1
|
Rasmussen KL, Thieringer PH, Nevadomski S, Martinez AM, Dawson KS, Corsetti FA, Zheng XY, Lv Y, Chen X, Celestian AJ, Berelson WM, Rollins NE, Spear JR. Living to Lithified: Construction and Preservation of Silicified Biomarkers. GEOBIOLOGY 2024; 22:1-30. [PMID: 39319483 DOI: 10.1111/gbi.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/21/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Whole microorganisms are rarely preserved in the fossil record but actively silicifying environments like hot springs provide an opportunity for microbial preservation, making silicifying environments critical for the study of microbial life through time on Earth and possibly other planetary bodies. Yet, the changes that biosignatures may undergo through lithification and burial remain unconstrained. At Steep Cone Geyser in Yellowstone National Park, we collected microbial material from (1) the living system across the active outflows, (2) the silicified areas adjacent to flows, and (3) lithified and buried material to assess the preservation of biosignatures and their changes across the lithification transect. Five biofabrics, built predominantly by Cyanobacteria Geitlerinema, Pseudanabaenaceae, and Leptolyngbya with some filamentous anoxygenic phototrophs contributions, were identified and tracked from the living system through the process of silicification/lithification. In the living systems, δ30Si values decrease from +0.13‰ in surficial waters to -2‰ in biomat samples, indicating a kinetic isotope effect potentially induced by increased association with actively growing biofabrics. The fatty acids C16:1 and iso-C14:0 and the hydrocarbon C17:0 were disentangled from confounding signals and determined to be reliable lipid biosignatures for living biofabric builders and tenant microorganisms. Builder and tenant microbial biosignatures were linked to specific Cyanobacteria, anoxygenic phototrophs, and heterotrophs, which are prominent members of the living communities. Upon lithification and burial, silicon isotopes of silicified biomass began to re-equilibrate, increasing from δ30Si -2‰ in living biomats to -0.55‰ in lithified samples. Active endolithic microbial communities were identified in lithified samples and were dominated by Cyanobacteria, heterotrophic bacteria, and fungi. Results indicate that distinct microbial communities build and inhabit silicified biofabrics through time and that microbial biosignatures shift over the course of lithification. These findings improve our understanding of how microbial communities silicify, the biomarkers they retain, and transitionary impacts that may occur through lithification and burial.
Collapse
Affiliation(s)
- Kalen L Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Patrick H Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Sophia Nevadomski
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Aaron M Martinez
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Katherine S Dawson
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Xin-Yuan Zheng
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiwen Lv
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xinyang Chen
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron J Celestian
- Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Nick E Rollins
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Quantitative Biosciences and Engineering Programs, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
2
|
Gómez-Leyva Y, Torrecillas A, Aboal M. Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds. Mar Drugs 2024; 22:334. [PMID: 39195450 DOI: 10.3390/md22080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacterial biodiversity and potential toxicity in coastal lagoons have barely been studied despite these transitional water systems being very important in conservation and for the preservation of economic resources. Most of these transitional systems have been affected by eutrophication, and climate change will severely affect them by promoting cyanobacteria growth, especially in Mediterranean areas. This study aims to characterize the diversity of epipelic and epiphytic cyanobacteria species in a Mediterranean coastal lagoon and their potential for toxins production (microcystins and saxitoxins). Strains were isolated and genetically identified. Toxins were extracted and quantified by LC/MS-MS. All the taxa belong to the former Oscillatoriales. The presence of Nodosilinea and Toxifilum is reported for the first time for Spanish waters, but Pseudanabaena, Phormidium, Geitlerinema and Synechococcus also formed part of benthic mats. All the strains contained Microcystin-YR (MC-YR), but saxitoxin (STX) was present only in the extracts of Nodosilinea and Pseudanabena. MC-LY, MC-LW and [D-Asp3] MC-LR were detected in the extracts of Synechococcus and MC-LF in Toxifilum, but at concentrations that did not permit quantification. Toxins production by epipelic and epiphytic strains in coastal lagoons may represent a hazard, but also an opportunity to obtain potentially interesting compounds that should be further studied.
Collapse
Affiliation(s)
- Yerai Gómez-Leyva
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| | - Alejandro Torrecillas
- Service of Proteomics, CAID Building, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| | - Marina Aboal
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
3
|
Tyagi S, Singh RK, Kumar A. Lipophilic bioactive compounds from thermophilic cyanobacterium Leptolyngbya sp. HNBGU-004: Implications for countering VRSA resistance. Heliyon 2024; 10:e29754. [PMID: 38681559 PMCID: PMC11046194 DOI: 10.1016/j.heliyon.2024.e29754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Extremophiles thrive in extreme conditions, showcasing rich and unexplored diversity. This resilience hints at the existence of novel biochemical pathways and unique bioactive compounds. In contrast, the issue of drug resistance and excessive misuse of antibiotics in various settings, such as healthcare, agriculture, and veterinary medicine, has contributed to the emergence and spread of drug-resistant microorganisms. In the present research, Leptolyngbya sp. HNBGU-004, was obtained from an extreme location, a hot water spring in the Garhwal Himalayan region of India. The lipophilic fraction derived from Leptolyngbya sp. HNBGU-004 exhibited significant inhibitory effects against vancomycin-resistant Staphylococcus aureus (VRSA), displaying a bactericidal concentration of 0.5 mg mL-1. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis of the lipophilic extract unveiled the major constituents. Leptolyngbya sp. HNBGU-004 holds significant promise as a primary source of potent anti-vancomycin-resistant S. aureus components. These findings emphasize the importance of Leptolyngbya sp. HNBGU-004 as a foundational source for use as both a synergistic and alternative agent against VRSA.
Collapse
Affiliation(s)
- Sachin Tyagi
- Department of Microbiology, School of Life Sciences and Technology, IIMT University, Meerut, UP, 250001, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H.N.B Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ashok Kumar
- Department of Biotechnology, School of Life Sciences and Technology, IIMT University, Meerut, UP, 250001, India
| |
Collapse
|
4
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
5
|
Wong CKF, Chong TY, Tan J, Wong WL. Isolation and Characterisation of Culturable Thermophilic Cyanobacteria from Perak Hot Springs and their Plant Growth Promoting Properties Effects on Rice Seedlings ( Oryza sativa L.). Trop Life Sci Res 2023; 34:1-22. [PMID: 37860094 PMCID: PMC10583845 DOI: 10.21315/tlsr2023.34.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/02/2023] [Indexed: 10/21/2023] Open
Abstract
Malaysia is home to a number of hot springs that are rich in microbial diversity including the photosynthetic cyanobacteria. Although this microbial community has been characterised based on metagenomics approach, the culturable thermophilic isolates have not been isolated and characterised extensively. Compared to the mesophiles, information on plant growth promoting (PGP) properties of these thermophiles remain largely untapped. As the amount of arable land for microbial bioprospecting is decreasing due to extensive human activities, the search for alternative source for microbial strains with PGP properties is important for the development of potential biofertilisers. This study sought to isolate and characterise culturable cyanobacteria strains from two local hot springs - Sungai Klah (SK) and Lubuk Timah (LT) located in Perak using morphological and molecular methods. The IAA production from the axenic cultures were measured. The PGP properties were also measured by priming the rice seeds with cyanobacterial water extracts. A total of six strains were isolated from both hot springs. Strains LTM and LTW from LT were identified as Leptolyngbya sp. whereas strains SEM, SEH, STH and STM were identified as Thermosynechococcus elongatus. All six strains produced IAA ranged from 670.10 pg/μL to 2010 pg/μL. The water extracts were found to increase the seed amylase activity of the rice seeds from 5th day of germination (DAG) to 10th DAG. In general, the IAA production and increased seed amylase activity might have contributed in enhancing the longest root length, shoot length and root-to-shoot (RS) ratio. To conclude, the thermophilic cyanobacteria from hot springs can be further exploited as a novel source of PGP microbes for the development of biofertilsers.
Collapse
Affiliation(s)
- Clement Kiing Fook Wong
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| | - Tzu Yee Chong
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| | - Ji Tan
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| | - Wey Lim Wong
- Department of Biological Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| |
Collapse
|
6
|
Te SH, Kok JWK, Luo R, You L, Sukarji NH, Goh KC, Sim ZY, Zhang D, He Y, Gin KYH. Coexistence of Synechococcus and Microcystis Blooms in a Tropical Urban Reservoir and Their Links with Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1613-1624. [PMID: 36653016 PMCID: PMC9894078 DOI: 10.1021/acs.est.2c04943] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Bacteria play a crucial role in driving ecological processes in aquatic ecosystems. Studies have shown that bacteria-cyanobacteria interactions contributed significantly to phytoplankton dynamics. However, information on the contribution of bacterial communities to blooms remains scarce. Here, we tracked changes in the bacterial community during the development of a cyanobacterial bloom in an equatorial estuarine reservoir. Two forms of blooms were observed simultaneously corresponding to the lotic and lentic characteristics of the sampling sites where significant spatial variabilities in physicochemical water quality, cyanobacterial biomass, secondary metabolites, and cyanobacterial/bacterial compositions were detected. Microcystis dominated the upstream sites during peak periods and were succeeded by Synechococcus when the bloom subsided. For the main body of the reservoir, a mixed bloom featuring coccoid and filamentous cyanobacteria (Microcystis, Synechococcus, Planktothricoides, Nodosilinea, Raphidiopsis, and Prochlorothrix) was observed. Concentrations of the picocyanobacteria Synechococcus remained high throughout the study, and their positive correlations with cylindrospermopsin and anatoxin-a suggested that they could produce cyanotoxins, which pose more damaging impacts than previously supposed. Succession of different cyanobacteria (Synechococcus and Microcystis) following changes in nutrient composition and ionic strength was demonstrated. The microbiomes associated with blooms were unique to the dominant cyanobacteria. Generic and specialized bloom biomarkers for the Microcystis and downstream mixed blooms were also identified. Microscillaceae, Chthoniobacteraceae, and Roseomonas were the major heterotrophic bacteria associated with Microcystis bloom, whereas Phycisphaeraceae and Methylacidiphilaceae were the most prominent groups for the Synechococcus bloom. Collectively, bacterial community can be greatly deviated by the geological condition, monsoon season, cyanobacterial density, and dominant cyanobacteria.
Collapse
Affiliation(s)
- Shu Harn Te
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Jerome Wai Kit Kok
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| | - Rong Luo
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Luhua You
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Nur Hanisah Sukarji
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Kwan Chien Goh
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Zhi Yang Sim
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Dong Zhang
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| |
Collapse
|
7
|
Yadav S, Anam GB, Ahn YH. Comparative growth characteristics and interspecific competitive interaction of two cyanobacteria, Phormidium autumnale and Nostoc sp. . JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:78-89. [PMID: 34786721 DOI: 10.1002/jeq2.20305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
This study examined the growth characteristics and competitive interaction of two cyanobacteria, Phormidium autumnale GJ_2B_I1 and Nostoc sp. DS_2B_I1, which were newly isolated from a southeast river (Nakdong) during the cyanobacterial harmful algal bloom (CyanoHAB) season in Korea. As major environmental parameters, water temperature (25 and 30 °C) and alkalinity (19-78 mg CaCO3 L-1 ) and nitrate concentration (1.5-3.5 mg NO3 -N L-1 ) were selected based on the water environmental monitoring data during the CyanoHAB season. Unlike P. autumnale, Nostoc sp. has a relatively high growth rate under both monoculture and co-culture and prefers the maximum environmental conditions (30 °C and 78 mg CaCO3 L-1 ; pH 9) during the CyanoHAB season. In addition, the growth of P. autumnale is relatively unaffected by alkalinity. Nitrogen (N) stress also has a limiting effect in the interspecific interactions of both cyanobacterial strains. All other cases except for Nostoc sp. in a co-culture showed a considerable increase in growth rate with increasing N content (1.5-3.5 mg NO3 -N L-1 ), showing 20-64% under the minimum field conditions (25 °C and 19 mg CaCO3 L-1 ; pH 7) and 18-140% under the maximum field conditions. The results show that the growth of P. autumnale can be stimulated by enhanced N stress. On the other hand, Nostoc sp. is less affected by N stress compared with P. autumnale. Therefore, it has excellent potential to be a major group of CyanoHABs because of their relatively high growth rate, particularly in the range of N tested.
Collapse
Affiliation(s)
- Seema Yadav
- Dep. of Civil Engineering, Yeungnam Univ., Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Giridhar Babu Anam
- Dep. of Civil Engineering, Yeungnam Univ., Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young-Ho Ahn
- Dep. of Civil Engineering, Yeungnam Univ., Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
8
|
Yadav S, Anam GB, Ahn YH. Influence of Abiotic Factors on the Growth of Cyanobacteria Isolated from Nakdong River, South Korea 1. JOURNAL OF PHYCOLOGY 2021; 57:874-885. [PMID: 33556185 DOI: 10.1111/jpy.13143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Changes in physico-chemical factors due to natural climate variability and eutrophication could affect the cyanobacterial growth patterns in aquatic systems that may cause environmental health problems. Based on morphological and 16S rRNA gene analysis, three cyanobacterial species isolated for the first time from the Nakdong River water sample in South Korea were identified as Amazoninema brasiliense, Microcystis elabens, and Nododsilinea nodulosa. The variations in temperature, pH, nitrogen, or phosphorus levels significantly impacted the cyanobacterial growth patterns. The optimal temperature range for the growth of isolates was from 25-30°C. A neutral or weak alkaline environment favored growth; however, A. brasiliense resulted in 44.2-87.5% higher biomass (0.75 g · L-1 as dry solids, DS) and growth rate (0.24 · d-1 ) at pH 7 than the other isolates (0.4-0.52 g DS · L-1 , 0.16-0.19 · d-1 ). The increased nitrate-nitrogen (NO3 -N) concentrations significantly (P < 0.05) favored biomass production and growth rate for A. brasiliense and M. elabens, respectively, and the maximum growth rate was observed for A. brasiliense at 3.5 mg NO3 -N · L-1 . The orthophosphate concentration (PO4 -P) from 0.1 to 0.5 mg PO4 -P · L-1 increased the growth of the isolates. These observations suggest that isolate growth rates in water bodies can vary depending on different physico-chemical parameters. This study contributes to the further understanding of the growth of microalgae in natural freshwater bodies under fluctuating environmental conditions and aquatic ecosystem stability.
Collapse
Affiliation(s)
- Seema Yadav
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Korea
| | - Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Korea
| |
Collapse
|
9
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
10
|
Romeu MJL, Domínguez-Pérez D, Almeida D, Morais J, Campos A, Vasconcelos V, Mergulhão FJM. Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach. BIOFOULING 2020; 36:631-645. [PMID: 32715767 DOI: 10.1080/08927014.2020.1795141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria promote marine biofouling with significant impacts. A qualitative proteomic analysis, by LC-MS/MS, of planktonic and biofilm cells from two cyanobacteria was performed. Biofilms were formed on glass and perspex at two relevant hydrodynamic conditions for marine environments (average shear rates of 4 s-1 and 40 s-1). For both strains and surfaces, biofilm development was higher at 4 s-1. Biofilm development of Nodosilinea sp. LEGE 06145 was substantially higher than Nodosilinea sp. LEGE 06119, but no significant differences were found between surfaces. Overall, 377 and 301 different proteins were identified for Nodosilinea sp. LEGE 06145 and Nodosilinea sp. LEGE 06119. Differences in protein composition were more noticeable in biofilms formed under different hydrodynamic conditions than in those formed on different surfaces. Ribosomal and photosynthetic proteins were identified in most conditions. The characterization performed gives new insights into how shear rate and surface affect the planktonic to biofilm transition, from a structural and proteomics perspective.
Collapse
Affiliation(s)
- Maria João Leal Romeu
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Dany Domínguez-Pérez
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Daniela Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - João Morais
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
| | - Filipe J M Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| |
Collapse
|