1
|
Li X, Dong S, Pan Q, Liu N, Zhang Y. Antibiotic conjugates: Using molecular Trojan Horses to overcome drug resistance. Biomed Pharmacother 2025; 186:118007. [PMID: 40268370 DOI: 10.1016/j.biopha.2025.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 04/25/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis due to the rapid emergence of multi-drug-resistant bacteria. The paucity of novel antibiotics in the clinical pipeline has exacerbated this issue, thereby warranting the development of new antibacterial therapies. The 'Trojan Horse' strategy entails conjugating antibiotics with bioactive components that not only facilitate the entry of antibiotic molecules into bacterial cells by circumventing the membrane barriers, but also augment the effects of conventional antibiotics against recalcitrant pathogens. These Trojan Horse elements can also serve as a promising tool for repurposing drugs with hitherto unexamined antimicrobial activity, or drugs with limited clinical utility due to considerable toxic side effects. In this review, we have discussed the current state of research on antibiotic conjugates with monoclonal antibodies (mAbs), antimicrobial peptides (AMPs) and the iron-chelating siderophores. The rationale and mechanisms of different antibiotic conjugates have been summarized, and the preclinical and clinical evidence pertaining to the activity of these conjugates against drug-resistant pathogens have been reviewed. Furthermore, the challenges associated with the clinical translation of these novel antimicrobials, and the future research directions have also been discussed. While antibiotic conjugates offer an attractive alternative to conventional antimicrobials, there are several obstacles to their clinical translation. A greater understanding of the mechanisms underlying AMR, and continuing advances in genetic engineering, synthetic biology, and bioinformatics will be crucial in designing more selective, potent, and safe antibiotic conjugates for tackling multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China
| | - Ning Liu
- Department of Rehabilitation, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Fan S, Bai Y, Li Q, Liu L, Wang Y, Xie F, Dong Y, Wang Z, Lv K, Zhu H, Bi H, Zhou X. Novel antibody-antibiotic conjugate using KRM-1657 as payload eliminates intracellular MRSA in vitro and in vivo. Bioorg Chem 2024; 150:107532. [PMID: 38852312 DOI: 10.1016/j.bioorg.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S.aureus within host cells may cause long-term colonization and clinical failure. Current treatments have poor efficacy in clearing intracellular bacteria. Antibody-antibiotic conjugates (AACs) is a novel strategy for eliminating intracellular bacteria. Herein, we use KRM-1657 as payload of AAC for the first time, and we conjugate it with anti S. aureus antibody via a dipeptide linker (Valine-Alanine) to obtain a novel AAC (ASAK-22). The ASAK-22 exhibits good in vitro pharmacokinetic properties and inhibitory activity against intracellular MRSA, with 100 μg/mL of ASAK-22 capable of eliminating intracellular MRSA to the detection limit. Furthermore, the in vivo results demonstrate that a single administration of ASAK-22 significantly reduces the bacterial burden in the bacteremia model, which is superior to the vancomycin treatment.
Collapse
Affiliation(s)
- Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuefan Bai
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing 210029, China
| | - Qilong Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Hongkai Bi
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing 210029, China.
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
3
|
Darbandi A, Abdi M, Dashtbin S, Yaghoubi S, Sholeh M, Kouhsari E, Darbandi T, Ghanavati R, Taheri B. Antibody-Antibiotic Conjugates: A Comprehensive Review on Their Therapeutic Potentials Against BacterialInfections. J Clin Lab Anal 2024; 38:e25071. [PMID: 38867639 PMCID: PMC11211676 DOI: 10.1002/jcla.25071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Antibodies are significant agents in the immune system and have proven to be effective in treating bacterial infections. With the advancement of antibody engineering in recent decades, antibody therapy has evolved widely. AIM This review aimed to investigate a new method as a therapeutic platform for the treatment of bacterial infections and explore the novel features of this method in conferring pathogen specificity to broad-spectrum antibiotics. MATERIAL AND METHODS A literature review was conducted addressing the following topics about antibody-antibiotic conjugates (AACs): (1) structure and mechanism of action; (2) clinical effectiveness; (3) advantages and disadvantages. RESULT Antibody conjugates are designed to build upon the progress made in the development of monoclonal antibodies for the treatment of diseases. Despite the growing emergence of antibiotic resistance among pathogenic bacteria worldwide, novel antimicrobials have not been sufficiently expanded to combat the global crisis of antibiotic resistance. A recently developed strategy for the treatment of infectious diseases is the use of AACs, which are specifically activated only in host cells. CONCLUSION A novel therapeutic AAC employs an antibody to deliver the antibiotic to the bacteria. The AACs can release potent antibacterial components that unconjugated forms may not exhibit with an appropriate therapeutic index. This review highlights how this science has guided the design principles of an impressive AAC and discusses how the AAC model promises to enhance the antibiotic effect against bacterial infections.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research CenterShahed UniversityTehranIran
| | - Milad Abdi
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Shirin Dashtbin
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Sajad Yaghoubi
- Basic Sciences DepartmentNeyshabur University of Medical SciencesNeyshaburIran
| | - Mohammad Sholeh
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Talieh Darbandi
- Pharmaceutical Sciences BranchIslamic Azad University of Medical SciencesTehranIran
| | | | - Behrouz Taheri
- Department of Medical Biotechnology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
4
|
Yus C, Gámez E, Arruebo M. Expert opinion on antimicrobial therapies: is there enough scientific evidence to state that targeted therapies outperform non-targeted ones? Expert Opin Drug Deliv 2024; 21:593-609. [PMID: 38619078 DOI: 10.1080/17425247.2024.2340661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Different active and passive strategies have been developed to fight against pathogenic bacteria. Those actions are undertaken to reduce the bacterial burden while minimizing the possibilities to develop not only antimicrobial resistance but also antimicrobial side-effects such as allergic or hypersensitivity reactions. AREAS COVERED We have reviewed preclinical results that evidence that targeted antimicrobial therapies outperform non-targeted ones. Active selective targeting against pathogenic bacteria has been achieved through the functionalization of antimicrobials, either alone or encapsulated within micro- or nanocarriers, with various recognition moieties. These moieties include peptides, aptamers, antibodies, carbohydrates, extracellular vesicles, cell membranes, infective agents, and other affinity ligands with specific bacterial tropism. Those selective ligands increase retention and enhance effectiveness reducing the side-effects and the required dose to exert the antimicrobial action at the site of infection. EXPERT OPINION When using targeted antimicrobial therapies not only reduced side-effects are observed, but also, compared to the administration of equivalent doses of the non-targeted drugs, a superior efficacy has been demonstrated against planktonic, sessile, and intracellular pathogenic bacterial persisters. The translation of those targeted therapies to subsequent phases of clinical development still requires the demonstration of a reduction in the probabilities for the pathogen to develop resistance when using targeted approaches.
Collapse
Affiliation(s)
- Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Enrique Gámez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
5
|
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
6
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
7
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
8
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
9
|
Goldberg SD, Felix N, McCauley M, Eberwine R, Casta L, Haskell K, Lin T, Palovick E, Klein D, Getts L, Getts R, Zhou M, Bansal-Pakala P, Dudkin V. A Strategy for Selective Deletion of Autoimmunity-Related T Cells by pMHC-Targeted Delivery. Pharmaceutics 2021; 13:1669. [PMID: 34683962 PMCID: PMC8540115 DOI: 10.3390/pharmaceutics13101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis are caused by immune system recognition of self-proteins and subsequent production of effector T cells that recognize and attack healthy tissue. Therapies for these diseases typically utilize broad immune suppression, which can be effective, but which also come with an elevated risk of susceptibility to infection and cancer. T cell recognition of antigens is driven by binding of T cell receptors to peptides displayed on major histocompatibility complex proteins (MHCs) on the cell surface of antigen-presenting cells. Technology for recombinant production of the extracellular domains of MHC proteins and loading with peptides to produce pMHCs has provided reagents for detection of T cell populations, and with the potential for therapeutic intervention. However, production of pMHCs in large quantities remains a challenge and a translational path needs to be established. Here, we demonstrate a fusion protein strategy enabling large-scale production of pMHCs. A peptide corresponding to amino acids 259-273 of collagen II was fused to the N-terminus of the MHC_II beta chain, and the alpha and beta chains were each fused to human IgG4 Fc domains and co-expressed. A tag was incorporated to enable site-specific conjugation. The cytotoxic drug payload, MMAF, was conjugated to the pMHC and potent, peptide-specific killing of T cells that recognize the collagen pMHC was demonstrated with tetramerized pMHC-MMAF conjugates. Finally, these pMHCs were incorporated into MMAF-loaded 3DNA nanomaterials in order to provide a biocompatible platform. Loading and pMHC density were optimized, and peptide-specific T cell killing was demonstrated. These experiments highlight the potential of a pMHC fusion protein-targeted, drug-loaded nanomaterial approach for selective delivery of therapeutics to disease-relevant T cells and new treatment options for autoimmune disease.
Collapse
Affiliation(s)
- Shalom D. Goldberg
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Nathan Felix
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Michael McCauley
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Ryan Eberwine
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Lou Casta
- Genisphere LLC, Hatfield, PA 19440, USA; (L.C.); (E.P.); (L.G.); (R.G.)
| | - Kathleen Haskell
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Tricia Lin
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | | | - Donna Klein
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Lori Getts
- Genisphere LLC, Hatfield, PA 19440, USA; (L.C.); (E.P.); (L.G.); (R.G.)
| | - Robert Getts
- Genisphere LLC, Hatfield, PA 19440, USA; (L.C.); (E.P.); (L.G.); (R.G.)
| | - Mimi Zhou
- Janssen Pharmaceuticals, La Jolla, CA 92121, USA;
| | - Pratima Bansal-Pakala
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| | - Vadim Dudkin
- Janssen Pharmaceuticals, Spring House, Montgomery, PA 19477, USA; (N.F.); (M.M.); (R.E.); (K.H.); (T.L.); (D.K.); (P.B.-P.); (V.D.)
| |
Collapse
|
10
|
Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines (Basel) 2021; 9:1111. [PMID: 34696218 PMCID: PMC8538104 DOI: 10.3390/vaccines9101111] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece; (C.T.); (P.-P.L.); (M.S.); (H.G.)
| |
Collapse
|
11
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
12
|
Streicher LM. Exploring the future of infectious disease treatment in a post-antibiotic era: A comparative review of alternative therapeutics. J Glob Antimicrob Resist 2021; 24:285-295. [PMID: 33484895 DOI: 10.1016/j.jgar.2020.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance is projected to be one of the greatest healthcare challenges of the 21st century. As the efficacy of these critical drugs wanes and the discovery of new antibiotics stagnates, exploration of alternative therapies could offer a much needed solution. Although numerous alternative therapies are currently under investigation, three in particular appear poised for long-term success, namely antimicrobial oligonucleotides, monoclonal antibodies and phage therapy. Antimicrobial oligonucleotides could conceivably offer the greatest spectrum of activity while having the lowest chance of unrecoverable resistance. Bacteriophages, while most susceptible to resistance, are inexhaustible, inexpensive and exceptionally adept at eliminating biofilm-associated infections. And although monoclonal antibodies may have limited access to such recalcitrant bacteria, these agents are uniquely able to neutralise exotoxins and other diffusible virulence factors. This comparative review seeks to illuminate these promising therapies and to encourage the scientific and financial support necessary to usher in the next generation of infectious disease treatment.
Collapse
|
13
|
Cai H, Yip V, Lee MV, Wong S, Saad O, Ma S, Ljumanovic N, Khojasteh SC, Kamath AV, Shen BQ. Characterization of Tissue Distribution, Catabolism, and Elimination of an Anti- Staphylococcus aureus THIOMAB Antibody-Antibiotic Conjugate in Rats. Drug Metab Dispos 2020; 48:1161-1168. [PMID: 32839277 DOI: 10.1124/dmd.120.000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023] Open
Abstract
Invasive Staphylococcus aureus infection is a leading cause of infectious disease-related deaths because S. aureus survives within host phagocytic cells, from which the bacteria are not adequately eliminated using current antibiotic treatments. Anti-S. aureus THIOMAB antibody-antibiotic conjugate (TAC), an anti-S. aureus antibody conjugated with antibiotic payload dmDNA31, was designed to deliver antibiotics into phagocytes, thereby killing intracellular S. aureus Herein, we present the distribution, metabolism/catabolism, and elimination properties for this modality. The tissue distribution of TAC and the release and elimination of its payload dmDNA31 were characterized in rats using multiple approaches. Intravenous injection of unconjugated [14C]dmDNA31 to rats resulted in a rapid clearance in both systemic circulation and tissues, with biliary secretion as the major route of elimination. Six major metabolites were identified. When [14C]dmDNA31 was conjugated to an antibody as TAC and administered to rat intravenously, a sustained exposure was observed in both systemic circulation and tissues. The dmDNA31 in blood and tissues mainly remained in conjugated form after administering TAC, although minimal deconjugation of dmDNA31 from TAC was also observed. Several TAC catabolites were identified, which were mainly eliminated through the biliary-fecal route, with dmDNA31 and deacetylated dmDNA31 as the most abundant catabolites. In summary, these studies provide a comprehensive characterization of the distribution, metabolism/catabolism, and elimination properties of TAC. These data fully support further clinical development of TAC for the invasive and difficult-to-treat S. aureus infection. SIGNIFICANCE STATEMENT: The present studies provide a comprehensive investigation of the absorption, distribution, metabolism/catabolism, and elimination of the first antibody-antibiotic conjugate developed for the treatment of an infectious disease. Although many antibody-drug conjugates are in development for various disease indications, only a limited amount of absorption, distribution, metabolism/catabolism, and elimination information is available in the literature. This study demonstrates the use of radiolabeling technology to delineate the absorption, distribution, metabolism/catabolism, and elimination properties of a complex modality and help address the key questions related to clinical pharmacological studies.
Collapse
Affiliation(s)
- Hao Cai
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Victor Yip
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - M Violet Lee
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Sylvia Wong
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Ola Saad
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Shuguang Ma
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Nina Ljumanovic
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - S Cyrus Khojasteh
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics (H.C., V.Y., A.V.K., B.-Q.S.), BioAnalytical Sciences (M.V.L., S.W., O.S.), Drug Metabolism and Pharmacokinetics (S.M., S.C.K.), and Safety Assessment (N.L.), Genentech Inc., South San Francisco, California
| |
Collapse
|
14
|
Chen XY, Ji P. A Microporous Zn(II)–MOF for Solvent-Free Cyanosilylation and Treatment Effect Against Bacterial Infection on Burn Patients Via Inhibiting the Staphylococcus aureus Biofilm Formation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|