1
|
Flores S, Forister ML, Sulbaran H, Díaz R, Dyer LA. Extreme drought disrupts plant phenology: Insights from 35 years of cloud forest data in Venezuela. Ecology 2023; 104:e4012. [PMID: 36851834 DOI: 10.1002/ecy.4012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/01/2023]
Abstract
The potential effects of climate change on plant reproductive phenology include asynchronies with pollinators and reductions in plant fitness, leading to extinction and loss of ecosystem function. In particular, plant phenology is sensitive to extreme weather events, which are occurring with increasing severity and frequency in recent decades and are linked to anthropogenic climate change and shifts in atmospheric circulation. For 15 plant species in a Venezuelan cloud forest, we documented dramatic changes in monthly flower and fruit community composition over a 35-year time series, from 1983 to 2017, and these changes were linked directly to higher temperatures, lower precipitation, and decreased soil water availability. The patterns documented here do not mirror trends in temperate zones but corroborate results from the Asian tropics. More intense droughts are predicted to occur in the region, which will cause dramatic changes in flower and fruit availability.
Collapse
Affiliation(s)
- Saúl Flores
- Centro de Ecología, Laboratorio de Ecología de Suelos Ambiente y Agricultura del Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Matthew L Forister
- Program in Ecology, Evolution and Conservation Biology and Biology Department, University of Nevada, Reno, Nevada, USA
| | - Hendrik Sulbaran
- Centro de Ecología, Laboratorio de Ecología de Suelos Ambiente y Agricultura del Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Rodrigo Díaz
- Centro de Ecología, Laboratorio de Ecología de Suelos Ambiente y Agricultura del Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Lee A Dyer
- Program in Ecology, Evolution and Conservation Biology and Biology Department, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
2
|
Plant invasion drives liana and tree community assemblages and liana-tree network structure in two moist semi-deciduous forests in Ghana. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Xi X, Zhou W, Li Z, Hu L, Dong Y, Niklas KJ, Sun S. Rare plant species are at a disadvantage when both herbivory and pollination interactions are considered in an alpine meadow. J Anim Ecol 2021; 90:1647-1654. [PMID: 33724452 DOI: 10.1111/1365-2656.13480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
Rare plant species often suffer less damage than common species because of positive density-dependent herbivory, and it has been suggested that this 'rare species advantage' fosters plant species coexistence. However, it is unknown whether rare species have an advantage when pollination interactions are also considered. We hypothesized that a 'positive density-dependent pollination success' across plant species would result in common plants experiencing higher seed set rates compared to rare species, and that positive density-dependent effects would negate or even override the positive density-dependent damage due to herbivory resulting in higher seed loss rates in common plant species. We tested this hypothesis by concurrently examining a plant-predispersal seed predator system and a plant-pollinator system for 24 Asteraceae species growing in an alpine meadow community (Sichuan Province, China). Having previously reported a positive density-dependent effect on seed loss rates due to seed predators, we here focus on the density-dependent effects on pollination success by investigating pollinator species richness, visitation frequencies and seed set rates for each plant species. We also estimated the seed output rate of each plant species as the product of seed set rate and the rate of surviving seeds (i.e. 1 - the seed loss rate). Consistent with our hypothesis, a positive density-dependent effect was observed for pollinator species richness, visitation frequencies and seed set rates across plant species. Moreover, the positive effect overrode the negative density-dependent effect of herbivores on seed production, such that common species tended to have a higher seed output rate than rare species (i.e. we observed a 'rare species disadvantage'). These results indicate that the low seed output rate of rare species might result from a pollination limitation, and that both mutualistic and antagonistic interactions should be examined simultaneously to fully understand plant species coexistence in local communities.
Collapse
Affiliation(s)
- Xinqiang Xi
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wenlong Zhou
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zhao Li
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Hu
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yuran Dong
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Shucun Sun
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing, China.,Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
4
|
Hu X, Zhou W, Li X, Niklas KJ, Sun S. Changes in Community Composition Induced by Experimental Warming in an Alpine Meadow: Beyond Plant Functional Type. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate warming exerts profound effects on plant community composition. However, responses to climate warming are often reported at the community and functional type levels, but not at the species level. To test whether warming-induced changes are consistent among community, functional type, and species levels, we examined the warming-induced changes at different levels in an alpine meadow from 2015 to 2018. The warming was achieved by deploying six (open top) chambers [including three non-warmed chambers and three warmed chambers; 15 × 15 × 2.5 m (height) for each] that resulted in a small increase in mean annual temperature (0.3–0.5°C, varying with years) with a higher increase during the non-growing season (0.4–0.6°C) than in the growing season (0.03–0.47°C). The results show that warming increased plant aboveground biomass but did not change species richness, or Shannon diversity and evenness at the community level. At the functional type level, warming increased the relative abundance of grasses from 3 to 16%, but decreased the relative abundance of forbs from 89 to 79%; relative abundances of sedges and legumes were unchanged. However, for a given functional type, warming could result in contrasting effects on the relative abundance among species, e.g., the abundances of the forb species Geranium pylzowianum, Potentilla anserine, Euphrasia pectinate, and the sedge species Carex atrofusca increased in the warmed (compared to the non-warmed) chambers. More importantly, the difference in species identity between warmed and non-warmed chambers revealed warming-induced species loss. Specifically, four forb species were lost in both types of chambers, one additional forb species (Angelica apaensis) was lost in the non-warmed chambers, and two additional species (one forb species Saussurea stella and one sedge species Blysmus sinocompressus) were lost in the warmed chambers. Consequently, changes at the species level could not be deduced from the results at the community or functional type levels. These data indicate that species-level responses to climate changes must be more intensively studied. This work also highlights the importance of examining species identity (and not only species number) to study changes of community composition in response to climate warming.
Collapse
|
5
|
Hu X, Zhou W, Sun S. Responses of Plant Reproductive Phenology to Winter-Biased Warming in an Alpine Meadow. FRONTIERS IN PLANT SCIENCE 2020; 11:534703. [PMID: 33013961 PMCID: PMC7498618 DOI: 10.3389/fpls.2020.534703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Climate warming is often seasonally asymmetric with a higher temperature increase toward winters than summers. However, the effect of winter-biased warming on plant reproductive phenology has been seldom investigated under natural field conditions. The goal of this study was to determine the effects of winter-biased warming on plant reproductive phenologies. In an alpine meadow of Tibetan Plateau, we deployed six large (15 m × 15 m × 2.5 m height) open top chambers (three warmed chambers and three non-warmed chambers) to achieve winter-biased warming (i.e., a small increase in annual mean temperature with a greater increase towards winter than summer). We investigated three phenophases (onset and offset times and duration) for both the flowering and fruiting phenologies of 11 common species in 2017 and 8 species in 2018. According to the vernalization theory, we hypothesized that mild winter-biased warming would delay flowering and fruiting phenologies. The data indicated that the phenological responses to warming were species-specific (including positive, neutral, and negative responses), and the number of plant species advancing flowering (by averagely 4.5 days) and fruiting onset times (by averagely 3.6 days) was higher than those delaying the times. These changes were inconsistent with the vernalization hypothesis (i.e. plants need to achieve a threshold of chilling before flowering) alone, but can be partly explained by the accumulated temperature hypothesis (i.e. plants need to achieve a threshold of accumulative temperature before flowering) and/or the overtopping hypothesis (i.e. plants need to reach community canopy layer before flowering). The interspecific difference in the response of reproductive phenology could be attributed to the variation in plant traits including plant height growth, the biomass ratio of root to shoot, and seed mass. These results indicate that a mild winter-biased warming may trigger significant change in plant reproductive phenology in an alpine meadow.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenlong Zhou
- Department of Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shucun Sun
- Department of Biology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Simmons BI, Wauchope HS, Amano T, Dicks LV, Sutherland WJ, Dakos V. Estimating the risk of species interaction loss in mutualistic communities. PLoS Biol 2020; 18:e3000843. [PMID: 32866143 PMCID: PMC7485972 DOI: 10.1371/journal.pbio.3000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/11/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
Interactions between species generate the functions on which ecosystems and humans depend. However, we lack an understanding of the risk that interaction loss poses to ecological communities. Here, we quantify the risk of interaction loss for 4,330 species interactions from 41 empirical pollination and seed dispersal networks across 6 continents. We estimate risk as a function of interaction vulnerability to extinction (likelihood of loss) and contribution to network feasibility, a measure of how much an interaction helps a community tolerate environmental perturbations. Remarkably, we find that more vulnerable interactions have higher contributions to network feasibility. Furthermore, interactions tend to have more similar vulnerability and contribution to feasibility across networks than expected by chance, suggesting that vulnerability and feasibility contribution may be intrinsic properties of interactions, rather than only a function of ecological context. These results may provide a starting point for prioritising interactions for conservation in species interaction networks in the future. A study of 4,330 species interactions from 41 empirical pollination and seed dispersal networks across six continents reveals that species interactions which are most vulnerable to extinction are also the most important for ecological community stability; moreover, vulnerable interactions that are important for stability tend to be important and vulnerable wherever they occur.
Collapse
Affiliation(s)
- Benno I Simmons
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Hannah S Wauchope
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Tatsuya Amano
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, United Kingdom
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Lynn V Dicks
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Agroecology Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution (ISEM), CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
How accurate are estimates of flower visitation rates by pollinators? Lessons from a spatially explicit agent-based model. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2020.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|