1
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Monfared RV, Abdelkarim S, Derdeyn P, Chen K, Wu H, Leong K, Chang T, Lee J, Versales S, Nauli S, Beier K, Baldi P, Alachkar A. Spatiotemporal Mapping of Brain Cilia Reveals Region-Specific Oscillation of Length and Orientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546950. [PMID: 37425809 PMCID: PMC10326993 DOI: 10.1101/2023.06.28.546950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In this study, we conducted high-throughput spatiotemporal analysis of primary cilia length and orientation across 22 mouse brain regions. We developed automated image analysis algorithms, which enabled us to examine over 10 million individual cilia, generating the largest spatiotemporal atlas of cilia. We found that cilia length and orientation display substantial variations across different brain regions and exhibit fluctuations over a 24-hour period, with region-specific peaks during light-dark phases. Our analysis revealed unique orientation patterns of cilia at 45 degree intervals, suggesting that cilia orientation within the brain is not random but follows specific patterns. Using BioCycle, we identified circadian rhythms of cilia length in five brain regions: nucleus accumbens core, somatosensory cortex, and three hypothalamic nuclei. Our findings present novel insights into the complex relationship between cilia dynamics, circadian rhythms, and brain function, highlighting cilia crucial role in the brain's response to environmental changes and regulation of time-dependent physiological processes.
Collapse
|
3
|
Schröder JK, Abdel-Hafiz L, Ali AAH, Cousin TC, Hallenberger J, Rodrigues Almeida F, Anstötz M, Lenz M, Vlachos A, von Gall C, Tundo-Lavalle F. Effects of the Light/Dark Phase and Constant Light on Spatial Working Memory and Spine Plasticity in the Mouse Hippocampus. Cells 2023; 12:1758. [PMID: 37443792 PMCID: PMC10340644 DOI: 10.3390/cells12131758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms in behavior and physiology such as rest/activity and hormones are driven by an internal clock and persist in the absence of rhythmic environmental cues. However, the period and phase of the internal clock are entrained by the environmental light/dark cycle. Consequently, aberrant lighting conditions, which are increasing in modern society, have a strong impact on rhythmic body and brain functions. Mice were exposed to three different lighting conditions, 12 h light/12 h dark cycle (LD), constant darkness (DD), and constant light (LL), to study the effects of the light/dark cycle and aberrant lighting on the hippocampus, a critical structure for temporal and spatial memory formation and navigation. Locomotor activity and plasma corticosterone levels were analyzed as readouts for circadian rhythms. Spatial working memory via Y-maze, spine morphology of Golgi-Cox-stained hippocampi, and plasticity of excitatory synapses, measured by number and size of synaptopodin and GluR1-immunreactive clusters, were analyzed. Our results indicate that the light/dark cycle drives diurnal differences in synaptic plasticity in hippocampus. Moreover, spatial working memory, spine density, and size and number of synaptopodin and GluR1 clusters were reduced in LL, while corticosterone levels were increased. This indicates that acute constant light affects hippocampal function and synaptic plasticity.
Collapse
Affiliation(s)
- Jane K. Schröder
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
- Department of Pediatric Hematology and Oncology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, El-Gomhoria St. 1, Mansoura 35516, Egypt
| | - Teresa C. Cousin
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Johanna Hallenberger
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Filipe Rodrigues Almeida
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Max Anstötz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Maximilian Lenz
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| |
Collapse
|
4
|
Bell MK, Holst MV, Lee CT, Rangamani P. Dendritic spine morphology regulates calcium-dependent synaptic weight change. J Gen Physiol 2022; 154:e202112980. [PMID: 35819365 PMCID: PMC9280073 DOI: 10.1085/jgp.202112980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023] Open
Abstract
Dendritic spines act as biochemical computational units and must adapt their responses according to their activation history. Calcium influx acts as the first signaling step during postsynaptic activation and is a determinant of synaptic weight change. Dendritic spines also come in a variety of sizes and shapes. To probe the relationship between calcium dynamics and spine morphology, we used a stochastic reaction-diffusion model of calcium dynamics in idealized and realistic geometries. We show that despite the stochastic nature of the various calcium channels, receptors, and pumps, spine size and shape can modulate calcium dynamics and subsequently synaptic weight updates in a deterministic manner. Through a series of exhaustive simulations and analyses, we found that the calcium dynamics and synaptic weight change depend on the volume-to-surface area of the spine. The relationships between calcium dynamics and spine morphology identified in idealized geometries also hold in realistic geometries, suggesting that there are geometrically determined deterministic relationships that may modulate synaptic weight change.
Collapse
Affiliation(s)
- Miriam K. Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Maven V. Holst
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
5
|
Cheng WY, Ho YS, Chang RCC. Linking circadian rhythms to microbiome-gut-brain axis in aging-associated neurodegenerative diseases. Ageing Res Rev 2022; 78:101620. [PMID: 35405323 DOI: 10.1016/j.arr.2022.101620] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that both disruption of circadian rhythms and gut dysbiosis are closely related to aging-associated neurodegenerative diseases. Over the last decade, the microbiota-gut-brain axis has been an emerging field and revolutionized studies in pathology, diagnosis, and treatment of neurological disorders. Crosstalk between the brain and gut microbiota can be accomplished via the endocrine, immune, and nervous system. Recent studies have shown that the composition and diurnal oscillation of gut microbiota are influenced by host circadian rhythms. This provides a new perspective for investigating the microbiome-gut-brain axis. We aim to review current understanding and research on the dynamic interaction between circadian rhythms and the microbiome-gut-brain axis. Furthermore, we will address the possible neurodegenerative disease contribution through circadian rhythms and microbiome-gut-brain axis crosstalk.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Ilbay G, Balıkcı A, Köktürk S, Yılmaz MY, Ates N, Baydemır C, Balcı S. Neonatal Tactile Stimulation Downregulates Dendritic Spines in Layer V Pyramidal Neurons of the WAG/Rij Rat Somatosensory Cortex. Neural Plast 2022; 2022:7251460. [PMID: 35465396 PMCID: PMC9019463 DOI: 10.1155/2022/7251460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The aim of our study is to examine the effects of neonatal tactile stimulations on the brain structures that previously defined as the focus of epilepsy in the Wistar-Albino-Glaxo from Rijswijk (WAG/Rij) rat brain with genetic absence epilepsy. Methods In the present research, morphology and density of dendritic spines were analyzed in layer V pyramidal neurons of the somatosensory cortex (SoCx) of WAG/Rij rats (nonstimulated control, tactile-stimulated, and maternal separated rats) and healthy Wistar (nonepileptic) rats. To achieve this, a Golgi-Cox method was used. Results Dendritic spine number in layer V of the SoCx has been detected significantly higher in adult WAG/Rij rats at postnatal day 150 in comparison to nonepileptic adult control Wistar rats (p < 0.001). Moreover, quantitative analyses of dendrite structure in adult WAG/Rij rats showed a decrease in dendrite spine density of pyramidal neurons of SoCx which occurred in early neonatal exposure to maternal separation (MS) and tactile stimulation (TS) (p < 0.001). Conclusions Our findings provide the first evidence that tactile stimulations during the early postnatal period have a long-term impact on dendrite structure in WAG/Rij rat's brain and demonstrate that neonatal tactile stimulation can regulate dendritic spines in layer V in pyramidal neurons of SoCx in epileptic brains.
Collapse
Affiliation(s)
- Gul Ilbay
- Department of Physiology, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Aymen Balıkcı
- Department of Physiology, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Sibel Köktürk
- Department of Histology and Embryology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Melda Yardımoglu Yılmaz
- Department of Histology and Embryology, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Nurbay Ates
- Department of Physiology, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Canan Baydemır
- Department of Biostatistics and Medical Informatics, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Sibel Balcı
- Department of Biostatistics and Medical Informatics, Kocaeli University, School of Medicine, Kocaeli, Turkey
| |
Collapse
|
7
|
Renormalizing synapses in sleep: The clock is ticking. Biochem Pharmacol 2021; 191:114533. [PMID: 33771494 DOI: 10.1016/j.bcp.2021.114533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Sleep has been hypothesized to renormalize synapses potentiated in wakefulness. This is proposed to lead to a net reduction in synaptic strength after sleep in brain areas like the cortex and hippocampus. Biological clocks, however, exert independent effects on these synapses that may explain some of the reported differences after wake and sleep. These include changes in synaptic morphology, molecules and efficacy. In this commentary, I discuss why no firm conclusions should be drawn concerning the role of sleep in synaptic renormalization until the role of circadian rhythms are isolated and determined.
Collapse
|
8
|
Frank MG. The Ontogenesis of Mammalian Sleep: Form and Function. CURRENT SLEEP MEDICINE REPORTS 2020; 6:267-279. [PMID: 33816063 PMCID: PMC8014960 DOI: 10.1007/s40675-020-00190-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW To present an up-to-date review and synthesis of findings about perinatal sleep development and function. I discuss landmark events in sleep ontogenesis, evidence that sleep promotes brain development and plasticity, and experimental considerations in this topic. RECENT FINDINGS Mammalian sleep undergoes dramatic changes in expression and regulation during perinatal development. This includes a progressive decrease in rapid-eye-movement (REM) sleep time, corresponding increases in nonREM sleep and wake time, and the appearance of mature sleep regulatory processes (homeostatic and circadian). These developmental events coincide with periods of rapid brain maturation and heightened synaptic plasticity. The latter involve an initial experience-independent phase, when circuit development is guided by spontaneous activity, and later occurring critical periods, when these circuits are shaped by experience. SUMMARY These ontogenetic changes suggest important interactions between sleep and brain development. More specifically, sleep may promote developmental programs of synaptogenesis and synaptic pruning and influence the opening and closing of critical periods of brain plasticity.
Collapse
Affiliation(s)
- Marcos G Frank
- Washington State University Spokane, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 213, 412 E. Spokane Falls Blvd
| |
Collapse
|
9
|
Jasinska M, Woznicka O, Jasek-Gajda E, Lis GJ, Pyza E, Litwin JA. Circadian Changes of Dendritic Spine Geometry in Mouse Barrel Cortex. Front Neurosci 2020; 14:578881. [PMID: 33117123 PMCID: PMC7550732 DOI: 10.3389/fnins.2020.578881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythmicity changes the density and shape of dendritic spines in mouse somatosensory barrel cortex, influencing their stability and maturation. In this study, we analyzed the main geometric parameters of dendritic spines reflecting the strength of synapses located on these spines under light/dark (12:12) and constant darkness conditions, in order to distinguish between endogenously regulated and light-driven parameters. Using morphological analysis of serial electron micrographs, as well as three-dimensional reconstructions, we found that the light induces elongation of single-synapse spine necks and increases in the diameter of double-synapse spine necks, increasing and decreasing the isolation of synapses from the parent dendrite, respectively. During the subjective night of constant darkness, we observed an enlargement of postsynaptic density area in inhibitory synapses and an increase in the number of polyribosomes inside double-synapse spines. The results show that both endogenous effect (circadian clock/locomotor activity) and light affect the morphological parameters of single- and double-synapse spines in the somatosensory cortex: light reduces the efficiency of excitatory synapses on single-synapse spines, increases the effect of synaptic transmission in double-synapse spines, and additionally masks the endogenous clock-driven enlargement of inhibitory synapses located on double-synapse spines. This indicates a special role of double-synapse spines and their inhibitory synapses in the regulation of synaptic transmission during both circadian and diurnal cycles in the mouse somatosensory cortex.
Collapse
Affiliation(s)
- Malgorzata Jasinska
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Jan A Litwin
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
|