1
|
Yu S, Cheng J, Li K, Zhang S, Dong X, Paizullakhanov MS, Chen D. Preparation and application of laccase-immobilized magnetic biochar for effective degradation of endocrine disruptors: Efficiency and mechanistic analysis. Int J Biol Macromol 2025; 305:141167. [PMID: 39971055 DOI: 10.1016/j.ijbiomac.2025.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
This study immobilized laccase from Pleurotus ostreatus residue onto magnetic biochar for endocrine-disrupting chemical (EDC) degradation. The laccase, with a specific activity of 16.9 U/mg and a 45.8 % activity recovery, was immobilized via glutaraldehyde on magnetically modified biochar. The immobilized enzyme showed enhanced stability across pH 2-5, retained 86.4 % activity at 4 °C over 30 days, and maintained 65.2 % activity over eight cycles. It achieved degradation efficiencies of 90.87 % for BPA, 92.95 % for E2, and 80.87 % for EE2 within 24 h. Degradation mechanisms were analyzed via density functional theory and molecular docking.
Collapse
Affiliation(s)
- Shixin Yu
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266404, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Juntao Cheng
- Qingdao Zhangcun River Water Co., Ltd., Qingdao 266100, China
| | - Kai Li
- Qingdao Zhangcun River Water Co., Ltd., Qingdao 266100, China
| | - Shilei Zhang
- Qingdao Greensum Ecology Co., Ltd., Qingdao 266102, China
| | - Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | | - Dong Chen
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266404, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
2
|
Yuzugullu Karakus Y, Isik S, Kale Bakir E, Turkmenoglu A, Deveci Ozkan A. Characterization of the three-phase partitioned laccase from Trametes versicolor strain with antiproliferative activity against breast cancer cells. Int J Biol Macromol 2025; 286:138504. [PMID: 39647730 DOI: 10.1016/j.ijbiomac.2024.138504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
An extracellular laccase from T. versicolor was 20.4-fold purified by three-phase partitioning with high recovery (245 %) and biochemically characterized in detail for the first time. Its molecular weight was found to be 66.39 kDa. The enzyme showed activity towards the substrates ABTS, 2,6-DMP, guaiacol and hydroquinone. The substrates with the highest catalytic efficiency (kcat/Km) were ABTS and 2,6-DMP. The maximum laccase activity value was reached at 70 °C for all substrates; at 80 °C even an activity of >60 % could be maintained. The optimum pH values were 4.5, 5 and 5.5 for ABTS, 2,6-DMP and guaiacol, respectively. In solutions with pH values of 3.5 to 5, it was active for up to 6 h. Laccase activity was negatively affected by L-cysteine, kojic acid, β-mercaptoethanol, sodium azide and SDS. In contrast, non-ionic detergents showed no significant effects on the enzyme. The enzyme showed activity when exposed to low concentrations (<5 %) of the solvent's methanol, ethanol and DMSO. Among the metal ions, the enzyme showed strong sensitivity to Fe2+, while Ni2+ and Mn2+ showed increased activity. Biochemical analyses have shown that the laccase enzyme has superior properties compared to its commercial form (such as high temperature and pH stability, high affinity to its substrates and relatively high catalytic efficiency). Its anticancer effect on breast cancer cell lines was also investigated. The results emphasize the potential of pure laccase as an anticancer agent due to its selective lethal effect on breast cancer cells.
Collapse
Affiliation(s)
- Yonca Yuzugullu Karakus
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001 Kocaeli, Turkey.
| | - Semih Isik
- Department of Biology, Institute of Natural and Applied Sciences, Kocaeli University, 41001 Kocaeli, Turkey
| | - Elif Kale Bakir
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001 Kocaeli, Turkey
| | - Ayse Turkmenoglu
- Department of Biology, Institute of Natural and Applied Sciences, Kocaeli University, 41001 Kocaeli, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
3
|
Radveikienė I, Vidžiūnaitė R, Meškys R, Časaitė V. Blue and Yellow Laccases from Alternaria sp. Strain HU: Characterization and Immobilization on Magnetic Nanoparticles. J Fungi (Basel) 2024; 10:559. [PMID: 39194885 DOI: 10.3390/jof10080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Laccases are important and valuable enzymes with a great potential for biotechnological applications. In this study, two novel laccases, LacHU1 and LacHU2, from Alternaria sp. HU have been purified and characterized. The molecular mass of each isoenzyme was ~66 kDa. LacHU1 laccases was yellow and had no typical blue oxidase spectra and LacHU2 had a blue color and characteristic absorption spectra. The catalytic efficiency of LacHU1 for most substrates was higher than that of LacHU2 laccase. Both isoenzymes effectively oxidize flavonoids. Alternaria sp. laccases were successfully immobilized on magnetic nanoparticles. The thermostability of immobilized laccases increased and optimal pH shifted to more alkaline compared to the free laccases. Potential applications of laccases from Alternaria sp. HU are in the oxidation of flavonoids in cotton or in water treatment processes.
Collapse
Affiliation(s)
- Ingrida Radveikienė
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| | - Regina Vidžiūnaitė
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| | - Vida Časaitė
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Sauletekio Av. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Egbewale SO, Kumar A, Olasehinde TA, Mokoena MP, Olaniran AO. Anthracene detoxification by Laccases from indigenous fungal strains Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Biodegradation 2024; 35:769-787. [PMID: 38822999 PMCID: PMC11246312 DOI: 10.1007/s10532-024-10084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
The persistence and ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the environment necessitate effective remediation strategies. Hence, this study investigated the potential of purified Laccases, TlFLU1L and TpFLU12L, from two indigenous fungi Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12), respectively for the oxidation and detoxification of anthracene. Anthracene was degraded with vmax values of 3.51 ± 0.06 mg/L/h and 3.44 ± 0.06 mg/L/h, and Km values of 173.2 ± 0.06 mg/L and 73.3 ± 0.07 mg/L by TlFLU1L and TpFLU12L, respectively. The addition of a mediator compound 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to the reaction system significantly increased the degradation of anthracene, with up to a 2.9-fold increase in vmax value and up to threefold decrease in Km values of TlFLU1L and TpFLU12L. The GC-MS analysis of the metabolites suggests that anthracene degradation follows one new pathway unique to the ABTS system-hydroxylation and carboxylation of C-1 and C-2 position of anthracene to form 3-hydroxy-2-naphthoic acid, before undergoing dioxygenation and side chain removal to form chromone which was later converted into benzoic acid and CO2. This pathway contrasts with the common dioxygenation route observed in the free Laccase system, which is observed in the second degradation pathways. Furthermore, toxicity tests using V. parahaemolyticus and HT-22 cells, respectively, demonstrated the non-toxic nature of Laccase-ABTS-mediated metabolites. Intriguingly, analysis of the expression level of Alzheimer's related genes in HT-22 cells exposed to degradation products revealed no induction of neurotoxicity unlike untreated cells. These findings propose a paradigm shift for bioremediation by highlighting the Laccase-ABTS system as a promising green technology due to its efficiency with the discovery of a potentially less harmful degradation pathway, and the production of non-toxic metabolites.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Tosin A Olasehinde
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Mduduzi P Mokoena
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
5
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
6
|
Buzzo BB, Lima NSM, Pereira PAM, Gomes-Pepe ES, Sartini CCF, Lemos EGDM. Lignin degradation by a novel thermophilic and alkaline yellow laccase from Chitinophaga sp. Microbiol Spectr 2024; 12:e0401323. [PMID: 38712938 PMCID: PMC11237711 DOI: 10.1128/spectrum.04013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Laccases (EC 1.10.3.2) are oxidoreductases that belong to the multicopper oxidase subfamily and are classified as yellow/white or blue according to their absorption spectrum. Yellow laccases are more useful for industrial processes since they oxidize nonphenolic compounds in the absence of a redox mediator and stand out for being more stable and functional under extreme conditions. This study aimed to characterize a new laccase that was predicted to be present in the genome of Chitinophaga sp. CB10 - Lac_CB10. Lac_CB10, with a molecular mass of 100.06 kDa, was purified and characterized via biochemical assays using guaiacol as a substrate. The enzyme demonstrated extremophilic characteristics, exhibiting relative activity under alkaline conditions (CAPS buffer pH 10.5) and thermophilic conditions (80-90°C), as well as maintaining its activity above 50% for 5 h at 80°C and 90°C. Furthermore, Lac_CB10 presented a spectral profile typical of yellow laccases, exhibiting only one absorbance peak at 300 nm (at the T2/T3 site) and no peak at 600 nm (at the T1 site). When lignin was degraded using copper as an inducer, 52.27% of the material was degraded within 32 h. These results highlight the potential of this enzyme, which is a novel yellow laccase with thermophilic and alkaline activity and the ability to act on lignin. This enzyme could be a valuable addition to the biorefinery process. In addition, this approach has high potential for industrial application and in the bioremediation of contaminated environments since these processes often occur at extreme temperatures and pH values. IMPORTANCE The characterization of the novel yellow laccase, Lac_CB10, derived from Chitinophaga sp. CB10, represents a significant advancement with broad implications. This enzyme displays exceptional stability and functionality under extreme conditions, operating effectively under both alkaline (pH 10.5) and thermophilic (80-90°C) environments. Its capability to maintain considerable activity over extended periods, even at high temperatures, showcases its potential for various industrial applications. Moreover, its distinctive ability to efficiently degrade lignin-demonstrated by a significant 52.27% degradation within 32 h-signifies a promising avenue for biorefinery processes. This newfound laccase's characteristics position it as a crucial asset in the realm of bioremediation, particularly in scenarios involving contamination at extreme pH and temperature levels. The study's findings highlight the enzyme's capacity to address challenges in industrial processes and environmental cleanup, signifying its vital role in advancing biotechnological solutions.
Collapse
Affiliation(s)
- Bárbara Bonfá Buzzo
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| | - Natália Sarmanho Monteiro Lima
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| | - Pâmela Aparecida Maldaner Pereira
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
| | - Elisângela Soares Gomes-Pepe
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
| | | | - Eliana Gertrudes de Macedo Lemos
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
7
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
8
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
9
|
Bhoyar SS, Chaudhari AU, Desai MA, Latpate RV, Sartale SD, Kodam KM. Wheat bran as an efficient agro-process waste for enhanced yellow laccase production by Lentinus tigrinus SSB_W2 and its application in anthraquinone dye degradation. 3 Biotech 2024; 14:33. [PMID: 38188311 PMCID: PMC10764685 DOI: 10.1007/s13205-023-03881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Lentinus tigrinus SSB_W2, isolated from Mahabaleshwar in the Western Ghats of Maharashtra, India, was employed to enhance laccase production in solid-state fermentation (SSF). The spectral analysis indicated that the laccase produced by L. tigrinus is a typical yellow laccase, exhibiting no absorption at 600 nm. Notably, this yellow laccase demonstrated exceptional catalytic activity, as confirmed by electrochemical analysis. Four agricultural processing wastes were evaluated as substrates for SSF, and the results showed that L. tigrinus effectively utilized wheat bran. Initial testing by one-factor-at-a-time method showed 3.79-fold increase in yellow laccase production, which subsequently increased to 6.51-fold after Plackett-Burman design. Moreover, employing response surface methodology resulted in 11.87-fold increase (108,472 IU gds-1) in laccase production. The utilization of yellow laccase for the biotransformation of various textile dyes was investigated, and it exhibited the highest degradation efficiency toward Reactive blue 4, a recalcitrant anthraquinone dye, with a rate of 18.36 mg L-1 h-1, for an initial concentration of 1000 mg L-1. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03881-9.
Collapse
Affiliation(s)
- Seema S. Bhoyar
- Division of Biochemistry, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Ashvini U. Chaudhari
- Division of Biochemistry, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Mangesh A. Desai
- Department of Physics, Savitribai Phule Pune University, Pune, 411007 India
| | - Raosaheb V. Latpate
- Department of Statistics, Savitribai Phule Pune University, Pune, 411007 India
| | | | - Kisan M. Kodam
- Division of Biochemistry, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
10
|
Coman C, Hădade N, Pesek S, Silaghi-Dumitrescu R, Moț AC. Removal and degradation of sodium diclofenac via radical-based mechanisms using S. sclerotiorum laccase. J Inorg Biochem 2023; 249:112400. [PMID: 37844532 DOI: 10.1016/j.jinorgbio.2023.112400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The recently isolated Sclerotinia sclerotiorum laccase was used for the degradation of sodium diclofenac, a nonsteroidal anti-inflammatory drug widely found in the aquatic environment. The Michaelis-Menten parameters, half-life of diclofenac at different pH values in presence of this enzyme and potential inhibitors were evaluated. Diclofenac-based radicals formed in presence of laccase were spin-trapped and detected using EPR spectroscopy. Almost complete diclofenac degradation (> 96%) occurred after a 30-h treatment via radical-based generated oligomers and their rapid precipitation, thus ensuring an unprecedented green formula suitable not only for degradation but also for straightforward removal of the degradation products. High performance liquid chromatography coupled with atmospheric pressure chemical ionization-ion trap mass spectrometry (HPLC-APCI-MS) analyses of the degradation products of diclofenac in aqueous dosage revealed the presence of at least seven products while HR Orbitrap MS analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical oligomerization mechanism of diclofenac. The enzymatically formed products precipitated and its constituting components were also characterized using UV-vis spectroscopy, infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Cristina Coman
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Niculina Hădade
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Szilárd Pesek
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Radu Silaghi-Dumitrescu
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania.
| | - Augustin C Moț
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| |
Collapse
|
11
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
12
|
Kut K, Stefaniuk I, Bartosz G, Sadowska-Bartosz I. Formation of a Purple Product upon the Reaction of ABTS Radicals with Proteins. Int J Mol Sci 2023; 24:ijms24108912. [PMID: 37240256 DOI: 10.3390/ijms24108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The reaction of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) free radical (ABTS●) with proteins (bovine serum albumin, blood plasma, egg white, erythrocyte membranes, and Bacto Peptone) leads not only to a reduction of ABTS● but also to the appearance of a purple color (absorption maximum at 550-560 nm). The aim of this study was to characterize the formation and explain the nature of the product responsible for the appearance of this color. The purple color co-precipitated with protein, and was diminished by reducing agents. A similar color was generated by tyrosine upon reaction with ABTS●. The most feasible explanation for the color formation is the addiction of ABTS● to proteins' tyrosine residues. The product formation was decreased by nitration of the bovine serum albumin (BSA) tyrosine residues. The formation of the purple product of tyrosine was optimal at pH 6.5. A decrease in pH induced a bathochromic shift of the spectra of the product. The product was not a free radical, as demonstrated by electrom paramagnetic resonance (EPR) spectroscopy. Another byproduct of the reaction of ABTS● with tyrosine and proteins was dityrosine. These byproducts can contribute to the non-stoichiometry of the antioxidant assays with ABTS●. The formation of the purple ABTS adduct may be a useful index of radical addition reactions of protein tyrosine residues.
Collapse
Affiliation(s)
- Kacper Kut
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, 1 Pigonia Street, 35-310 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland
| |
Collapse
|
13
|
Hahn V. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds. World J Microbiol Biotechnol 2023; 39:107. [PMID: 36854853 PMCID: PMC9974771 DOI: 10.1007/s11274-023-03539-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Laccases [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] can oxidize phenolic substances, e.g. di- and polyphenols, hydroxylated biaryls, aminophenols or aryldiamines. This large substrate spectrum is the basis for various reaction possibilities, which include depolymerization and polymerization reactions, but also the coupling of different substance classes. To catalyze these reactions, laccases demand only atmospheric oxygen and no depletive cofactors. The utilization of mild and environmentally friendly reaction conditions such as room temperature, atmospheric pressure, and the avoidance of organic solvents makes the laccase-mediated reaction a valuable tool in green chemistry for the synthesis of biologically active compounds such as antimicrobial substances. In particular, the production of novel antibiotics becomes vital due to the evolution of antibiotic resistances amongst bacteria and fungi. Therefore, laccase-mediated homo- and heteromolecular coupling reactions result in derivatized or newly synthesized antibiotics. The coupling or derivatization of biologically active compounds or its basic structures may allow the development of novel pharmaceuticals, as well as the improvement of efficacy or tolerability of an already applied drug. Furthermore, by the laccase-mediated coupling of two different active substances a synergistic effect may be possible. However, the coupling of compounds that have no described efficacy can lead to biologically active substances by means of laccase. The review summarizes laccase-mediated reactions for the synthesis of antimicrobial compounds valuable for medical purposes. In particular, reactions with two different reaction partners were shown in detail. In addition, studies with in vitro and in vivo experimental data for the confirmation of the antibacterial and/or antifungal efficacy of the products, synthesized with laccase, were of special interest. Analyses of the structure-activity relationship confirm the great potential of the novel compounds. These substances may represent not only a value for pharmaceutical and chemical industry, but also for other industries due to a possible functionalization of surfaces such as wood or textiles.
Collapse
Affiliation(s)
- Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.
| |
Collapse
|
14
|
Chaoua S, Chaouche NK, Songulashvili G, Gares M, Hiligsmann S, Flahaut S. Yellow laccase produced by Trametes versicolor K1 on tomato waste: A comparative study with the blue one produced on semi-synthetic medium. J Biotechnol 2023; 361:99-109. [PMID: 36509383 DOI: 10.1016/j.jbiotec.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Laccase production by fungal growth on agrifood waste is still poorly studied. Trametes versicolor K1 isolated from palm bark produced a yellow non glycosylated laccase from tomato waste based medium (TMT) and a blue glycosylated laccase on glucose medium (GLU). Lignocellulosic biomass, such as pinecones (PIN), palm leaves (PLM), olive pomace (OLV), and alfa stems (ALF) have also been used as growth medium for T. versicolor K1. In these conditions, very low or no laccase production was observed. When peptone was supplied in TMT medium, the laccase activity increased from 4170 U/L to 8618 U/L. By increasing the culture volume up to 1 L, laccase production on TMT was 9929 U/L. The yellow laccase (TmtLac) was purified from the supernatant TMT medium and has shown similar characteristics with the blue laccase (GluLac) purified from the GLU medium. Their apparent protein size was 63 kDa. Catalytic activities of the yellow form were not very different from those of the blue form, but specific activity of the purified yellow laccase produced on tomato waste was much higher. The Km and Vm values for four substrates, ABTS, DMP, guaiacol, and pyrogallol were almost similar for both isoenzymes. The optimum pH and temperature were respectively 4.0 and 50 °C. Although the level of glycosylation is clearly different, the thermostability of TmtLac and GluLac are quite similar. TmtLac is even slightly more tolerant at 60 °C for 24 h than GluLac. Moreover TmtLac showed greater stability at alkaline pH after 24 h compared to that of GluLac.We demonstrate that activity of the yellow TmtLac is not significantly affected compared to the blue laccase and that tomato waste is a simple and interesting lignocellulosic substrate to the laccase producer Trametes sp.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria; Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | - George Songulashvili
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | - Maroua Gares
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Farag AM, El-Naggar MY, Ghanem KM. 2,4-Dichlorophenol biotransformation using immobilized marine halophilic Bacillus subtilis culture and laccase enzyme: application in wastewater treatment. J Genet Eng Biotechnol 2022; 20:134. [PMID: 36112327 PMCID: PMC9481827 DOI: 10.1186/s43141-022-00417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Background 2,4-Dichlorophenol (2,4-DCP) is a very toxic aromatic compound for humans and the environment and is highly resistant to degradation. Therefore, it is necessary to develop efficient remediation and cost-effective approaches to this pollutant. Microbial enzymes such as laccases can degrade phenols, but limited information is known about immobilized bacterial laccase and their reuse. Methods Immobilization of marine halophilic Bacillus subtilis AAK cultures via entrapment and adsorption techniques and degradation of different phenolic compounds by immobilized cells were estimated. Partial purification and immobilization of laccase enzymes were carried out. In addition, the biodegradation of 2,4-DCP and others contaminated by wastewater was investigated. Results Immobilization of cells and partially purified laccase enzymes by adsorption into 3% alginate increased 2,4-DCP biotransformation compared with free cells and free enzymes. In addition, the reuse of both the immobilized culture and laccase enzymes was evaluated. The highest removal of 2,4-DCP from pulp and paper wastewater samples inoculated by immobilized cells and the immobilized enzyme was 90% and 95%, respectively, at 50 h and 52 h of incubation, compared to free cells and free enzyme. Conclusion The results of this study have revealed the immobilization of a biocatalyst and its laccase enzyme as a promising technique for enhancing the degradation of 2,4-DCP and other toxic phenolic and aromatic compounds. The reuse of the biocatalyst and its laccase enzyme enabled the application of this cost-effective bioremediation strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00417-1.
Collapse
|
16
|
Martínková L, Křístková B, Křen V. Laccases and Tyrosinases in Organic Synthesis. Int J Mol Sci 2022; 23:3462. [PMID: 35408822 PMCID: PMC8998183 DOI: 10.3390/ijms23073462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.
Collapse
Affiliation(s)
- Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; (B.K.); (V.K.)
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; (B.K.); (V.K.)
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; (B.K.); (V.K.)
| |
Collapse
|
17
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
18
|
Radveikienė I, Vidžiūnaitė R, Meškienė R, Meškys R, Časaitė V. Characterization of a Yellow Laccase from Botrytis cinerea 241. J Fungi (Basel) 2021; 7:jof7020143. [PMID: 33671199 PMCID: PMC7922139 DOI: 10.3390/jof7020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022] Open
Abstract
Typical laccases have four copper atoms, which form three different copper centers, of which the T1 copper is responsible for the blue color of the enzyme and gives it a characteristic absorbance around 610 nm. Several laccases have unusual spectral properties and are referred to as yellow or white laccases. Only two yellow laccases from the Ascomycota phylum have been described previously, and only one amino acid sequence of those enzymes is available. A yellow laccase Bcl1 from Botrytis cinerea strain 241 has been identified, purified and characterized in this work. The enzyme appears to be a dimer with a molecular mass of 186 kDa. The gene encoding the Bcl1 protein has been cloned, and the sequence analysis shows that the yellow laccase Bcl1 is phylogenetically distinct from other known yellow laccases. In addition, a comparison of amino acid sequences, and 3D modeling shows that the Bcl1 laccase lacks a conservative tyrosine, which is responsible for absorption quenching at 610 nm in another yellow asco-laccase from Sclerotinia sclerotiorum. High thermostability, high salt tolerance, broad substrate specificity, and the ability to decolorize dyes without the mediators suggest that the Bcl1 laccase is a potential enzyme for various industrial applications.
Collapse
Affiliation(s)
- Ingrida Radveikienė
- Life Sciences Center, Department of Bioanalysis, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania;
- Correspondence: (I.R.); (V.Č.)
| | - Regina Vidžiūnaitė
- Life Sciences Center, Department of Bioanalysis, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania;
| | - Rita Meškienė
- Life Sciences Center, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania; (R.M.); (R.M.)
| | - Rolandas Meškys
- Life Sciences Center, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania; (R.M.); (R.M.)
| | - Vida Časaitė
- Life Sciences Center, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Ave. 7, 10257 Vilnius, Lithuania; (R.M.); (R.M.)
- Correspondence: (I.R.); (V.Č.)
| |
Collapse
|
19
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|