1
|
Schenck JK, Clarkson-Paredes C, Pushkarsky T, Wang Y, Miller RH, Bukrinsky MI. Nef mediates neuroimmune response, myelin impairment, and neuronal injury in EcoHIV-infected mice. Life Sci Alliance 2025; 8:e202402879. [PMID: 39532531 PMCID: PMC11557684 DOI: 10.26508/lsa.202402879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The introduction of antiretroviral therapy has markedly improved the management of HIV-associated neurocognitive disorders (HAND). However, HAND still affects nearly half of HIV-infected individuals, presenting significant challenges to their well-being. This highlights the critical need for a deeper understanding of HAND mechanisms. Among HIV viral proteins, Nef is notable for its multifaceted role in HIV pathogenesis, though its specific involvement in HAND remains unclear. To investigate this, we used a murine model infected with Nef-expressing (EcoHIV) and Nef-deficient (EcoHIVΔNef) murine HIV. Comparative analyses revealed increased neuroinflammation and reduced myelin and neuronal integrity in EcoHIV-infected brains compared with those with EcoHIVΔNef. Both viruses induced astrogliosis, with stronger GFAP activation in Nef-deficient infections. These findings suggest that Nef contributes to neuroinflammation, primarily through microglial targeting and demyelination, although other factors may regulate astrogliosis. Our results indicate that Nef may significantly contribute to neuronal injury in EcoHIV-infected mice, offering insights into Nef-induced neuropathology in HAND and guiding future research.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Yongsen Wang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Nabipur L, Mouawad M, Venketaraman V. Additive Effects of Glutathione in Improving Antibiotic Efficacy in HIV- M.tb Co-Infection in the Central Nervous System: A Systematic Review. Viruses 2025; 17:127. [PMID: 39861915 PMCID: PMC11769047 DOI: 10.3390/v17010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction. METHODS Relevant studies were identified through systematic searches of PubMed, Elsevier, WHO, and related databases. Inclusion criteria focused on preclinical and clinical research examining GSH or its precursors in HIV, TB, or co-infection, with emphasis on microbial control, immune modulation, and CNS-related outcomes. RESULTS Preclinical studies showed that GSH improves macrophage antimicrobial function, reduces oxidative stress, and limits Mycobacterium tuberculosis (M.tb) growth. Animal models demonstrated reduced bacterial burden in the lungs, liver, and spleen with GSH supplementation, along with enhanced granuloma stability. Clinical studies highlighted increased TH1 cytokine production, reduced inflammatory markers, and improved CD4+ T cell counts in HIV-M.tb co-infected patients. N-acetylcysteine (NAC), a GSH precursor, was shown to significantly enhance the efficacy of first-line TB antibiotics and mitigate treatment-associated toxicity. DISCUSSION GSH shows promise as an adjunct therapy for HIV-M.tb co-infection, particularly for cases involving the CNS, where it may improve immune recovery and reduce inflammation. However, evidence is limited by small sample sizes and a lack of randomized trials. Future research should focus on developing CNS-directed GSH formulations and evaluating its integration into current treatment protocols to address the dual burden of HIV and TB, ultimately improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (L.N.); (M.M.)
| |
Collapse
|
3
|
Pla-Tenorio J, Velazquez-Perez B, Mendez-Borrero Y, Cruz ML, Sepulveda-Orengo MT, Noel RJ. Astrocytic HIV-1 Nef Expression Decreases Glutamate Transporter Expression in the Nucleus Accumbens and Increases Cocaine-Seeking Behavior in Rats. Pharmaceuticals (Basel) 2025; 18:40. [PMID: 39861103 PMCID: PMC11769493 DOI: 10.3390/ph18010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease and contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with combined antiretroviral therapy (cART), HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin. This study investigates the relationship among Nef, glutamate homeostasis, and cocaine in the nucleus accumbens (NAc), a critical brain region associated with drug motivation and reward. METHODS Male and female Sprague Dawley rats were used to compare the effects of astrocytic Nef and cocaine by molecular analysis of glutamate transporters, GLT-1 and the cysteine glutamate exchanger (xCT), in the NAc. Behavioral assessments for cocaine self-administration were used to evaluate cocaine-seeking behavior. RESULTS The findings indicate that both cocaine and Nef independently decrease the expression of the glutamate transporter GLT-1 in the NAc. Additionally, rats with astrocytic Nef expression exhibited increased cocaine-seeking behavior but demonstrated sex-dependent molecular differences after the behavioral paradigm. CONCLUSIONS The results suggest that the expression of Nef intensifies cocaine-induced alterations in glutamate homeostasis in the NAc, potentially underlying increased cocaine-seeking behavior. Understanding these interactions better may inform therapeutic strategies for managing cocaine use disorder in HIV-infected individuals.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Bethzaly Velazquez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA; (B.V.-P.); (Y.M.-B.); (M.L.C.); (M.T.S.-O.)
- Department of Biomedical Sciences, Pontifical Catholic University of Puerto Rico, Ponce, PR 00717, USA
| | - Yainira Mendez-Borrero
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA; (B.V.-P.); (Y.M.-B.); (M.L.C.); (M.T.S.-O.)
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA; (B.V.-P.); (Y.M.-B.); (M.L.C.); (M.T.S.-O.)
| | - Marian T. Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA; (B.V.-P.); (Y.M.-B.); (M.L.C.); (M.T.S.-O.)
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA; (B.V.-P.); (Y.M.-B.); (M.L.C.); (M.T.S.-O.)
| |
Collapse
|
4
|
Mustafa M, Musselman D, Jayaweera D, da Fonseca Ferreira A, Marzouka G, Dong C. HIV-Associated Neurocognitive Disorder (HAND) and Alzheimer's Disease Pathogenesis: Future Directions for Diagnosis and Treatment. Int J Mol Sci 2024; 25:11170. [PMID: 39456951 PMCID: PMC11508543 DOI: 10.3390/ijms252011170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) and Alzheimer's disease (AD) are two neurocognitive disorders with overlapping clinical presentations and pathophysiology. The two have been thought to be two separate entities. However, the introduction and widespread use of antiretroviral therapy (ART) has altered the clinical manifestations of HAND, shifting from a pattern of subcortical dementia to one more akin to cortical dementia, resembling AD. Thus, the line between the two disease entities is not clear-cut. In this review, we discuss the concept of Alzheimer's disease-like dementia (ADLD) in HIV, which describes this phenomenon. While the mechanisms of HIV-associated ADLD remain to be elucidated, potential mechanisms include HIV-specific pathways, including epigenetic imprinting from initial viral infection, persistent and low viral load (which can only be detected by ultra-sensitive PCR), HIV-related inflammation, and putative pathways underlying traditional AD risk factors. Importantly, we have shown that HIV-specific microRNAs (miRs) encapsulated in extracellular vesicles (EV-miRs) play an important role in mediating the detrimental effects in the cardiovascular system. A useful preclinical model to study ADLD would be to expose AD mice to HIV-positive EVs to identify candidate EV-miRs that mediate the HIV-specific effects underlying ADLD. Characterization of the candidate EV-miRs may provide novel therapeutic armamentaria for ADLD.
Collapse
Affiliation(s)
- Mohammed Mustafa
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
| | - Dominique Musselman
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Dushyantha Jayaweera
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Andrea da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - George Marzouka
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Division of Cardiovascular Disease, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33136, USA
| | - Chunming Dong
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.M.); (D.J.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Division of Cardiovascular Disease, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Pla-Tenorio J, Velazquez-Perez B, Mendez-Borrero Y, Cruz-Rentas M, Sepulveda-Orengo M, Noel RJ. Astrocytic HIV-1 Nef expression decreases glutamate transporter expression in the nucleus accumbens and increases cocaine-seeking behavior in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617598. [PMID: 39416088 PMCID: PMC11483060 DOI: 10.1101/2024.10.10.617598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease, contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with cART, HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin. This study investigates the relationship that exists between Nef, glutamate homeostasis, and cocaine in the NAc, a critical brain region associated with drug motivation and reward. Using a rat model, we compared the effects of astrocytic Nef and cocaine by molecular analysis of glutamate transporters in the NAc. We further conducted behavioral assessments for cocaine self-administration to evaluate cocaine-seeking behavior. Our findings indicate that both cocaine and Nef independently decrease the expression of the glutamate transporter GLT-1 in the NAc. Additionally, rats with astrocytic Nef expression exhibited increased cocaine-seeking behavior but demonstrated sex dependent molecular differences after behavioral paradigm. In conclusion, our results suggest the expression of Nef intensifies cocaine-induced alterations in glutamate homeostasis in the NAc, potentially underlying increased cocaine-seeking. Understanding these interactions better may inform therapeutic strategies for managing cocaine use disorder in HIV-infected individuals.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Bethzaly Velazquez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Biomedical Sciences, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Yainira Mendez-Borrero
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Myrella Cruz-Rentas
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
6
|
Annadurai N, Kanmogne GD. Structural and Functional Dysregulation of the Brain Endothelium in HIV Infection and Substance Abuse. Cells 2024; 13:1415. [PMID: 39272987 PMCID: PMC11393916 DOI: 10.3390/cells13171415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Blood-brain barrier (BBB) injury and dysfunction following infection with the human immunodeficiency virus (HIV) enables viral entry into the brain, infection of resident brain cells, neuronal injury and subsequent neurodegeneration leading to HIV-associated neurocognitive disorders (HAND). Although combination antiretroviral therapy has significantly reduced the incidence and prevalence of acquired immunodeficiency syndrome and increased the life expectancy of people living with HIV, the prevalence of HAND remains high. With aging of people living with HIV associated with increased comorbidities, the prevalence of HIV-related central nervous system (CNS) complications is expected to remain high. Considering the principal role of the brain endothelium in HIV infection of the CNS and HAND, the purpose of this manuscript is to review the current literature on the pathobiology of the brain endothelium structural and functional dysregulation in HIV infection, including in the presence of HIV-1 and viral proteins (gp120, Tat, Nef, and Vpr). We summarize evidence from human and animal studies, in vitro studies, and associated mechanisms. We further summarize evidence of synergy or lack thereof between commonly abused substances (cocaine, methamphetamine, alcohol, tobacco, opioids, and cannabinoids) and HIV- or viral protein-induced BBB injury and dysfunction.
Collapse
Affiliation(s)
| | - Georgette D. Kanmogne
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-4455, USA;
| |
Collapse
|
7
|
Schenck JK, Karl MT, Clarkson-Paredes C, Bastin A, Pushkarsky T, Brichacek B, Miller RH, Bukrinsky MI. Extracellular vesicles produced by HIV-1 Nef-expressing cells induce myelin impairment and oligodendrocyte damage in the mouse central nervous system. J Neuroinflammation 2024; 21:127. [PMID: 38741181 PMCID: PMC11090814 DOI: 10.1186/s12974-024-03124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a spectrum of cognitive impairments that continue to affect approximately half of all HIV-positive individuals despite effective viral suppression through antiretroviral therapy (ART). White matter pathologies have persisted in the ART era, and the degree of white matter damage correlates with the degree of neurocognitive impairment in patients with HAND. The HIV protein Nef has been implicated in HAND pathogenesis, but its effect on white matter damage has not been well characterized. Here, utilizing in vivo, ex vivo, and in vitro methods, we demonstrate that Nef-containing extracellular vesicles (Nef EVs) disrupt myelin sheaths and inflict damage upon oligodendrocytes within the murine central nervous system. Intracranial injection of Nef EVs leads to reduced myelin basic protein (MBP) staining and a decreased number of CC1 + oligodendrocytes in the corpus callosum. Moreover, cerebellar slice cultures treated with Nef EVs exhibit diminished MBP expression and increased presence of unmyelinated axons. Primary mixed brain cultures and enriched oligodendrocyte precursor cell cultures exposed to Nef EVs display a decreased number of O4 + cells, indicative of oligodendrocyte impairment. These findings underscore the potential contribution of Nef EV-mediated damage to oligodendrocytes and myelin maintenance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Molly T Karl
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Ashley Bastin
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Beda Brichacek
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, 2300 I St NW, Ross Hall 624, Washington, DC, 20037, USA.
| |
Collapse
|
8
|
Pla-Tenorio J, Roig AM, García-Cesaní PA, Santiago LA, Sepulveda-Orengo MT, Noel RJ. Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100108. [PMID: 38020814 PMCID: PMC10663134 DOI: 10.1016/j.crneur.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Angela M. Roig
- Seattle Children's Hospital, MS OC.7.830, 4800 Sand Point Way NE, Seattle, WA, 98105-0371, United States
| | - Paulina A. García-Cesaní
- Bella Vista Hospital, Family Medicine Residency, Carr. 349 Km 2.7, Cerro Las Mesas, Mayaguez, PR, 00681, Puerto Rico
| | - Luis A. Santiago
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Marian T. Sepulveda-Orengo
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Richard J. Noel
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| |
Collapse
|
9
|
Wilson KM, He JJ. HIV Nef Expression Down-modulated GFAP Expression and Altered Glutamate Uptake and Release and Proliferation in Astrocytes. Aging Dis 2023; 14:152-169. [PMID: 36818564 PMCID: PMC9937695 DOI: 10.14336/ad.2022.0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection of astrocytes leads to restricted gene expression and replication but abundant expression of HIV early genes Tat, Nef and Rev. A great deal of neuroHIV research has so far been focused on Tat protein, its effects on astrocytes, and its roles in neuroHIV. In the current study, we aimed to determine effects of Nef expression on astrocytes and their function. Using transfection or infection of VSVG-pseudotyped HIV viruses, we showed that Nef expression down-modulated glial fibrillary acidic protein (GFAP) expression. We then showed that Nef expression also led to decreased GFAP mRNA expression. The transcriptional regulation was further confirmed using a GFAP promoter-driven reporter gene assay. We performed transcription factor profiling array to compare the expression of transcription factors between Nef-intact and Nef-deficient HIV-infected cells and identified eight transcription factors with expression changes of 1.5-fold or higher: three up-regulated by Nef (Stat1, Stat5, and TFIID), and five down-regulated by Nef (AR, GAS/ISRE, HIF, Sp1, and p53). We then demonstrated that removal of the Sp1 binding sites from the GFAP promoter resulted in a much lower level of the promoter activity and reversal of Nef effects on the GFAP promoter, confirming important roles of Sp1 in the GFAP promoter activity and for Nef-induced GFAP expression. Lastly, we showed that Nef expression led to increased glutamate uptake and decreased glutamate release by astrocytes and increased astrocyte proliferation. Taken together, these results indicate that Nef leads to down-modulation of GFAP expression and alteration of glutamate metabolism in astrocytes, and astrocyte proliferation and could be an important contributor to neuroHIV.
Collapse
Affiliation(s)
- Kelly M Wilson
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| |
Collapse
|
10
|
Kandel SR, Luo X, He JJ. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4 + T cells. J Neurovirol 2022; 28:552-565. [PMID: 36001227 DOI: 10.1007/s13365-022-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.
Collapse
Affiliation(s)
- Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
11
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
12
|
Rivera-Ortiz J, Pla-Tenorio J, Cruz ML, Colon K, Perez-Morales J, Rodriguez JA, Martinez-Sicari J, Noel RJ. Blockade of beta adrenergic receptors protects the blood brain barrier and reduces systemic pathology caused by HIV-1 Nef protein. PLoS One 2021; 16:e0259446. [PMID: 34784367 PMCID: PMC8594844 DOI: 10.1371/journal.pone.0259446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Combination antiretroviral therapy (cART) targets viral replication, but early viral protein production by astrocytes may still occur and contribute to the progression of HIV-1 associated neurocognitive disorders and secondary complications seen in patients receiving cART. In prior work with our model, astrocytic HIV-1 Nef expression exhibits neurotoxic effects leading to neurological damage, learning impairment, and immune upregulation that induces inflammation in the lungs and small intestine (SI). In this follow-up study, we focus on the sympathetic nervous system (SNS) as the important branch for peripheral inflammation resulting from astrocytic Nef expression. Male and female Sprague Dawley rats were infused with transfected astrocytes to produce Nef. The rats were divided in four groups: Nef, Nef + propranolol, propranolol and naïve. The beta-adrenergic blocker, propranolol, was administered for 3 consecutive days, starting one day prior to surgery. Two days after the surgery, the rats were sacrificed, and then blood, brain, small intestine (SI), and lung tissues were collected. Levels of IL-1β were higher in both male and female rats, and treatment with propranolol restored IL-1β to basal levels. We observed that Nef expression decreased staining of the tight junction protein claudin-5 in brain tissue while animals co-treated with propranolol restored claudin-5 expression. Lungs and SI of rats in the Nef group showed histological signs of damage including larger Peyer's Patches, increased tissue thickness, and infiltration of immune cells; these findings were abrogated by propranolol co-treatment. Results suggest that interruption of the beta adrenergic signaling reduces the peripheral organ inflammation caused after Nef expression in astrocytes of the brain.
Collapse
Affiliation(s)
- Jocelyn Rivera-Ortiz
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Jessalyn Pla-Tenorio
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Krystal Colon
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Jaileene Perez-Morales
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Julio A. Rodriguez
- Cooper University Hospital Department of Orthopaedic Surgery, Camden, NJ, United States of America
| | - Jorge Martinez-Sicari
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
13
|
Alzheimer's-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines (Basel) 2021; 9:vaccines9080930. [PMID: 34452054 PMCID: PMC8402792 DOI: 10.3390/vaccines9080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer’s disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-β42 (Aβ42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer’s type. Apart from abnormal amyloid-β (Aβ) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer’s-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause–effect relationship of Alzheimer’s-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer’s-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.
Collapse
|
14
|
Duggan MR, Mohseni Ahooyi T, Parikh V, Khalili K. Neuromodulation of BAG co-chaperones by HIV-1 viral proteins and H 2O 2: implications for HIV-associated neurological disorders. Cell Death Discov 2021; 7:60. [PMID: 33771978 PMCID: PMC7997901 DOI: 10.1038/s41420-021-00424-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 11/08/2022] Open
Abstract
Despite increasing numbers of aged individuals living with HIV, the mechanisms underlying HIV-associated neurological disorders (HANDs) remain elusive. As HIV-1 pathogenesis and aging are characterized by oxidative stress as well as altered protein quality control (PQC), reactive oxygen species (ROS) themselves might constitute a molecular mediator of neuronal PQC by modulating BCL-2 associated athanogene (BAG) family members. Present results reveal H2O2 replicated and exacerbated a reduction in neuronal BAG3 induced by the expression of HIV-1 viral proteins (i.e., Tat and Nef), while also causing an upregulation of BAG1. Such a reciprocal regulation of BAG3 and BAG1 levels was also indicated in two animal models of HIV, the doxycycline-inducible Tat (iTat) and the Tg26 mouse. Inhibiting oxidative stress via antioxidants in primary culture was capable of partially preserving neuronal BAG3 levels as well as electrophysiological functioning otherwise altered by HIV-1 viral proteins. Current findings indicate HIV-1 viral proteins and H2O2 may mediate neuronal PQC by exerting synergistic effects on complementary BAG family members, and suggest novel therapeutic targets for the aging HIV-1 population.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
- Department of Psychology, College of Liberal Arts at Temple University, 1701 N 13th Street, 9th Floor, Philadelphia, PA, 19122, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Vinay Parikh
- Department of Psychology, College of Liberal Arts at Temple University, 1701 N 13th Street, 9th Floor, Philadelphia, PA, 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Stadtler H, Shaw G, Neigh GN. Mini-review: Elucidating the psychological, physical, and sex-based interactions between HIV infection and stress. Neurosci Lett 2021; 747:135698. [PMID: 33540057 PMCID: PMC9258904 DOI: 10.1016/j.neulet.2021.135698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Stress is generally classified as any mental or emotional strain resulting from difficult circumstances, and can manifest in the form of depression, anxiety, post-traumatic stress disorder (PTSD), or other neurocognitive disorders. Neurocognitive disorders such as depression, anxiety, and PTSD are large contributors to disability worldwide, and continue to affect individuals and communities. Although these disorders affect men and women, women are disproportionately represented among those diagnosed with affective disorders, a result of both societal gender roles and physical differences. Furthermore, the incidence of these neurocognitive disorders is augmented among People Living with HIV (PLWH); the physical ramifications of stress increase the likelihood of HIV acquisition, pathogenesis, and treatment, as both stress and HIV infection are characterized by chronic inflammation, which creates a more opportunistic environment for HIV. Although the stress response is facilitated by the autonomic nervous system (ANS) and the hypothalamic pituitary adrenal (HPA) axis, when the response involves a psychological component, additional brain regions are engaged. The impact of chronic stress exposure and the origin of individual variation in stress responses and resilience are at least in part attributable to regions outside the primary stress circuity, including the amygdala, prefrontal cortex, and hippocampus. This review aims to elucidate the relationship between stress and HIV, how these interact with sex, and to understand the physical ramifications of these interactions.
Collapse
Affiliation(s)
- Hannah Stadtler
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gladys Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
16
|
McArthur JC, Johnson TP. Chronic inflammation mediates brain injury in HIV infection: relevance for cure strategies. Curr Opin Neurol 2021; 33:397-404. [PMID: 32209807 DOI: 10.1097/wco.0000000000000807] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Chronic inflammation is a major component of HIV infection, the effects of which can be devastating in the central nervous system (CNS). Protecting the brain is, therefore, critical as efforts proceed to cure HIV infection by reactivating latent viral reservoirs and driving immune responses. We review the clinical presentation and pathology findings of inflammatory processes in the CNS in patients managed with ART and the drivers of these processes. RECENT FINDINGS Chronic inflammation is associated with increased mortality and morbidity and HIV infection increases the risk for chronic diseases, especially cognitive impairment. Latent viral reservoirs, including microglia and tissue macrophages, contribute to inflammation in the CNS. Inflammation is generated and maintained through residual viral replication, dysregulation of infected cells, continuously produced viral proteins and positive feedback loops of chronic inflammation. Novel therapeutics and lifestyle changes may help to protect the CNS from immune-mediated damage. SUMMARY As therapies are developed to cure HIV, it is important to protect the CNS from additional immune-mediated damage. Adjunctive therapies to restore glial function, reduce neuroinflammation and systemic inflammation, and inhibit expression of viral proteins are needed.
Collapse
Affiliation(s)
- Justin C McArthur
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
17
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|