1
|
Sun L, Yin J, Wang L, Li J, Hu C, Liu B, Zheng C, Chen J, Fotopoulos V, Shu Q, Jiang M. Role of serotonin in plant stress responses: Quo vadis? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40098453 DOI: 10.1111/jipb.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Serotonin (5-hydroxytryptamine (5-HT)) is a pineal hormone and a secondary metabolite related to various hormonal and physiological functions at the organ, tissue, and cellular levels. It is considered increasingly important in regulating animal behavior, but the function of serotonin in plants is far less known. According to recent research, serotonin is vital for plant growth, development, and stress responses, achieved through transcriptional and phytohormonal interplay. Specifically, this review addresses critical gaps in the understanding of serotonin's function in plants by examining its biosynthesis, metabolism, and its multifaceted role in mitigating both abiotic stresses (salinity, drought, heat, cold, and heavy metals) as well as biotic challenges (pathogens, pests, and herbivores). As a pivotal player, it engages in a variety of significant cellular and molecular interactions, including those with reactive oxygen and nitrogen species (RONS), and various phytohormones such as auxin, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and cytokinin (CK). Advances in serotonin-related research are anticipated to offer a valuable basis for uncovering the regulatory pathways by which serotonin impacts the resilience of crops against abiotic stress.
Collapse
Affiliation(s)
- Like Sun
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxi Yin
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Long Wang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Li
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Can Hu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bo Liu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Qingyao Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- National Key Laboratory of Rice Biology and Breeding, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Vongnhay V, Shukla MR, Ayyanath MM, Sriskantharajah K, Saxena PK. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi ( Ocimum sanctum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1370. [PMID: 38794439 PMCID: PMC11125241 DOI: 10.3390/plants13101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology.
Collapse
Affiliation(s)
| | | | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (M.R.S.); (M.-M.A.); (K.S.)
| |
Collapse
|
3
|
Giebelhaus RT, Erland LA, Murch SJ. HormonomicsDB: a novel workflow for the untargeted analysis of plant growth regulators and hormones. F1000Res 2024; 11:1191. [PMID: 39221023 PMCID: PMC11364965 DOI: 10.12688/f1000research.124194.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 09/04/2024] Open
Abstract
Background Metabolomics is the simultaneous determination of all metabolites in a system. Despite significant advances in the field, compound identification remains a challenge. Prior knowledge of the compound classes of interest can improve metabolite identification. Hormones are a small signaling molecules, which function in coordination to direct all aspects of development, function and reproduction in living systems and which also pose challenges as environmental contaminants. Hormones are inherently present at low levels in tissues, stored in many forms and mobilized rapidly in response to a stimulus making them difficult to measure, identify and quantify. Methods An in-depth literature review was performed for known hormones, their precursors, metabolites and conjugates in plants to generate the database and an RShiny App developed to enable web-based searches against the database. An accompanying liquid chromatography - mass spectrometry (LC-MS) protocol was developed with retention time prediction in Retip. A meta-analysis of 14 plant metabolomics studies was used for validation. Results We developed HormonomicsDB, a tool which can be used to query an untargeted mass spectrometry (MS) dataset against a database of more than 200 known hormones, their precursors and metabolites. The protocol encompasses sample preparation, analysis, data processing and hormone annotation and is designed to minimize degradation of labile hormones. The plant system is used a model to illustrate the workflow and data acquisition and interpretation. Analytical conditions were standardized to a 30 min analysis time using a common solvent system to allow for easy transfer by a researcher with basic knowledge of MS. Incorporation of synthetic biotransformations enables prediction of novel metabolites. Conclusions HormonomicsDB is suitable for use on any LC-MS based system with compatible column and buffer system, enables the characterization of the known hormonome across a diversity of samples, and hypothesis generation to reveal knew insights into hormone signaling networks.
Collapse
Affiliation(s)
- Ryland T. Giebelhaus
- Chemistry, University of British Columbia, Kelowna, British Columbia, V1V1V7, Canada
| | - Lauren A.E. Erland
- Chemistry, University of British Columbia, Kelowna, British Columbia, V1V1V7, Canada
- Agriculture, University of the Fraser Valley, Chilliwack, British Columbia, V2R 0N3, Canada
| | - Susan J. Murch
- Chemistry, University of British Columbia, Kelowna, British Columbia, V1V1V7, Canada
| |
Collapse
|
4
|
Bodar PA, Thakur RS, Rajai JV, Bhushan S, Mantri VA. A metabolomic snapshot through NMR revealed differences in phase transition during the induction of reproduction in Ulva ohnoi (Chlorophyta). Mol Omics 2024; 20:86-102. [PMID: 38239131 DOI: 10.1039/d3mo00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The present study deals with the metabolomic status of Ulva cells undergoing phase transition (vegetative, determination and differentiation) when exposed to different abiotic conditions. The objective was to study whether metabolite changes occurring during the phase transition reveal any commonality among differential abiotic conditions. The phase transition was followed through microscopic observations and 1H NMR characterization at 0 h, 24 h, and 48 h after the incubation of the thallus under abiotic conditions, such as different salinities (20-35 psu), temperatures (20-35 °C), photoperiods (18 : 6, 12 : 12, and 6 : 18 D/N), light intensities (220, 350, and 500 μmol photons m-2 s-1), nitrate (0.05-0.2 g L-1) and phosphate (0.05-0.2 g L-1) concentrations. Microscopic analysis revealed the role of all abiotic conditions except variable salinity and phosphate concentration in phase transition. NMR analysis revealed that glucose increased in the determination phase [7.58 to 9.62 normalized intensity (AU)] and differentiation phase (5.85 to 6.41 AU) from 20 °C to 25 °C temperature. Coniferyl aldehyde increased in vegetative (5.79 to 6.83 AU) and differentiation (6.66 to 7.40 AU) phases from 20 °C to 30 °C temperature. The highest average (22.97) was found in photoperiod (average range = 0-122.91) and the highest SD (24.73) in salinity (SD range = 1.86-57.04) in region 9 (creatinine and cysteine) of the differentiation phase. A total of 30 metabolites were identified under the categories of sugars, amino acids, and aromatic compounds. The present study will aid in understanding the mechanisms underlying cell differentiation during reproduction. The result may serve as an important reference point for future studies, besides helping in controlling seedling preparation for commercial farming as well as the management of rapid green tide formation.
Collapse
Affiliation(s)
- Payal A Bodar
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Rajendra Singh Thakur
- Analytical and Environmental, Science Division and Centralized Instrument Facility, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Jasmine V Rajai
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
| | - Satej Bhushan
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
5
|
Cardarelli M, El Chami A, Rouphael Y, Ciriello M, Bonini P, Erice G, Cirino V, Basile B, Corrado G, Choi S, Kim HJ, Colla G. Plant biostimulants as natural alternatives to synthetic auxins in strawberry production: physiological and metabolic insights. FRONTIERS IN PLANT SCIENCE 2024; 14:1337926. [PMID: 38264017 PMCID: PMC10803581 DOI: 10.3389/fpls.2023.1337926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
The demand for high-quality strawberries continues to grow, emphasizing the need for innovative agricultural practices to enhance both yield and fruit quality. In this context, the utilization of natural products, such as biostimulants, has emerged as a promising avenue for improving strawberry production while aligning with sustainable and eco-friendly agricultural approaches. This study explores the influence of a bacterial filtrate (BF), a vegetal-derived protein hydrolysate (PH), and a standard synthetic auxin (SA) on strawberry, investigating their effects on yield, fruit quality, mineral composition and metabolomics of leaves and fruits. Agronomic trial revealed that SA and BF significantly enhanced early fruit yield due to their positive influence on flowering and fruit set, while PH treatment favored a gradual and prolonged fruit set, associated with an increased shoot biomass and sustained production. Fruit quality analysis showed that PH-treated fruits exhibited an increase of firmness and soluble solids content, whereas SA-treated fruits displayed lower firmness and soluble solids content. The ionomic analysis of leaves and fruits indicated that all treatments provided sufficient nutrients, with heavy metals within regulatory limits. Metabolomics indicated that PH stimulated primary metabolites, while SA and BF directly affected flavonoid and anthocyanin biosynthesis, and PH increased fruit quality through enhanced production of beneficial metabolites. This research offers valuable insights for optimizing strawberry production and fruit quality by harnessing the potential of natural biostimulants as viable alternative to synthetic compounds.
Collapse
Affiliation(s)
| | - Antonio El Chami
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Gorka Erice
- Atens - Agrotecnologías Naturales, La Riera de Gaià, Spain
| | | | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Seunghyun Choi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, United States
| | - Hye-Ji Kim
- Agri-tech and Food Innovation Department, Urban Food Solutions Division, Singapore Food Agency, Singapore, Singapore
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
6
|
Diogo-Jr R, de Resende Von Pinho EV, Pinto RT, Zhang L, Condori-Apfata JA, Pereira PA, Vilela DR. Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families. STRESS BIOLOGY 2023; 3:37. [PMID: 37981586 PMCID: PMC10482818 DOI: 10.1007/s44154-023-00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/05/2023] [Indexed: 11/21/2023]
Abstract
Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.
Collapse
Affiliation(s)
- Rubens Diogo-Jr
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA.
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil.
| | | | - Renan Terassi Pinto
- Faculty of Philosophy and Sciences at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, (14040-901), Brazil
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
| | - Jorge Alberto Condori-Apfata
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
- Faculty of Engineering and Agricultural Sciences, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas (UNTRM), Chachapoyas, AM, (01001), Peru
| | - Paula Andrade Pereira
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| | - Danielle Rezende Vilela
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| |
Collapse
|
7
|
Wei L, Lin S, Yue Z, Zhang L, Ding T. The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106120. [PMID: 37531678 DOI: 10.1016/j.marenvres.2023.106120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Toxicity of silver nanoparticles (AgNPs) at environmentally relevant concentrations has been received an increasing attention, and their influence on the bioavailability of personal care products has been seldom studied. Here, the toxicity of AgNPs in typical diatom Navicula sp. was explored, and their influence on the bioavailability of typical personal care products such as triclosan (TCS) and galaxolide (HHCB) was also investigated. The underlying toxicity mechanisms were explored using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Low concentrations of AgNPs (10 and 50 μg L-1) induced no observable responses of Navicula sp., in terms of growth rate, chlorophyll contents, and malondialdehyde accumulation. Furthermore, low doses of AgNPs could attenuate TCS or HHCB toxicity to Navicula sp., which was mainly attributed to the reduced oxidative stress. Metabolomics revealed that the disruption of DNA or RNA synthesis and instability of cytokinin-like substances may be also the reasons for the toxicity of AgNPs and TCS to Navicula sp. The damaged algal photosynthesis exposed to HHCB may be recovered by AgNPs, and the presence of signal chemicals (dehydrophytosphingosine and cardamonin) also showed a recovered algal growth. These results emphasize the potential of metabolomics to reveal toxicity mechanism, providing a new perspective on the aquatic risk assessment of nanoparticles and emerging organic pollutants.
Collapse
Affiliation(s)
- Liyan Wei
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Lin
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiman Yue
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
8
|
Ayyanath MM, Shukla MR, Hezema YS, Saxena PK. Straw Mulch Induced Indoleamines Alleviate Reproductive Depression in Cold Sensitive Hazelnut Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2577. [PMID: 37447137 DOI: 10.3390/plants12132577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Climate change is forcing physiological changes, especially in temperate trees, in which the reproduction phase has been affected harshly, eventually resulting in poor performance. Erratic fluctuations during the flowering periods, predominantly in cold-sensitive, yet industry-desired (sourced), hazelnut cultivars have been causing at least a 10-fold decline in the nut yield. Indoleamines have been noted to provide protection during such abiotic stress conditions. In this study, we investigated the potential involvement of the indoleamine pathway in countering reproductive depression in cold-sensitive hazelnuts by blanketing the ground with wheat straw mulch. The female flower ratio; titers of tryptophan, serotonin, and melatonin; and indoleamine pathway gene regulation were the endpoints for assessing the effects of straw mulch. In the preceding year, we noted that the occurrence of phenological events through the modulation of indoleamines was necessitated via percolation of snowmelt into the rootzone. Otherwise, reproductive depression was noted, especially in harsh conditions, such as 'no snow' or when the rootzone was covered with a plastic sheet to disallow water percolation. When cold-sensitive hazelnut cultivars that were subjected to such deleterious treatments in the preceding years' experiments were treated with straw mulch, the female flower ratio was unaffected and remained on par with that of the cold-hardy locally adapted cultivars. Tryptophan accumulation improved in the (cold-sensitive) sourced cultivars treated with straw mulch and was available as serotonin to counter the cold stress. Lower titers of melatonin explained the slight improvement in female ratio in the sourced cultivars blanketed with straw mulch. ASMT gene regulation via straw mulch treatment emphasized its role in abiotic stress mitigation. A negative trend was noted when improved flowering was compared to the decreased expression of the ASMT gene. Horticultural changes, such as mulch, should provide mitigating solutions to relieve reproductive depression in cold-sensitive hazelnuts, alongside implications in other horticultural crops. The indoleamine toolkit (cellular markers) developed in this study provides insights into the mechanisms of cold sensitivity (abiotic stress) and plausible solutions, such as exogenous application of indoleamines, to propagate climate resilient plant materials with an enhanced capacity to mitigate abiotic stress conditions.
Collapse
Affiliation(s)
- Murali-Mohan Ayyanath
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mukund R Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yasmine S Hezema
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Horticulture, Damanhour University, Damanhour, El-Beheira 22713, Egypt
| | - Praveen K Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Jolayemi OL, Malik AH, Vetukuri RR, Saripella GV, Kalyandurg PB, Ekblad T, Yong JWH, Olsson ME, Johansson E. Metabolic Processes and Biological Macromolecules Defined the Positive Effects of Protein-Rich Biostimulants on Sugar Beet Plant Development. Int J Mol Sci 2023; 24:9720. [PMID: 37298671 PMCID: PMC10253764 DOI: 10.3390/ijms24119720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different soils (low and high nutrient; LNC and HNC) were used as PBBs. The effect of these PBBs on agronomic traits, sugars, protein, and peptides, as well as metabolic processes, were evaluated on sugar beet in comparison with no treatment (control) and treatment with nutrient solution (NS). The results showed a significant growth enhancement of the plants using HWG and PF across the two soils. Sucrose and total sugar content in the roots were high in NS-treated plants and correlated to root growth in HNC soil. Traits related to protein composition, including nitrogen, peptide, and RuBisCO contents, were enhanced in PBB-treated plants (mostly for HWG and PF at 2 g/kg soil) by 100% and >250% in HNC and LNC, respectively, compared to control. The transcriptomic analysis revealed that genes associated with ribosomes and photosynthesis were upregulated in the leaf samples of plants treated with either HWG or PP compared to the control. Furthermore, genes associated with the biosynthesis of secondary metabolites were largely down-regulated in root samples of HWG or PF-treated plants. Thus, the PBBs enhanced protein-related traits in the plants through a higher transcription rate of genes related to protein- and photosynthesis, which resulted in increased plant growth, especially when added in certain amounts (2 g/kg soil). However, sucrose accumulation in the roots of sugar beet seemed to be related to the easy availability of nitrogen.
Collapse
Affiliation(s)
- Okanlawon L. Jolayemi
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Ali H. Malik
- Nelson Seed Development AB, SE-223 63 Lund, Sweden;
- Nelson Garden AB, SE-362 31 Tingsryd, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Ganapathi V. Saripella
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | | | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden;
| | - Marie E. Olsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-234 22 Lomma, Sweden; (O.L.J.); (R.R.V.); (G.V.S.); (P.B.K.); (M.E.O.)
| |
Collapse
|
11
|
Yang Y, Xu J, Li Y, He Y, Yang Y, Liu D, Wu C. Effects of Coumarin on Rhizosphere Microbiome and Metabolome of Lolium multiflorum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1096. [PMID: 36903956 PMCID: PMC10005730 DOI: 10.3390/plants12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rhizosphere microorganisms can help plants absorb nutrients, coordinate their growth, and improve their environmental adaptability. Coumarin can act as a signaling molecule that regulates the interaction between commensals, pathogens, and plants. In this study, we elucidate the effect of coumarin on plant root microorganisms. To provide a theoretical basis for the development of coumarin-derived compounds as biological pesticides, we determined the effect of coumarin on the root secondary metabolism and rhizosphere microbial community of annual ryegrass (Lolium multiflorum Lam.). We observed that a 200 mg/kg coumarin treatment had a negligible effect on the rhizosphere soil bacterial species of the annual ryegrass rhizosphere, though it exhibited a significant effect on the abundance of bacteria in the rhizospheric microbial community. Under coumarin-induced allelopathic stress, annual ryegrass can stimulate the colonization of beneficial flora in the root rhizosphere; however, certain pathogenic bacteria, such as Aquicella species, also multiply in large numbers in such conditions, which may be one of the main reasons for a sharp decline in the annual ryegrass biomass production. Further, metabolomics analysis revealed that the 200 mg/kg coumarin treatment triggered the accumulation of a total of 351 metabolites, of which 284 were found to be significantly upregulated, while 67 metabolites were significantly downregulated in the T200 group (treated with 200 mg/kg coumarin) compared to the CK group (control group) (p < 0.05). Further, the differentially expressed metabolites were primarily associated with 20 metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, glutathione metabolism, etc. We found significant alterations in the phenylpropanoid biosynthesis and purine metabolism pathways (p < 0.05). In addition, there were significant differences between the rhizosphere soil bacterial community and root metabolites. Furthermore, changes in the bacterial abundance disrupted the balance of the rhizosphere micro-ecosystem and indirectly regulated the level of root metabolites. The current study paves the way towards comprehensively understanding the specific relationship between the root metabolite levels and the abundance of the rhizosphere microbial community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Wu
- Correspondence: ; Tel.: +86-(13)-665293134
| |
Collapse
|
12
|
He L, Wang H, Sui Y, Miao Y, Jin C, Luo J. Genome-wide association studies of five free amino acid levels in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1048860. [PMID: 36420042 PMCID: PMC9676653 DOI: 10.3389/fpls.2022.1048860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.) is one of the important staple foods for human consumption and livestock use. As a complex quality trait, free amino acid (FAA) content in rice is of nutritional importance. To dissect the genetic mechanism of FAA level, five amino acids' (Val, Leu, Ile, Arg, and Trp) content and 4,325,832 high-quality SNPs of 448 rice accessions were used to conduct genome-wide association studies (GWAS) with nine different methods. Of these methods, one single-locus method (GEMMA), seven multi-locus methods (mrMLM, pLARmEB, FASTmrEMMA, pKWmEB, FASTmrMLM, ISIS EM-BLASSO, and FarmCPU), and the recent released 3VmrMLM were adopted for methodological comparison of quantitative trait nucleotide (QTN) detection and identification of stable quantitative trait nucleotide loci (QTLs). As a result, 987 QTNs were identified by eight multi-locus GWAS methods; FASTmrEMMA detected the most QTNs (245), followed by 3VmrMLM (160), and GEMMA detected the least QTNs (0). Among 88 stable QTLs identified by the above methods, 3VmrMLM has some advantages, such as the most common QTNs, the highest LOD score, and the highest proportion of all detected stable QTLs. Around these stable QTLs, candidate genes were found in the GO classification to be involved in the primary metabolic process, biosynthetic process, and catalytic activity, and shown in KEGG analysis to have participated in metabolic pathways, biosynthesis of amino acids, and tryptophan metabolism. Natural variations of candidate genes resulting in the content alteration of five FAAs were identified in this association panel. In addition, 95 QTN-by-environment interactions (QEIs) of five FAA levels were detected by 3VmrMLM only. GO classification showed that the candidate genes got involved in the primary metabolic process, transport, and catalytic activity. Candidate genes of QEIs played important roles in valine, leucine, and isoleucine degradation (QEI_09_03978551 and candidate gene LOC_Os09g07830 in the Leu dataset), tryptophan metabolism (QEI_01_00617184 and candidate gene LOC_Os01g02020 in the Trp dataset), and glutathione metabolism (QEI_12_09153839 and candidate gene LOC_Os12g16200 in the Arg dataset) pathways through KEGG analysis. As an alternative of the multi-locus GWAS method, these findings suggested that the application of 3VmrMLM may provide new insights into better understanding FAA accumulation and facilitate the molecular breeding of rice with high FAA level.
Collapse
Affiliation(s)
- Liqiang He
- College of Tropical Crops, Hainan University, Haikou, China
| | - Huixian Wang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yao Sui
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yuanyuan Miao
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Cheng Jin
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
13
|
Pesti-Asbóth G, Molnár-Bíróné P, Forgács I, Remenyik J, Dobránszki J. Ultrasonication affects the melatonin and auxin levels and the antioxidant system in potato in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:979141. [PMID: 36247572 PMCID: PMC9558230 DOI: 10.3389/fpls.2022.979141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is an ancient hormone whose physiological effects have been extensively studied in animals and human. We now know that it also plays a prominent role in the growth and development of plants. In our present experiment, the relationship between endogenous melatonin and the antioxidant system was investigated in potato plant grown in vitro. Changes in redox homeostasis under ultrasound stress were examined. The concentration of small molecule antioxidants and enzymes of the three-level antioxidant pathway was measured. ELISA method was used to determine the melatonin levels in plant tissues at each growth stage (0 h, 24 h, 48 h, 1 week, and 4 weeks after subculturing the explants) both in control and ultrasound-treated plants. Ultrasound stress activated the three-level defense system and decreased the endogenous melatonin levels. Melatonin was able to provide protection against membrane damage caused by drastic ultrasound treatment. Melatonin at the heart of the redox network is a key component regulating various biochemical, cellular, and physiological responses. It has a dual role, as it is able to act both as a growth regulator and an antioxidant. A close relationship was evidenced between the plant hormone indole-3-acetic acid and melatonin and ascorbic acid.
Collapse
Affiliation(s)
- Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Piroska Molnár-Bíróné
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Ildikó Forgács
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
14
|
Antifungal Peptide P852 Controls Fusarium Wilt in Faba Bean (Viciafaba L.) by Promoting Antioxidant Defense and Isoquinoline Alkaloid, Betaine, and Arginine Biosyntheses. Antioxidants (Basel) 2022; 11:antiox11091767. [PMID: 36139841 PMCID: PMC9495604 DOI: 10.3390/antiox11091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Green pesticides are highly desirable, as they are environmentally friendly and efficient. In this study, the antifungal peptide P852 was employed to suppress Fusarium wilt in the Faba bean. The disease index and a range of physiological and metabolomic analyses were performed to explore the interactions between P852 and the fungal disease. The incidence and disease index of Fusarium wilt were substantially decreased in diseased Faba beans that were treated with two different concentrations of P852 in both the climate chamber and field trial. For the first time, P852 exhibited potent antifungal effects on Fusarium in an open field condition. To explore the mechanisms that underlie P852′s antifungal effects, P852 treatment was found to significantly enhance antioxidant enzyme capacities including guaiacol peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and the activities of antifungal enzymes including chitinase and β-1,3-glucanase, as well as plant dry and fresh weights, and chlorophyll content compared to the control group (p ≤ 0.05). Metabolomics analysis of the diseased Faba bean treated with P852 showed changes in the TCA cycle, biological pathways, and many primary and secondary metabolites. The Faba bean treated with a low concentration of P852 (1 μg/mL, IC50) led to upregulated arginine and isoquinoline alkaloid biosynthesis, whereas those treated with a high concentration of P852 (10 μg/mL, MFC) exhibited enhanced betaine and arginine accumulation. Taken together, these findings suggest that P852 induces plant tolerance under Fusarium attack by enhancing the activities of antioxidant and antifungal enzymes, and restoring plant growth and development.
Collapse
|
15
|
Effects of Naphthaleneacetic Acid, Indole-3-Butyric Acid and Zinc Sulfate on the Rooting and Growth of Mulberry Cuttings. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mulberry tree (Morus alba) is a perennial and fast-growing tree distributed worldwide under different climatic conditions. Most of the world’s silk production (>90%) is facilitated by the feeding of silkworm larvae on the leaves of mulberry (Morus alba L.) varieties. Therefore, exploration of the protocol for improving the propagation efficiency and increasing the reproductive capacity of M. alba varieties could be of great significance. This study aimed to determine the effect of four concentrations (0, 100, 200 and 400 mg L−1) each of naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), and zinc sulfate (0, 100 and 200 mg L−1), supplied separately or combined, on the rooting and growth of mulberry cuttings. M. alba cuttings were immersed for 5 s in each solution using the quick-dip method and subsequently, the cuttings were dried and planted in plastic pots and maintained in a greenhouse for 60 days. The number of leaves (NL), longest root size (LRS), longest stem size (LSS), number of rooted cuttings (NRC), number of stems per tree (NSP), rooting percentage (RP), wet root weight (WRW), dry root weight (DRW), wet stem weight (WSW), dry stem weight (DSW), wet leaf weight (WLW) and dry leaf weight (DLW) were evaluated. The results obtained showed an increase in all growth parameters of the mulberry cuttings. Treatments of hormones (IBA and NAA) and Zn sulfate were effective on LSS, LRS and WSW. The highest values of LSS were obtained for the treatments T5, T6, T14, T15, T16 and T18. Moreover, T5, T12 and T10 showed the highest values of LRS. The highest value of WSW was observed for T18, T5, T14, T15 and T16. The highest values of WLW and DLW were observed in T20 and T14. Dry stem weight (DSW) was high in T18 and T14. The application of NAA (at 200 mg L−1), IBA (200 and 400 mg L−1) and Zn sulfate (200 and 400 mg L−1), either alone or in double combination, can be a suitable and reliable method for mulberry propagation.
Collapse
|
16
|
Chitosan and Gold Nanoparticles Supplementation for Augmentation of Indole-3-Acetic Acid Production by Rhizospheric Pseudomonas aeruginosa and Plant Growth Enhancement. Curr Microbiol 2022; 79:185. [PMID: 35524857 DOI: 10.1007/s00284-022-02850-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
The present study has been focused to evaluate the effect of chitosan nanoparticles (CNPs) and gold nanoparticles (AuNPs) on the phytohormone production by rhizospheric Pseudomonas aeruginosa. The gold nanoparticles were synthesized biologically and characterized by UV-Visible spectrophotometry, transmission electron microscopy, and X-ray diffraction analysis. The indole-3-acetic acid (IAA) production by P. aeruginosa supplemented with CNPs and AuNPs was quantified by using Salkowski's method and confirmed by high-performance liquid chromatography (HPLC) analysis. This revealed the effect of 5 mg/mL CNPs and 100 µg/mL AuNPs to enhance the IAA production by P. aeruginosa. By Salkowski's method, 07.16 ± 0.28 and 09.56 ± 0.28 µg/mL of IAA could be detected in the samples prepared from P. aeruginosa supplemented with 5 mg/mL CNPs and 100 µg/mL AuNPs, respectively. HPLC analysis also confirmed the production of IAA by P. aeruginosa. The CNPs and AuNPs-supplemented P. aeruginosa was also found to have enhancement effect on the shoot length (25.25 ± 0.85 cm and 26.57 ± 0.73 cm) and fresh weight (0.94 ± 0.09 g and 0.96 ± 0.09 g) of Vigna unguiculata plants, which highlight the significance of the study and the agricultural promises of nanomaterials-supplemented rhizobacteria.
Collapse
|
17
|
Othibeng K, Nephali L, Myoli A, Buthelezi N, Jonker W, Huyser J, Tugizimana F. Metabolic Circuits in Sap Extracts Reflect the Effects of a Microbial Biostimulant on Maize Metabolism under Drought Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040510. [PMID: 35214843 PMCID: PMC8877938 DOI: 10.3390/plants11040510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/17/2023]
Abstract
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology remains enigmatic. Thus, this study is a metabolomics work to unravel metabolic circuits in sap extracts from maize plants treated with a microbial biostimulant, under normal and drought conditions. The biostimulant, which was a consortium of different Bacilli strains, was applied at the planting stage, followed by drought stress application. The maize sap extracts were collected at 5 weeks after emergence, and the extracted metabolites were analyzed on liquid chromatography-mass spectrometry platforms. The acquired data were mined using chemometrics and bioinformatics tools. The results showed that under both well-watered and drought stress conditions, the application of the biostimulant led to differential changes in the profiles of amino acids, hormones, TCA intermediates, phenolics, steviol glycosides and oxylipins. These metabolic changes spanned several biological pathways and involved a high correlation of the biochemical as well as structural metabolic relationships that coordinate the maize metabolism. The hypothetical model, postulated from this study, describes metabolic events induced by the microbial biostimulant for growth promotion and enhanced defences. Such understanding of biostimulant-induced changes in maize sap pinpoints to the biochemistry and molecular mechanisms that govern the biostimulant-plant interactions, which contribute to ongoing efforts to generate actionable knowledge of the molecular and physiological mechanisms that define modes of action of biostimulants.
Collapse
Affiliation(s)
- Kgalaletso Othibeng
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Lerato Nephali
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Akhona Myoli
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Nombuso Buthelezi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
| | - Willem Jonker
- International Research and Development Division, Omnia Group, Johannesburg 2021, South Africa; (W.J.); (J.H.)
| | - Johan Huyser
- International Research and Development Division, Omnia Group, Johannesburg 2021, South Africa; (W.J.); (J.H.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (K.O.); (L.N.); (A.M.); (N.B.)
- International Research and Development Division, Omnia Group, Johannesburg 2021, South Africa; (W.J.); (J.H.)
- Correspondence: or ; Tel.: +27-011-559-7784
| |
Collapse
|
18
|
Metabolomics analysis of cucumber fruit in response to foliar fertilizer and pesticides using UHPLC-Q-Orbitrap-HRMS. Food Chem 2022; 369:130960. [PMID: 34500210 DOI: 10.1016/j.foodchem.2021.130960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Pesticides and fertilizers are often used to improve the yield and quality of cucumber fruit. In this study, the effect of pesticide applied with or without foliar fertilizer on the cucumber fruit metabolism was investigated. The results showed that the mixed use of pesticides and foliar fertilizer could significantly increase the contents of organic acids and the antioxidant level. When pesticide was used without foliar fertilizer, cucumber fruit up-regulated (1.3 times) shikimate-phenylpropanoid pathway and improved the antioxidant capacity to deal with the pesticide stress. However, the tricarboxylic acid cycle was up-regulated 1.1 times and the antioxidant capacity was improved to promote the pesticide dissipation when pesticide was applied with foliar fertilizer. These observations indicate that the mixed application of foliar fertilizer and pesticides can regulate related metabolites and metabolic pathways, improve the quality and antioxidant capacity of cucumber fruit, and promote the dissipation of pesticides.
Collapse
|
19
|
Negri S, Commisso M, Avesani L, Guzzo F. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5336-5355. [PMID: 34009335 DOI: 10.1093/jxb/erab220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| |
Collapse
|
20
|
Foliar Urea with N-(n-butyl) Thiophosphoric Triamide for Sustainable Yield and Quality of Pineapple in a Controlled Environment. SUSTAINABILITY 2021. [DOI: 10.3390/su13126880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In agricultural production, nitrogen loss leads to economic loss and is a high environmental risk affecting plant growth, yield, and quality. Use of the N fertilizer with a urease inhibitor is thus necessary to minimize N losses and increase the efficiency of N. This study aimed to evaluate the effects of N-(n-butyl) Thiophosphoric Triamide (NBPT) on the growth, yield, and quality of pineapple. The experiment involved two foliar fertilizer treatments: 1% (w/v) urea solution with NBPT (2.25 mL kg−1 urea) was treated as NLU (NBPT Liquid Urea), and the same concentration of urea without NBPT served as the control. Both were applied 12 times, starting 1 month after planting (MAP) and continuing once a month for 12 months. The application of urea with NBPT notably increased the above-ground dry biomass per plant (20% and 10% at 8 and 12 MAP, respectively), leaf area per plant (23% and 15% at 8 and 12 MAP, respectively), N accumulation per plant (10%), PFPN (Partial Factor Productivity) (13%), and average fruit weight (15%) compared to the treatment with urea alone (control). The analysis of quality parameters indicated that urea with NBPT improves TSS (Total Soluble Solids) (19%), ascorbic acid (10%), and sucrose (14%) but reduces the total organic acid content (21%) in pineapple. When using urea with a urease inhibitor (NBPT), there was a significant improvement in growth, yield, quality, and nitrogen use efficiency, with the additional benefit of reduced nitrogen losses, in combination with easy handling. Hence, urea with a urease inhibitor can be used as a viable alternative for increasing pineapple yield by boosting growth with better fruit quality.
Collapse
|
21
|
Murch SJ, Erland LAE. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. FRONTIERS IN PLANT SCIENCE 2021; 12:683047. [PMID: 34249052 PMCID: PMC8270005 DOI: 10.3389/fpls.2021.683047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995-2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants.
Collapse
|
22
|
Sheikholeslami B, Shukla M, Turi C, Harpur C, Saxena PK. Saving threatened plant species: Reintroduction of Hill's thistle (Cirsium hillii. (Canby) Fernald) to its natural habitat. PLoS One 2020; 15:e0231741. [PMID: 32298393 PMCID: PMC7162482 DOI: 10.1371/journal.pone.0231741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022] Open
Abstract
Hill’s thistle (Cirsium hillii (Canby) Fernald) is a perennial plant endemic to the Great Lakes region of North America. Hill’s thistle is listed as threatened in Ontario and Canada where it is found in globally rare alvar habitats. The main objective of this study was ex-situ conservation of Hill’s thistle using in vitro culture techniques and reintroduction of micropropagated plants back to their natural habitat in Bruce Peninsula National Park, Ontario, Canada. Two out of twenty-nine available seeds were successfully germinated under in vitro condition. An efficient micropropagation protocol was optimized with 100% survival during acclimatization of plantlets in the greenhouse. Three hundred micropropagated plants were reintroduced to twelve different sites within Bruce Peninsula National Park in June and July 2017. Plants were monitored for survival, rosette growth, and flowering on all sites from 2017–2019. After four months of planting, 67 to 99% of the plants were alive in different sites and 90 to 99% of them survived over winter. In the following years, shoot regeneration and flowering were observed on most sites. This study further confirms the benefit of plant tissue culture techniques to ensure revival of Hill’s thistle ecological biodiversity through the reintroduction of micropropagated plants. This approach consisting of the components of conservation, propagation, and reintroduction (CPR) may potentially serve as a model for saving and enriching other species at risk.
Collapse
Affiliation(s)
- Bita Sheikholeslami
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Mukund Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Christina Turi
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | - Cavan Harpur
- Bruce Peninsula National Park, Tobermory, ON, Canada
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
- * E-mail:
| |
Collapse
|