1
|
Yan SH, Wang XL, Sun ZM, Xia BM, Gu WH, Wang GC. Study of epiphytic non-geniculate coralline algae Reveals an Evolutionarily significant Genus, Pseudoderma gen. nov. (Lithophylloideae, Corallinophycidae). Mol Phylogenet Evol 2025; 206:108313. [PMID: 39993488 DOI: 10.1016/j.ympev.2025.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Epiphytic non-geniculate coralline algae (ENCA) are distributed broadly, while limited research on their diversity has constrained our understanding of their ecological roles in marine environments, and impeded a comprehensive understanding of coralline algae. In this study, the diversity and ecological characteristics of ENCA epiphytic on 113 red macroalgal specimens collected from coastal China were examined. Three species delimitation algorithms revealed 24 primary species hypotheses (PSH), of which 22 were corroborated through phylogenetic analysis based on the psbA gene. Further multi-gene concatenated phylogenetic analyses and morpho-anatomical assessments revealed a new genus within Lithophylloideae, Pseudoderma gen. nov., which is closely related to the genus Titanoderma and exhibits morphological similarities. A hypothesis concerning the growth patterns was proposed to elucidate the morphological differences among Titanoderma, Lithophyllum, and Pseudoderma: the presence or absence of hypothallial palisade cells indicated distinct thallus thickening patterns, either dominated by elongation of the hypothallial cells or by division of the perithallial cells. These processes resulted in fast-growing thin-crust thalli or longer-lasting thick-crust thalli, adapted to epiphytic or epilithic lifestyles, respectively. Pseudoderma included at least six new taxa, and Pseudoderma sinicarum sp. nov., was designated as the holotype species of this genus. In conclusion, this study has underscored the unexpected biodiversity of ENCA, and the identification of the novel genus Pseudoderma from ENCA groups carried significant evolutionary implications for enhancing our understanding of coralline algae systematics.
Collapse
Affiliation(s)
- Shu-Heng Yan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Lei Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhong-Min Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bang-Mei Xia
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wen-Hui Gu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guang-Ce Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
2
|
Montes-Herrera JC, Cimoli E, Cummings VJ, D'Archino R, Nelson WA, Lucieer A, Lucieer V. Quantifying pigment content in crustose coralline algae using hyperspectral imaging: A case study with Tethysphytum antarcticum (Ross Sea, Antarctica). JOURNAL OF PHYCOLOGY 2024; 60:695-709. [PMID: 38558363 DOI: 10.1111/jpy.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Crustose coralline algae (CCA) are a highly diverse group of habitat-forming, calcifying red macroalgae (Rhodophyta) with unique adaptations to diverse irradiance regimes. A distinctive CCA phenotype adaptation, which allows them to maximize photosynthetic performance in low light, is their content of a specific group of light-harvesting pigments called phycobilins. In this study, we assessed the potential of noninvasive hyperspectral imaging (HSI) in the visible spectrum (400-800 nm) to describe the phenotypic variability in phycobilin content of an Antarctic coralline, Tethysphytum antarcticum (Hapalidiales), from two distinct locations. We validated our measurements with pigment extractions and spectrophotometry analysis, in addition to DNA barcoding using the psbA marker. Targeted spectral indices were developed and correlated with phycobilin content using linear mixed models (R2 = 0.64-0.7). Once applied to the HSI, the models revealed the distinct phycoerythrin spatial distribution in the two site-specific CCA phenotypes, with thin and thick crusts, respectively. This study advances the capabilities of hyperspectral imaging as a tool to quantitatively study CCA pigmentation in relation to their phenotypic plasticity, which can be applied in laboratory studies and potentially in situ surveys using underwater hyperspectral imaging systems.
Collapse
Affiliation(s)
- Juan C Montes-Herrera
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Emiliano Cimoli
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Vonda J Cummings
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Roberta D'Archino
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- Tāmaki Paenga Hira Auckland Museum & School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Arko Lucieer
- School of Geography, Planning, and Spatial Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Vanessa Lucieer
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Twist BA, Mazel F, Zaklan Duff S, Lemay MA, Pearce CM, Martone PT. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species. JOURNAL OF PHYCOLOGY 2024; 60:363-379. [PMID: 38147464 DOI: 10.1111/jpy.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Species interactions can influence key ecological processes that support community assembly and composition. For example, coralline algae encompass extensive diversity and may play a major role in regime shifts from kelp forests to urchin-dominated barrens through their role in inducing invertebrate larval metamorphosis and influencing kelp spore settlement. In a series of laboratory experiments, we tested the hypothesis that different coralline communities facilitate the maintenance of either ecosystem state by either promoting or inhibiting early recruitment of kelps or urchins. Coralline algae significantly increased red urchin metamorphosis compared with a control, while they had varying effects on kelp settlement. Urchin metamorphosis and density of juvenile canopy kelps did not differ significantly across coralline species abundant in both kelp forests and urchin barrens, suggesting that recruitment of urchin and canopy kelps does not depend on specific corallines. Non-calcified fleshy red algal crusts promoted the highest mean urchin metamorphosis percentage and showed some of the lowest canopy kelp settlement. In contrast, settlement of one subcanopy kelp species was reduced on crustose corallines, but elevated on articulated corallines, suggesting that articulated corallines, typically absent in urchin barrens, may need to recover before this subcanopy kelp could return. Coralline species differed in surface bacterial microbiome composition; however, urchin metamorphosis was not significantly different when microbiomes were removed with antibiotics. Our results clarify the role played by coralline algal species in kelp forest community assembly and could have important implications for kelp forest recovery.
Collapse
Affiliation(s)
- Brenton A Twist
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Vancouver, British Columbia, Canada
| | - Florent Mazel
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Stefanie Zaklan Duff
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, British Columbia, Canada
| | | | - Christopher M Pearce
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Patrick T Martone
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Wade RM, Gabrielson PW, Hind KR, Shivak J, Hughey JR, Ohtsu S, Baba M, Kogame K, Lindstrom SC, Miller KA, Schipper SR, Martone PT. Resolving some of the earliest names for Corallina species (Corallinales, Rhodophyta) in the North Pacific by sequencing type specimens and describing the cryptic C. hakodatensis sp. nov. and C. parva sp. nov. JOURNAL OF PHYCOLOGY 2023; 59:221-235. [PMID: 36336979 DOI: 10.1111/jpy.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Partial rbcL sequences from type specimens of three of the earliest described Corallina species showed that C. arbuscula (type locality: Unalaska Island, Alaska, USA) and C. pilulifera (type locality: Okhotsk Sea, Russia) are synonymous, with C. pilulifera as the taxonomically accepted name and that C. vancouveriensis (type locality: Botanical Beach, Vancouver Island, Canada) is a distinct species. To identify molecular species limits and clarify descriptions and distributions of C. pilulifera and C. vancouveriensis, we sequenced and analyzed portions of one mitochondrial and two plastid genes from historical and recent collections. The single-gene phylogenetic reconstructions support the recognition of both species as distinct, as well as two additional species, C. hakodatensis sp. nov. and C. parva sp. nov., which are sister to, and often morphologically indistinguishable from C. pilulifera and C. vancouveriensis, respectively. DNA sequence data currently illustrate that C. pilulifera is found in the cold northern Pacific waters from the Okhotsk Sea of Russia to Hokkaido, Japan, eastward across the Aleutian Islands to Knoll Head, Alaska, and as far south as Nanaimo, British Columbia. Corallina vancouveriensis is distributed as far west as Attu Island in the Aleutian Islands to Sitka, Alaska, and southeasterly at numerous sites from British Columbia to the north of Point Conception, California, USA. The cryptic species C. hakodatensis and C. parva occur sympatrically with their sister species but with narrower ranges. The complex phylogenetic relationships shown by the single gene trees recommend Corallina as a model genus to explore coralline algal biogeography, evolution, and patterns of speciation.
Collapse
Affiliation(s)
- Rachael M Wade
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Paul W Gabrielson
- Biology Department and Herbarium, Coker Hall CB 3280, Chapel Hill, North Carolina, 27599-3280, USA
| | - Katharine R Hind
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Jade Shivak
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jeffery R Hughey
- Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California, 93901, USA
| | - Sou Ohtsu
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masasuke Baba
- Central Laboratory, Marine Ecology Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba, 299-5105, Japan
| | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sandra C Lindstrom
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kathy Ann Miller
- University Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, California, 94720-2465, USA
| | - Soren R Schipper
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
5
|
Nguyen HTT, Pritchard DW, Desmond MJ, Hepburn CD. Coralline photosynthetic physiology across a steep light gradient. PHOTOSYNTHESIS RESEARCH 2022; 153:43-57. [PMID: 35092556 DOI: 10.1007/s11120-022-00899-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Coralline algae (CA) are globally distributed and fulfil many important roles within coastal ecosystems. In this study, photosynthetically active radiation (PAR) measured for 616 days at 2 and 10 m in a temperate subtidal kelp forest in southern New Zealand provided context to photosynthesis vs. irradiance relationships for, and pigment concentrations of, an articulated coralline alga, Arthrocardia sp. and a crustose coralline species assemblage within the Hapalidiales order. The maximum photosynthetic rate Pmax of the Arthrocardia sp. (20.38 ± 2.38 µmol O2. gDW-1 h-1) was significantly higher than the Pmax of crustose coralline spp. (3.72 ± 0.74 µmol O2. gDW-1 h-1) at the same 2 m stratum. Pigment concentration of Arthrocardia sp. was significantly higher than that of crustose coralline spp. at the same depth, while pigment concentration of crustose coralline spp. at 2 and 10 m were not significantly affected by depth. The photosynthetic characteristics of these coralline algae represent a shade acclimated organism with low saturation irradiance (all Ek < 100 µmol photons m-2 s-1). Despite sevenfold difference in average daily dose between 2 and 10 m there was no significant effect of depth on the photosynthetic performance of crustose coralline algae measured. The lack of evidence for acclimation to low light could be because periods of clear water provide enough light to maintain photosynthesis, lower energetic requirements of species found at depth or constraints on the synthesis of photosynthetic pigments at greater depth.
Collapse
Affiliation(s)
- Hang T T Nguyen
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
- University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam.
| | - Daniel W Pritchard
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Coastal People Southern Skies, Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Te Ao Tūroa, Te Rūnanga O Ngāi Tahu, PO Box 799, Dunedin, 9054, New Zealand
| | - Matthew J Desmond
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Coastal People Southern Skies, Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Christopher D Hepburn
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Coastal People Southern Skies, Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
6
|
Community assessment of crustose calcifying red algae as coral recruitment substrates. PLoS One 2022; 17:e0271438. [PMID: 35867665 PMCID: PMC9307205 DOI: 10.1371/journal.pone.0271438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Successful recruitment of invertebrate larvae to reef substrates is essential to the health of tropical coral reef ecosystems and to their capacity to recover from disturbances. Crustose calcifying red algae (CCRA) are a species rich group of seaweeds that have been identified as important recruitment substrates for scleractinian corals. Most studies on the settlement preference of coral larvae on CCRA use morphological species identifications that can lead to unreliable species identification and do not allow for examining species-specific interactions between coral larvae and CCRA. Accurate identifications of CCRA species is important for coral reef restoration and management to assess CCRA community composition and to detect CCRA species that are favored as coral recruitment substrates. In this study, DNA sequence analysis, was used to identify CCRA species to (1) investigate the species richness and community composition of CCRA on experimental coral recruitment tiles and (2) assess if the coral Acropora surculosa preferred any of these CCRA species as recruitment substrates. The CCRA community assemblages on the coral recruitment tiles was species-rich, comprising 27 distinct CCRA species of the orders Corallinales and Peyssonneliales which constitute new species records for Guam. Lithophylloideae sp. 1 (Corallinales) was the CCRA species that was significantly favored by coral larvae as a recruitment substrate. Lithophylloideae sp. 1 showed to hold a valuable ecological role for coral larval recruitment preference. Lithophylloideae sp. 1 had the highest benthic cover on the recruitment tiles and contained most A. surculosa recruits. DNA barcoding revealed a high taxonomic diversity of CCRA species on a microhabitat scale and provided detailed insight into the species-specific ecological interactions between CCRA and corals. With a steady decline in coral cover, detailed information on species interactions that drive reef recovery is valuable for the planning of marine management actions and restoration efforts.
Collapse
|
7
|
Transcriptome of the coralline alga Calliarthron tuberculosum (Corallinales, Rhodophyta) reveals convergent evolution of a partial lignin biosynthesis pathway. PLoS One 2022; 17:e0266892. [PMID: 35834440 PMCID: PMC9282553 DOI: 10.1371/journal.pone.0266892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
The discovery of lignins in the coralline red alga Calliarthron tuberculosum raised new questions about the deep evolution of lignin biosynthesis. Here we present the transcriptome of C. tuberculosum supported with newly generated genomic data to identify gene candidates from the monolignol biosynthetic pathway using a combination of sequence similarity-based methods. We identified candidates in the monolignol biosynthesis pathway for the genes 4CL, CCR, CAD, CCoAOMT, and CSE but did not identify candidates for PAL, CYP450 (F5H, C3H, C4H), HCT, and COMT. In gene tree analysis, we present evidence that these gene candidates evolved independently from their land plant counterparts, suggesting convergent evolution of a complex multistep lignin biosynthetic pathway in this red algal lineage. Additionally, we provide tools to extract metabolic pathways and genes from the newly generated transcriptomic and genomic datasets. Using these methods, we extracted genes related to sucrose metabolism and calcification. Ultimately, this transcriptome will provide a foundation for further genetic and experimental studies of calcifying red algae.
Collapse
|
8
|
Jeong SY, Diaz-Pulido G, Maneveldt GW, Gabrielson PW, Nelson WA, Won BY, Cho TO. Phymatolithopsis gen. nov. (Hapalidiales, Corallinophycidae, Rhodophyta) based on molecular and morpho-anatomical evidence. JOURNAL OF PHYCOLOGY 2022; 58:161-178. [PMID: 34862980 DOI: 10.1111/jpy.13227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
A multigene (psbA, rbcL, 18S rDNA) molecular phylogeny of the genus Phymatolithon showed a polyphyletic grouping of two monophyletic clades within the Hapalidiales. DNA sequence data integrated with morpho-anatomical comparisons of type material and of recently collected specimens were used to establish Phymatolithopsis gen. nov. with three species, P. prolixa comb. nov., the generitype, P. repanda comb. nov. and P. donghaensis sp. nov. Phymatolithopsis is sister to Mesophyllum and occurs in a clade distinct from Phymatolithon and boreal species currently assigned to Lithothamnion. Morpho-anatomically, Phymatolithopsis is comprised of species that are non-geniculate and encrusting, bear epithallial cells with rounded walls (not flared), subepithallial initials that are usually as short as or shorter than their immediate inward derivatives, conceptacle primordia from all stages forming superficially directly from subepithallial initials, mature carposporangial conceptacles with a discontinuous fusion cell, gonimoblast filaments that develop at the margins of the fusion cell around the periphery of the carposporangial conceptacle chambers, and multiporate tetra/bisporangial conceptacles. Phymatolithopsis can be distinguished from Phymatolithon by the origin of its conceptacle primordia, which are initiated superficially, directly from the layer of subepithallial initials below the epithallial cells and the distribution of gonimoblast filaments in carposporangial conceptacles, that are at the margins of the fusion cells.
Collapse
Affiliation(s)
- So Young Jeong
- Australian Rivers Institute-Coast & Estuaries, School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Guillermo Diaz-Pulido
- Australian Rivers Institute-Coast & Estuaries, School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Gavin W Maneveldt
- Department of Biodiversity and Conservation Biology, University of the Western Cape, P. Bag X17, Bellville, 7535, South Africa
| | - Paul W Gabrielson
- Biology Department and Herbarium, Coker Hall CB 3280, University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599-3280, USA
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Private Bag 14-901, Wellington, 6241, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Boo Yeon Won
- Department of Life Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Korea
| | - Tae Oh Cho
- Department of Life Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Korea
| |
Collapse
|
9
|
Cornwall CE, Harvey BP, Comeau S, Cornwall DL, Hall-Spencer JM, Peña V, Wada S, Porzio L. Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis. GLOBAL CHANGE BIOLOGY 2022; 28:362-374. [PMID: 34689395 DOI: 10.1111/gcb.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA) is a major threat to the persistence of biogenic reefs throughout the world's ocean. Coralline algae are comprised of high magnesium calcite and have long been considered one of the most susceptible taxa to the negative impacts of OA. We summarize these impacts and explore the causes of variability in coralline algal responses using a review/qualitative assessment of all relevant literature, meta-analysis, quantitative assessment of critical responses, and a discussion of physiological mechanisms and directions for future research. We find that most coralline algae experienced reduced abundance, calcification rates, recruitment rates, and declines in pH within the site of calcification in laboratory experiments simulating OA or at naturally elevated CO2 sites. There were no other consistent physiological responses of coralline algae to simulated OA (e.g., photo-physiology, mineralogy, and survival). Calcification/growth was the most frequently measured parameters in coralline algal OA research, and our meta-analyses revealed greater declines in seawater pH were associated with significant decreases in calcification in adults and similar but nonsignificant trends for juveniles. Adults from the family Mesophyllumaceae also tended to be more robust to OA, though there was insufficient data to test similar trends for juveniles. OA was the dominant driver in the majority of laboratory experiments where other local or global drivers were assessed. The interaction between OA and any other single driver was often additive, though factors that changed pH at the surface of coralline algae (light, water motion, epiphytes) acted antagonistically or synergistically with OA more than any other drivers. With advances in experimental design and methodological techniques, we now understand that the physiology of coralline algal calcification largely dictates their responses to OA. However, significant challenges still remain, including improving the geographic and life-history spread of research effort and a need for holistic assessments of physiology.
Collapse
Affiliation(s)
- Christopher E Cornwall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Steeve Comeau
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS-INSU, Villefranche-sur-mer, France
| | - Daniel L Cornwall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Viviana Peña
- BioCost Research Group, Facultad de Ciencias, Universidade da Coruña, Coruña, Spain
| | - Shigeki Wada
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Lucia Porzio
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
10
|
Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. DIVERSITY 2021. [DOI: 10.3390/d13120632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.
Collapse
|
11
|
Calderon MS, Bustamante DE, Gabrielson PW, Martone PT, Hind KR, Schipper SR, Mansilla A. Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2021; 57:1659-1672. [PMID: 34310713 DOI: 10.1111/jpy.13202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A partial rbcL sequence of the lectotype specimen of Corallina berteroi shows that it is the earliest available name for C. ferreyrae. Multilocus species delimitation analyses (ABGD, SPN, GMYC, bPTP, and BPP) using independent or concatenated COI, psbA, and rbcL sequences recognized one, two, or three species in this complex, but only with weak support for each species hypothesis. Conservatively, we recognize a single worldwide species in this complex of what appears to be multiple, evolving populations. Included in this species, besides C. ferreyrae, are C. caespitosa, the morphologically distinct C. melobesioides, and, based on a partial rbcL sequence of the holotype specimen, C. pinnatifolia. Corallina berteroi, not C. officinalis, is the cosmopolitan temperate species found thus far in the NE Atlantic, Mediterranean Sea, warm temperate NW Atlantic and NE Pacific, cold temperate SW Atlantic (Falkland Islands), cold and warm temperate SE Pacific, NW Pacific and southern Australia. Also proposed is C. yendoi sp. nov. from Hokkaido, Japan, which was recognized as distinct by 10 of the 13 species discrimination analyses, including the multilocus BPP.
Collapse
Affiliation(s)
- Martha S Calderon
- Laboratorio de Ecosistemas Marinos Antárticos y Sub-antárticos (LEMAS), Universidad de Magallanes, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
- Department of Civil and Environmental Engineering (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
| | - Paul W Gabrielson
- Biology Department and Herbarium, Coker Hall CB 3280, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, 27599-3280, USA
| | - Patrick T Martone
- Botany Department & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katharine R Hind
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Soren R Schipper
- Botany Department & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrés Mansilla
- Laboratorio de Ecosistemas Marinos Antárticos y Sub-antárticos (LEMAS), Universidad de Magallanes, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| |
Collapse
|
12
|
Jeong SY, Nelson WA, Sutherland JE, Peña V, Le Gall L, Diaz-Pulido G, Won BY, Cho TO. Corallinapetrales and Corallinapetraceae: A new order and family of coralline red algae including Corallinapetra gabrielii comb. nov. JOURNAL OF PHYCOLOGY 2021; 57:849-862. [PMID: 33305368 DOI: 10.1111/jpy.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The coralline algal genus Corallinapetra is currently monospecific and was established on the species Corallinapetra novaezelandiae, known from a single collection from north-eastern New Zealand. On the basis of multi-gene phylogenetic analyses, Corallinapetra has been resolved apart from all currently recognized families and orders within the Corallinophycidae. We analyzed DNA sequence data from the holotype of Lithothamnion gabrielii, which has been considered a heterotypic synonym of L. muelleri, and an unidentified sample collected from Stewart Island in New Zealand, using psbA, rbcL, and COI-5P genes. We also observed detailed morpho-anatomical characters with light and scanning electron microscopy. Our phylogenetic analyses showed that L. gabrielii and the sample from New Zealand belonged to the same clade as Corallinapetra, distinct from other families and orders in the Corallinophycidae. Members of this clade are distinguishable from other families and orders in the Corallinophycidae by possessing sporangia that are surrounded by remnant sterile filaments that are weakly calcified in mature multiporate sporangial conceptacles that produce zonately divided tetrasporangia. Therefore, we propose that Corallinapetra be placed in its own family, Corallinapetraceae and order, Corallinapetrales, and that L. gabrielii should be assigned to Corallinapetra, as C. gabrielii, to reflect their phylogenetic relationships. We also obtained a partial rbcL sequence data from the lectotype of L. muelleri, the generitype of Lithothamnion. Comparison of the L. muelleri type sequence with L. gabrielii unambiguously demonstrated that these two species are not conspecific, and confirm the placement of L. muelleri within the Hapalidiales.
Collapse
Affiliation(s)
- So Young Jeong
- Australian Rivers Institute-Coast & Estuaries and School of Environment and Science, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
- Department of Life Science, Chosun University, Gwangju, 61452, Korea
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Private Bag 14-901, Wellington, 6241, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Judith E Sutherland
- National Institute of Water and Atmospheric Research, Private Bag 14-901, Wellington, 6241, New Zealand
| | - Viviana Peña
- BIOCOST Research Group, Departamento de Bioloxía, Facultade de Ciencias and Advanced Scientific Research Center (CICA), Universidade da Coruña, 15071 A, Coruña, Spain
| | - Line Le Gall
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 39, 75005, Paris, France
| | - Guillermo Diaz-Pulido
- School of Environment and Science and Australian Rivers Institute-Coast & Estuaries, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| | - Boo Yeon Won
- Department of Life Science, Chosun University, Gwangju, 61452, Korea
| | - Tae Oh Cho
- Department of Life Science, Chosun University, Gwangju, 61452, Korea
| |
Collapse
|