qi‐song Liu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Mei‐feng Yang
- Department of HematologyYantian District People's HospitalShenzhenGuangdongChina
| | - Hao‐ming Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min‐zheng Zhu
- Department of Gastroenterology and Hepatologythe Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Yuan Zhang
- Department of Medical AdministrationHuizhou Institute of Occupational Diseases Control and PreventionHuizhouGuangdongChina
| | - Jing Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Cheng‐mei Tian
- Department of EmergencyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Jun Yao
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Li‐sheng Wang
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yu‐jie Liang
- Department of Child and Adolescent PsychiatryShenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhenChina
- Affiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| |
Collapse
|
6
|
Fañanas-Baquero S, Morín M, Fernández S, Ojeda-Perez I, Dessy-Rodriguez M, Giurgiu M, Bueren JA, Moreno-Pelayo MA, Segovia JC, Quintana-Bustamante O. Specific correction of pyruvate kinase deficiency-causing point mutations by CRISPR/Cas9 and single-stranded oligodeoxynucleotides. Front Genome Ed 2023; 5:1104666. [PMID: 37188156 PMCID: PMC10175809 DOI: 10.3389/fgeed.2023.1104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Pyruvate kinase deficiency (PKD) is an autosomal recessive disorder caused by mutations in the PKLR gene. PKD-erythroid cells suffer from an energy imbalance caused by a reduction of erythroid pyruvate kinase (RPK) enzyme activity. PKD is associated with reticulocytosis, splenomegaly and iron overload, and may be life-threatening in severely affected patients. More than 300 disease-causing mutations have been identified as causing PKD. Most mutations are missense mutations, commonly present as compound heterozygous. Therefore, specific correction of these point mutations might be a promising therapy for the treatment of PKD patients. We have explored the potential of precise gene editing for the correction of different PKD-causing mutations, using a combination of single-stranded oligodeoxynucleotides (ssODN) with the CRISPR/Cas9 system. We have designed guide RNAs (gRNAs) and single-strand donor templates to target four different PKD-causing mutations in immortalized patient-derived lymphoblastic cell lines, and we have detected the precise correction in three of these mutations. The frequency of the precise gene editing is variable, while the presence of additional insertions/deletions (InDels) has also been detected. Significantly, we have identified high mutation-specificity for two of the PKD-causing mutations. Our results demonstrate the feasibility of a highly personalized gene-editing therapy to treat point mutations in cells derived from PKD patients.
Collapse
Affiliation(s)
- Sara Fañanas-Baquero
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Matías Morín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sergio Fernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isabel Ojeda-Perez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miruna Giurgiu
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Juan A. Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miguel Angel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jose Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
7
|
Papaioannou NY, Patsali P, Naiisseh B, Papasavva PL, Koniali L, Kurita R, Nakamura Y, Christou S, Sitarou M, Mussolino C, Cathomen T, Kleanthous M, Lederer CW. High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Front Genome Ed 2023; 5:1141618. [PMID: 36969374 PMCID: PMC10030607 DOI: 10.3389/fgeed.2023.1141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Genome editing tools, such as CRISPR/Cas, TALE nucleases and, more recently, double-strand-break-independent editors, have been successfully used for gene therapy and reverse genetics. Among various challenges in the field, tolerable and efficient delivery of editors to target cells and sites, as well as independence from commercially available tools for flexibility and fast adoption of new editing technology are the most pressing. For many hematopoietic research applications, primary CD34+ cells and the human umbilical cord-derived progenitor erythroid 2 (HUDEP-2) cell line are highly informative substrates and readily accessible for in vitro manipulation. Moreover, ex vivo editing of CD34+ cells has immediate therapeutic relevance. Both cell types are sensitive to standard transfection procedures and reagents, such as lipofection with plasmid DNA, calling for more suitable methodology in order to achieve high efficiency and tolerability of editing with editors of choice. These challenges can be addressed by RNA delivery, either as a mixture of guide RNA and mRNA for CRISRP/Cas-based systems or as a mixture of mRNAs for TALENs. Compared to ribonucleoproteins or proteins, RNA as vector creates flexibility by removing dependence on commercial availability or laborious in-house preparations of novel editor proteins. Compared to DNA, RNA is less toxic and by obviating nuclear transcription and export of mRNA offers faster kinetics and higher editing efficiencies. Methods: Here, we detail an in vitro transcription protocol based on plasmid DNA templates with the addition of Anti-Reverse Cap Analog (ARCA) using T7 RNA polymerase, and poly (A) tailing using poly (A) polymerase, combined with nucleofection of HUDEP-2 and patient-derived CD34+ cells. Our protocol for RNA-based delivery employs widely available reagents and equipment and can easily be adopted for universal in vitro delivery of genome editing tools. Results and Discussion: Drawing on a common use case, we employ the protocol to target a β-globin mutation and to reactivate γ-globin expression as two potential therapies for β-hemoglobinopathies, followed by erythroid differentiation and functional analyses. Our protocol allows high editing efficiencies and unimpaired cell viability and differentiation, with scalability, suitability for functional assessment of editing outcomes and high flexibility in the application to different editors.
Collapse
Affiliation(s)
- Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Basma Naiisseh
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Soteroula Christou
- Thalassaemia Centre, State Health Services Organisation of Cyprus, Nicosia, Cyprus
| | - Maria Sitarou
- Thalassaemia Centre, State Health Services Organisation of Cyprus, Larnaca, Cyprus
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
8
|
Mehrabi Sisakht J, Mehri M, Najmabadi H, Azarkeivan A, Neishabury M. Genetic Diagnosis of Pyruvate Kinase Deficiency in Undiagnosed Iranian Patients with Severe Hemolytic Anemia, using Whole Exome Sequencing. ARCHIVES OF IRANIAN MEDICINE 2022; 25:691-697. [PMID: 37542401 PMCID: PMC10685872 DOI: 10.34172/aim.2022.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/28/2021] [Indexed: 08/06/2023]
Abstract
BACKGROUND After ruling out the most common causes of severe hemolytic anemia by routine diagnostic tests, certain patients remain without a diagnosis. The aim of this study was to elucidate the genetic cause of the disease in these patients using next generation sequencing (NGS). METHODS Four unrelated Iranian families including six blood transfusion dependent cases and their parents were referred to us from a specialist center in Tehran. There was no previous history of anemia in the families and the parents had no abnormal hematological presentations. All probands presented severe congenital hemolytic anemia, neonatal jaundice and splenomegaly. Common causes of hemolytic anemia were ruled out prior to this investigation in these patients and they had no diagnosis. Whole exome sequencing (WES) was performed in the probands and the results were confirmed by Sanger sequencing and subsequent family studies. RESULTS We identified five variants in the PKLR gene, including a novel unpublished frameshift in these families. These variants were predicted as pathogenic according to the ACMG guidelines by Intervar and/or Varsome prediction tools. Subsequent family studies by Sanger sequencing supported the diagnosis of pyruvate kinase deficiency (PKD) in six affected individuals and the carrier status of disease in their parents. CONCLUSION These findings show that PKD is among the rare blood disorders that could remain undiagnosed or even ruled out in Iranian population without performing NGS. This could be due to pitfalls in clinical, hematological or biochemical approaches in diagnosing PKD. Furthermore, genotyping PKD patients in Iran could reveal novel mutations in the PKLR gene.
Collapse
Affiliation(s)
- Jafar Mehrabi Sisakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maghsood Mehri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Centre, Tehran, Iran
| | - Azita Azarkeivan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Maryam Neishabury
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
9
|
Qureischi M, Mohr J, Arellano-Viera E, Knudsen SE, Vohidov F, Garitano-Trojaola A. mRNA-based therapies: Preclinical and clinical applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:1-54. [PMID: 36064262 DOI: 10.1016/bs.ircmb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At the fundamental level, messenger RNA (mRNA)-based therapeutics involves the delivery of in vitro-transcribed (IVT) mRNA into the cytoplasm of a target cell, where it is translated into the desired protein. IVT mRNA presents various advantages compared to DNA and recombinant protein-based approaches that make it ideal for a broad range of therapeutic applications. IVT mRNA, which is translated in the cytoplasm after transfection into cells, can encode virtually any target protein. Notably, it does not enter the nucleus, which avoids its integration into the genome and the risk of insertional mutagenesis. The large-scale production of IVT mRNA is less complex than production of recombinant proteins, and Good Manufacturing Practice-compliant mRNA production is easily scalable, ideally poising mRNA for not only off-the-shelf, but more personalized treatment approaches. IVT mRNA's safety profile, pharmacokinetics, and pharmacodynamics, including its inherent immunostimulatory capacity, can be optimized for different therapeutic applications by harnessing a wide array of optimized sequence elements, chemical modifications, purification techniques, and delivery methods. The value of IVT mRNA was recently proved during the COVID-19 pandemic when mRNA-based vaccines outperformed the efficacy of established technologies, and millions of doses were rapidly deployed. In this review, we will discuss chemical modifications of IVT mRNA and highlight numerous preclinical and clinical applications including vaccines for cancer and infectious diseases, cancer immunotherapy, protein replacement, gene editing, and cell reprogramming.
Collapse
|
10
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC. Gene Editing for Inherited Red Blood Cell Diseases. Front Physiol 2022; 13:848261. [PMID: 35418876 PMCID: PMC8995967 DOI: 10.3389/fphys.2022.848261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Today gene therapy is a real therapeutic option to address inherited hematological diseases that could be beneficial for thousands of patients worldwide. Currently, gene therapy is used to treat different monogenic hematological pathologies, including several red blood cell diseases such as β-thalassemia, sickle cell disease and pyruvate kinase deficiency. This approach is based on addition gene therapy, which consists of the correction of hematopoietic stem cells (HSCs) using lentiviral vectors, which integrate a corrected version of the altered gene. Lentivirally-corrected HSCs generate healthy cells that compensate for the deficiency caused by genetic mutations. Despite its successful results, this approach lacks both control of the integration of the transgene into the genome and endogenous regulation of the therapeutic gene, both of which are important aspects that might be a cause for concern. To overcome these limitations, gene editing is able to correct the altered gene through more precise and safer approaches. Cheap and easy-to-design gene editing tools, such as the CRISPR/Cas9 system, allow the specific correction of the altered gene without affecting the rest of the genome. Inherited erythroid diseases, such as thalassemia, sickle cell disease and Pyruvate Kinase Deficiency, have been the test bed for these gene editing strategies, and promising results are currently being seen. CRISPR/Cas9 system has been successfully used to manipulate globin regulation to re-activate fetal globin chains in adult red blood cells and to compensate for hemoglobin defects. Knock-in at the mutated locus to express the therapeutic gene under the endogenous gene regulatory region has also been accomplished successfully. Thanks to the lessons learned from previous lentiviral gene therapy research and trials, gene editing for red blood cell diseases is rapidly moving from its proof-of-concept to its first exciting results in the clinic. Indeed, patients suffering from β-thalassemia and sickle cell disease have already been successfully treated with gene editing, which will hopefully inspire the use of gene editing to cure erythroid disorders and many other inherited diseases in the near future.
Collapse
Affiliation(s)
- Oscar Quintana-Bustamante
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Sara Fañanas-Baquero
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Isabel Ojeda-Pérez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Jose-Carlos Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| |
Collapse
|
12
|
Tang QL, Gu LX, Xu Y, Liao XH, Zhou Y, Zhang TC. Establishing functional lentiviral vector production in a stirred bioreactor for CAR-T cell therapy. Bioengineered 2021; 12:2095-2105. [PMID: 34047682 PMCID: PMC8806440 DOI: 10.1080/21655979.2021.1931644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/01/2022] Open
Abstract
As gene delivery tools, lentiviral vectors (LV) have broad applications in chimeric antigen receptor therapy (CAR-T). Large-scale production of functional LV is limited by the adherent, serum-dependent nature of HEK293T cells used in the manufacturing. HEK293T adherent cells were adapted to suspension cells in a serum-free medium to establish large-scale processes for functional LV production in a stirred bioreactor without micro-carriers. The results showed that 293 T suspension was successfully cultivated in F media (293 CD05 medium and SMM293-TII with 1:1 volume ratio), and the cells retained the capacity for LV production. After cultivation in a 5.5 L bioreactor for 4 days, the cells produced 1.5 ± 0.3 × 107 TU/mL raw LV, and the lentiviral transduction efficiency was 48.6 ± 2.8% in T Cells. The yield of LV equaled to the previous shake flask. The critical process steps were completed to enable a large-scale LV production process. Besides, a cryopreservation solution was developed to reduce protein involvement, avoid cell grafting and reduce process cost. The process is cost-effective and easy to scale up production, which is expected to be highly competitive.
Collapse
Affiliation(s)
- Qu-Lai Tang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Li-Xing Gu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yao Xu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xing-Hua Liao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
13
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Morado M, Villegas AM, de la Iglesia S, Martínez-Nieto J, Del Orbe Barreto R, Beneitez D, Salido E. [Consensus document for the diagnosis and treatment of pyruvate kinase deficiency]. Med Clin (Barc) 2021; 157:253.e1-253.e8. [PMID: 33431182 DOI: 10.1016/j.medcli.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase (PK) deficiency is the second most frequent enzymopathy and the most common cause of chronic hereditary non-spherocytic haemolytic anaemia. Its global prevalence is underestimated due to low clinical suspicion of mild cases, associated with difficulties in the performance and interpretation of PK enzymatic activity assays. With the advent of next generation sequencing techniques, a better diagnostic approach is achieved. Treatment remains based on red blood cell transfusions and splenectomy, with special attention to iron overload, not only in transfusion-dependent patients. Nowadays, allogeneic hematopoietic stem cell transplantation is the only curative treatment, recommended only in selected cases of severely affected patients with an HLA-identical donor. Novel pharmacological and gene therapies are in clinical trials, with promising results. In this article, the Spanish Erythropathology Group reviews the current situation of PK deficiency, paying special attention to the usefulness of different diagnostic techniques and to actual and emerging treatments.
Collapse
Affiliation(s)
- Marta Morado
- Servicio de Hematología y Hemoterapia, Hospital Universitario La Paz, Madrid, España.
| | - Ana María Villegas
- Servicio de Hematología y Hemoterapia, Hospital Universitario Clínico San Carlos, Madrid, España
| | - Silvia de la Iglesia
- Servicio de Hematología y Hemoterapia, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, España
| | - Jorge Martínez-Nieto
- Servicio de Hematología y Hemoterapia, Hospital Universitario Clínico San Carlos, Madrid, España
| | - Rafael Del Orbe Barreto
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Cruces, Barakaldo, Vizcaya, España
| | - David Beneitez
- Servicio de Hematología y Hemoterapia, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Eduardo Salido
- Servicio de Hematología y Hemoterapia, Hospital Universitario Virgen de la Arrixaca, Murcia, España
| |
Collapse
|
15
|
Clinically relevant gene editing in hematopoietic stem cells for the treatment of pyruvate kinase deficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:237-248. [PMID: 34485608 PMCID: PMC8399088 DOI: 10.1016/j.omtm.2021.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (PKLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.
Collapse
|
16
|
Azhagiri MKK, Babu P, Venkatesan V, Thangavel S. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Res Ther 2021; 12:500. [PMID: 34503562 PMCID: PMC8428126 DOI: 10.1186/s13287-021-02565-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
The advent of next-generation genome engineering tools like CRISPR-Cas9 has transformed the field of gene therapy, rendering targeted treatment for several incurable diseases. Hematopoietic stem and progenitor cells (HSPCs) continue to be the ideal target cells for gene manipulation due to their long-term repopulation potential. Among the gene manipulation strategies such as lentiviral gene augmentation, non-homologous end joining (NHEJ)-mediated gene editing, base editing and prime editing, only the homology-directed repair (HDR)-mediated gene editing provides the option of inserting a large transgene under its endogenous promoter or any desired locus. In addition, HDR-mediated gene editing can be applied for the gene knock-out, correction of point mutations and introduction of beneficial mutations. HSPC gene therapy studies involving lentiviral vectors and NHEJ-based gene-editing studies have exhibited substantial clinical progress. However, studies involving HDR-mediated HSPC gene editing have not yet progressed to the clinical testing. This suggests the existence of unique challenges in exploiting HDR pathway for HSPC gene therapy. Our review summarizes the mechanism, recent progresses, challenges, and the scope of HDR-based gene editing for the HSPC gene therapy.
Collapse
Affiliation(s)
- Manoj Kumar K Azhagiri
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India.
| |
Collapse
|
17
|
Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021; 131:1-15. [PMID: 34133982 PMCID: PMC8198544 DOI: 10.1016/j.actbio.2021.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. Statement of significance The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.
Collapse
|
18
|
Ma ZY, Yang X. Allogeneic hematopoietic stem cell transplantation in a 3-year-old boy with congenital pyruvate kinase deficiency: A case report. World J Clin Cases 2021; 9:2916-2922. [PMID: 33969077 PMCID: PMC8058671 DOI: 10.12998/wjcc.v9.i12.2916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The understanding regarding genetic variation, pathophysiology, and complications associated with pyruvate kinase deficiency (PKD) in red blood cells has been explained largely, and supportive treatment is currently the main management strategy. Etiotropic managements, including transplantation and genome editing, supplying for substitute dugs of the pyruvate kinase, are all under research. CASE SUMMARY We herein report a 3-year-old boy with severe transfusion-dependent PKD cured by unrelated identical peripheral blood stem cell transplantation (PBSCT). Hemoglobin was corrected to a normal level by gene correction after PBSCT, with no complication related to the transplantation. CONCLUSION Hematopoietic stem cell transplantation could be a substitute for transfusion-dependent PKD.
Collapse
Affiliation(s)
- Zhong-Yang Ma
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue Yang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
19
|
Fermo E, Vercellati C, Bianchi P. Screening tools for hereditary hemolytic anemia: new concepts and strategies. Expert Rev Hematol 2021; 14:281-292. [PMID: 33543663 DOI: 10.1080/17474086.2021.1886919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Hereditary hemolytic anemias are a group of rare and heterogeneous disorders due to abnormalities in structure, metabolism, and transport functions of erythrocytes; they may overlap in clinical and hematological features making differential diagnosis difficult, particularly in mild and atypical forms. AREAS COVERED In the present review, the main tools currently adopted in routine hematologic investigation for the diagnosis of hereditary hemolytic anemias are described, together with the new diagnostic approaches that are being to be developed in the next future. Available recommendations in this field together with a systematic review through MEDLINE, EMBASE, and PubMED for publications in English from 2000 to 2020 in regards to diagnostic aspects of hereditary hemolytic anemias have been considered. EXPERT OPINION The recent development of specific molecules and treatments for hereditary hemolytic anemias and the increased interest in translational research raised the attention on differential diagnosis and the demand for novel diagnostic assays and devices. Automatic blood cell analyzers, omic-approaches including NGS technologies, and development of new automated tools based on artificial neural networks definitely represent the future strategies in this field.
Collapse
Affiliation(s)
- Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Cristina Vercellati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| |
Collapse
|
20
|
Agarwal AM, Rets A. Laboratory approach to investigation of anemia with a focus on pyruvate kinase deficiency. Int J Lab Hematol 2021; 42 Suppl 1:107-112. [PMID: 32543069 DOI: 10.1111/ijlh.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/19/2023]
Abstract
Anemia is a major health burden worldwide and affects approximately one-third of world's population. It is not a diagnosis; it is a manifestation of an underlying pathophysiology leading to either decreased hemoglobin (Hb), hematocrit (Hct), or red blood cells (RBCs). Iron deficiency anemia is still the most common cause of anemia worldwide. The symptoms are usually due to the underlying compensatory responses to decrease in oxygen delivery to the tissues. Laboratory investigation should start with complete blood count (CBC), reticulocyte count (RC), and peripheral smear evaluation. Further testing depends on these indices, that is, iron parameters and hemoglobinopathies/thalassemia evaluation in microcytic hypochromic anemia, vitamin B12, and folic acid level in macrocytic anemia. Increased RC denotes adequate bone marrow response and points toward hemolytic process and vice versa. Anemia diagnosis can be complex and confusing for the practicing physician. This review tries to give a practical simplistic approach to the diagnosis, focusing mainly on the basic parameters, that is, CBC, RC, and peripheral smear etc. Moreover, we have also tried to provide an update on the pyruvate kinase deficiency, as there has been recent exciting development in the management of these patients.
Collapse
Affiliation(s)
- Archana M Agarwal
- University of Utah-Pathology, Salt Lake City, Utah.,ARUP Laboratories - Pathology, Salt Lake City, Utah
| | - Anton Rets
- University of Utah-Pathology, Salt Lake City, Utah.,ARUP Laboratories - Pathology, Salt Lake City, Utah
| |
Collapse
|
21
|
Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105:2218-2228. [PMID: 33054047 PMCID: PMC7556514 DOI: 10.3324/haematol.2019.241141] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/therapy
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Humans
- Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy.
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|