1
|
Li L, Long Q, Deng N, Tan Z. Association of intestinal mucosal barrier function with intestinal microbiota in Spleen-Kidney Yang Deficiency IBS-D mice. Front Microbiol 2025; 16:1567971. [PMID: 40365066 PMCID: PMC12069268 DOI: 10.3389/fmicb.2025.1567971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Background To establish and evaluate an IBS-D mouse model with Spleen-Kidney Yang Deficiency, explore the microecological mechanisms of IBS-D, and provide experimental evidence for the clinical diagnosis and treatment of IBS-D with Spleen-Kidney Yang Deficiency. Methods SPF-grade female Kunming mice were used to establish an IBS-D model with Spleen-Kidney Yang Deficiency through Folium senna-adenine administration combined with restraint-clamping tail. (1) Clinical symptoms and signs were assessed using diagnostic criteria. (2) The small intestine structure was examined via Alcian blue staining, and intestinal barrier markers like D-LA (D-lactate) and DAO (diamine oxidase) were measured by ELISA to assess pathophysiological changes. (3) 16S rRNA gene sequencing was performed to analyze the intestinal microbiota. Results (I) The model mice exhibited symptoms of IBS-D with Spleen-Kidney Yang Deficiency. (II) ELISA and alcian blue staining revealed elevated levels of D-LA and DAO activity in the model group, indicating damage to the intestinal mucosal barrier structure. (III) Analysis of the intestinal mucosal microbiota in the model group revealed differences in dominant and characteristic bacteria at various taxonomic levels compared with those in the normal group, reflecting an imbalance in the intestinal mucosal microbiota. (IV) Lactobacillus and Lentilactobacillus are associated with mucosal barrier damage in mice modeled by Folium senna-adenine administration combined with restraint-clamping tail. Conclusion The combination of Folium senna-adenine administration with restraint-clamping tail can be used to successfully establish an IBS-D mouse model with Spleen-Kidney Yang Deficiency. This model leads to damage to the intestinal mucosal structure. Streptococcus, Serratia, Helicobacter, Phocaeicola, and Desulfomicrobium may serve as potential biological markers for the intestinal mucosal microbiota.
Collapse
Affiliation(s)
- Liwen Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Qi Long
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| |
Collapse
|
2
|
SHEN J, FANG L, TAN Z, XIAO N, PENG M. The effects of functional biscuits on intestinal mucosal microbiota composition, brain function, and antioxidant activity. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 44:171-181. [PMID: 40171390 PMCID: PMC11957763 DOI: 10.12938/bmfh.2024-078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/02/2024] [Indexed: 04/03/2025]
Abstract
Protecting brain health is one of the current focal points of public concern. Medicinal foods that promote brain health, such as Gastrodia elata Bl, black sesame seeds (Sesamum indicum L.), walnuts (Juglans regia L.), jujube (Ziziphus jujuba Mill.), Poria cocos, and Coix seeds, possess antioxidant and neuroprotective properties, as well as modulating effects on the intestinal microbiota. This study evaluated the effects of functional biscuits formulated with these medicinal foods on the intestinal mucosal microbiota, brain function, and antioxidant activity in mice. Forty male SPF-grade C57BL/6J mice were randomly divided into a blank control group (NG), low-dose functional biscuit group (GLG), medium-dose functional biscuit group (GMG), and high-dose functional biscuit group (GHG). After 42 days of continuous feeding with the functional biscuits, changes in the richness, diversity, and community structure of the intestinal mucosal microbiota were observed. Compared with the NG group, norepinephrine (NE) levels in the hippocampus significantly increased in the GLG, GMG, and GHG groups, while gamma-aminobutyric acid (GABA) levels showed no significant difference. In the GMG and GHG groups, malondialdehyde (MDA) levels in the liver significantly decreased, and acetylcholine transferase (ChAT) levels in the hippocampus significantly increased. Additionally, multiple bacterial genera were found to be correlated with the NE, ChAT, and MDA levels. These findings indicate that functional biscuits have effects on modulating the intestinal mucosal microbiota composition, enhancing brain function, and exhibiting antioxidant activity, making them a beneficial functional food for brain health.
Collapse
Affiliation(s)
- Junxi SHEN
- School of Traditional Chinese Medicine, Hunan University of
Chinese Medicine, Changsha, Hunan, China
| | - Leyao FANG
- School of Traditional Chinese Medicine, Hunan University of
Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin TAN
- School of Traditional Chinese Medicine, Hunan University of
Chinese Medicine, Changsha, Hunan, China
| | - Nenqun XIAO
- School of Pharmacy, Hunan University of Chinese Medicine,
Changsha, Hunan, China
| | - Maijiao PENG
- School of Pharmacy, Hunan University of Chinese Medicine,
Changsha, Hunan, China
| |
Collapse
|
3
|
Lai Y, Lan X, Qin Y, Wei Y, Li X, Feng J, Jiang J. Polysaccharides of natural products alleviate antibiotic-associated diarrhea by regulating gut microbiota: a review. Arch Microbiol 2024; 206:461. [PMID: 39508892 DOI: 10.1007/s00203-024-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is diarrhea caused by disturbances in intestinal microbiota and metabolism following inappropriate use of antibiotics. With the over-reliance on antibiotics, the incidence of AAD is increasing worldwide. Recently, the role of probiotics and prebiotic preparations in the prevention and treatment of AAD has received increasing attention. Various prebiotics can not only reduce the incidence of AAD, but also effectively shorten the course of the disease and alleviate the symptoms. Notably, many polysaccharides derived from plants and fungi are a class of biologically active and rich prebiotics with great potential to alleviate AAD. Therefore, this review aims to summarize the latest research on natural product polysaccharides to alleviate antibiotic-associated diarrhea by modulating the gut microbiota. It provides a theoretical basis for exploring the mechanism of natural product modulation of gut microbiota to alleviate AAD, and provides a reference for further development of active prebiotics.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yahui Qin
- The Fourth Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuankui Wei
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junping Jiang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
4
|
Zhou K, Peng M, Tan Z, Xiao N. Diarrhea Caused by High-Fat and High-Protein Diet Was Associated With Intestinal Lactase-Producing Bacteria. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:691-699. [PMID: 37051624 PMCID: PMC10441099 DOI: 10.5152/tjg.2023.22451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/09/2022] [Indexed: 04/14/2023]
Abstract
BACKGROUND/AIMS This study aimed to investigate the effect of diarrhea induced by a high-fat and high-protein diet on lactase-producing bacteria in the intestinal contents of mice from the perspective of diarrhea-related genes. MATERIALS AND METHODS Ten specific pathogen-free Kunming male mice were chosen and randomly divided into the normal group and model group. The mice in the normal group were fed with high-fat and high-protein diet plus gavage of vegetable oil, while those in the model group were fed with general diet plus gavage of distilled water. After successful modeling, the distribution and diversity of lactase-producing bacteria in the intestinal contents were characterized by metagenomic sequencing technology. RESULTS After high-fat and high-protein diet intervention, Chao1, observed species index, and operational taxonomic units number decreased in the model group (P > .05), while the Shannon, Simpson, Pielou's evenness, and Goods coverage indices increased (P > .05). The principal coordinate analysis showed that the composition of lactase-producing bacteria differed between the normal group and model group (P < .05). The lactase-producing bacterial source in the intestinal contents of mice was Actinobacteria, Firmicutes, and Proteobacteria, of which Actinobacteria was the most abundant phylum. At the genus level, both groups had their unique genera, respectively. Compared to the normal group, the abundance of Bifidobacterium, Rhizobium, and Sphingobium increased, while Lachnoclostridium, Lactobacillus, Saccharopolyspora, and Sinorhizobium decreased in the model group. CONCLUSION High-fat and high-protein diet altered the structure of lactase-producing bacteria in the intestinal contents, elevating the abundance of dominant lactase-producing bacteria, while decreasing the richness of lactase-producing bacteria, which may further induce the occurrence of diarrhea.
Collapse
Affiliation(s)
- Kang Zhou
- Hunan University of Chinese Medicine Faculty of Pharmacy, Changsha, Hunan, China
| | - Maijiao Peng
- Hunan University of Chinese Medicine Faculty of Pharmacy, Changsha, Hunan, China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine Faculty of Medicine, Changsha, China
| | - Nenqun Xiao
- Hunan University of Chinese Medicine Faculty of Pharmacy, Changsha, Hunan, China
| |
Collapse
|
5
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Zhu J, Li X, Deng N, Zhou K, Qiao B, Li D, Tan Z. Intestinal mucosal flora of the intestine-kidney remediation process of diarrhea with deficiency kidney-yang syndrome in Sishen Pill treatment: Association with interactions between Lactobacillus johnsonii, Ca 2+-Mg 2+-ATP-ase, and Na +-K +-ATP-ase. Heliyon 2023; 9:e16166. [PMID: 37215812 PMCID: PMC10199185 DOI: 10.1016/j.heliyon.2023.e16166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
This study aims to investigate the effect of Sishen Pill on the characteristics of gut mucosal microbiota in diarrhea mice with deficiency kidney-yang syndrome. Fifteen Kunming male mice were randomly divided into Normal control group (C), Model self-healing group (X) and Sishen Pill group (S), with 5 mice/cages. Hematoxylin eosin (HE) staining was used to observe the kidney structure. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase were detected by enzyme-linked immunosorbent assay (ELISA), Analysis of intestinal mucosal flora using third-generation high-throughput sequencing. The relative abundance results in the three groups revealed that the dominant bacterial genera: Lactobacillus, Muribaculum and Candidatus-Arthromitus; bacterial species: Lactobacillus johnsonii, Lactobacillus reuteri, Lactobacillus murinus, and Lactobacillus intestinalis, and differences in the presence of major microbiota between the X and S groups. A positive correlation between Lactobacillus johnsonii and both Ca2+-Mg2+-ATP-ase and Na+-K+-ATP-ase was found via correlation analysis. Sishen Pill also changed the manufacture of other secondary metabolites, as well as the metabolism of carbohydrates, glycans, energy, lipids, and other amino acids, and xenobiotics biodegradation and metabolism. In conclusion, Sishen Pill improved kidney structure, energy metabolism and the diversity and structure of intestinal mucosal flora. In addition, Lactobacillus johnsonii may be a characteristic species of Sishen Pill in treating diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Jiayuan Zhu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Xiaoya Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Kang Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Dandan Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Zhoujin Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| |
Collapse
|
7
|
Angulo M, Ramos A, Reyes-Becerril M, Guerra K, Monreal-Escalante E, Angulo C. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech 2023; 13:28. [PMID: 36590244 PMCID: PMC9797638 DOI: 10.1007/s13205-022-03442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1β) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Abel Ramos
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Martha Reyes-Becerril
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Kevyn Guerra
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| |
Collapse
|
8
|
Wu Y, Peng X, Li X, Li D, Tan Z, Yu R. Sex hormones influence the intestinal microbiota composition in mice. Front Microbiol 2022; 13:964847. [PMID: 36386696 PMCID: PMC9659915 DOI: 10.3389/fmicb.2022.964847] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 08/26/2023] Open
Abstract
Sex hormone secretion difference is one of the main reasons for sexually dimorphic traits in animals, which affects the dimorphism of the intestinal microbiota; however, their interaction is still unknown. Intestinal mucosa-associated microbiota (MAM) and intestinal luminal content microbiota (LM) belong to two different habitats according to the difference in interactions between bacteria and host intestinal epithelium/nutrients. To clarify the sexually dimorphic characteristics of MAM and LM and their correlation with sex hormones, 12 specific pathogen-free (SPF) Kunming mice from the same nest were fed separately according to sex. After 8 weeks, samples from the male intestinal mucosa group (MM group), the female intestinal mucosa group (FM group), the male intestinal content group (MC group), and the female intestinal content group (FC group) were collected and then, the next-generation sequencing of 16S ribosomal ribonucleic acid (rRNA) gene was performed. Our results showed that the sexual dimorphism of MAM was more obvious than that of LM and the relative abundance of Muribaculaceae, Turicibacter, and Parasutterella was significantly higher in the FM group than in the MM group (p < 0.001, p < 0.05, p < 0.05). Next, we measured the level of serum sex hormones in mice and calculated the correlation coefficient between major bacteria and sex hormones. The results showed that the correlation between MAM and sex hormones was more prominent, and finally, three bacterial genera (Muribaculaceae, Turicibacter, and Parasutterella) were obtained, which could better represent the relationship between sexual dimorphism and sex hormones. The abundance of Parasutterella is positively and negatively correlated with estradiol and testosterone (T), respectively, which may be related to the differences in the metabolism of bile acid and glucose. A decrease in the abundance of Turicibacter is closely related to autism. Our results show that the abundance of Turicibacter is negatively and positively correlated with T and estradiol, respectively, which can provide a hint for the prevalence of male autism. In conclusion, it is proposed in our study that intestinal microbiota is probably the biological basis of physiological and pathological differences due to sex, and intestinal MAM can better represent the sexual dimorphism of mice.
Collapse
Affiliation(s)
- Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Xinxin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Dandan Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Rong Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| |
Collapse
|
9
|
Zhu J, Li X, Deng N, Peng X, Tan Z. Diarrhea with deficiency kidney-yang syndrome caused by adenine combined with Folium senna was associated with gut mucosal microbiota. Front Microbiol 2022; 13:1007609. [PMID: 36304943 PMCID: PMC9593090 DOI: 10.3389/fmicb.2022.1007609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 01/30/2023] Open
Abstract
The present study aims to study and analyze the characteristics of gut mucosal microbiota in diarrhea mice with deficiency kidney-yang syndrome. Ten male mice were randomly divided into the control group and the model group. Diarrhea mice model with deficiency kidney-yang syndrome was established by adenine combined with Folium sennae. The kidney structure was observed by hematoxylin-eosin (HE) staining. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase were detected by enzyme-linked immunosorbent assay (ELISA). The characteristics of gut mucosal microbiota were analyzed by performing third-generation high-throughput sequencing. The results showed that the model mice exhibit obvious structural damage to the kidney. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase levels showed a decreased trend in the model group. The diversity and community structure of the gut mucosal microbiota improved in the model group. Dominant bacteria like Candidatus Arthromitus, Muribaculum, and Lactobacillus reuteri varied significantly at different taxonomic levels. The characteristic bacteria like Bacteroides, Erysipelatoclostridium, Anaerotignum, Akkermansia muciniphila, Clostridium cocleatum, Bacteroides vulgatus, and Bacteroides sartorii were enriched in the model group. A correlation analysis described that Erysipelatoclostridium was positively correlated with Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase levels, while Anaerotignum exhibited an opposite trend. Together, adenine combined with Folium sennae damaged the structure of the kidney, affected energy metabolism, and caused disorders of gut mucosal microbiota in mice. Bacteroides, Erysipelatoclostridium, and Anaerotignum showed significant inhibition or promotion effects on energy metabolism. Besides, Akkermansia muciniphila, Clostridium cocleatum, Bacteroides vulgatus, and Bacteroides sartorii might be the characteristic species of gut mucosal microbiota responsible for causing diarrhea with deficiency kidney-yang syndrome.
Collapse
Affiliation(s)
- Jiayuan Zhu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Zhou K, Peng M, Deng N, Tan Z, Xiao N. Lactase bacteria in intestinal mucosa are associated with diarrhea caused by high-fat and high-protein diet. BMC Microbiol 2022; 22:226. [PMID: 36171559 PMCID: PMC9516839 DOI: 10.1186/s12866-022-02647-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Excessive fat and protein in food can cause diarrhea by disturbing the intestinal microecology. Lactase is a functional enzyme strongly associated with diarrhea, while lactase bacteria in the intestine are an important source of microbial lactase. Therefore, we reconnoiter the relationship between diarrhea induced by a high-fat and high-protein diet (HFHPD) and intestinal mucosal lactase bacteria from the perspective of functional genes. RESULT Operational Taxonomic Units (OTUs) were 23 and 31 in the normal group (NM) and model group (MD), respectively, and 11 of these were identical. The Chao1 and Observed specie indexes in the MD were higher than those in the NM, but this was not significant (P > 0.05). Meanwhile, the Principal coordinate analysis (PCoA) and Adonis test showed that the community structures of lactase bacteria in NM and MD were significantly different (P < 0.05). In taxonomic composition, lactase bacteria on the intestinal mucosa were sourced from Actinobacteria and Proteobacteria. Where Actinobacteria were higher in NM, and Proteobacteria were higher in MD. At the genus level, Bifidobacterium was the dominant genus (over 90% of the total). Compared to NM, the abundance of Bifidobacterium were lower in MD, while MD added sources for lactase bacteria of Rhizobium, Amycolatopsis, and Cedecea. CONCLUSIONS Our data demonstrate that HFHPD altered the community structure of lactase bacteria in the intestinal mucosa, decreased the abundance of the critical lactase bacteria, and promoted the occurrence of diarrhea.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
- College of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
11
|
Zhou K, Deng N, Yi X, Cai Y, Peng M, Xiao N. Baohe pill decoction for diarrhea induced by high-fat and high-protein diet is associated with the structure of lactase-producing bacterial community. Front Cell Infect Microbiol 2022; 12:1004845. [PMID: 36093186 PMCID: PMC9458856 DOI: 10.3389/fcimb.2022.1004845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Background This study investigated the effects of Baohe pill decoction on the diversity and community composition of lactase-producing bacteria in the intestinal contents of mice with diarrhea induced by high-fat and high-protein diet, which provided an experimental basis for the study on the therapeutic mechanism of Baohe pill decoction. Materials and methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP), DisGeNET, UniProt, National Center for Biotechnology Information (NCBI), and GeneCards databases were used to collect the potential targets with active ingredients of Baohe pill decoction, diarrhea, and lactase, and then construct correlation networks. Fifteen Kunming mice were randomly divided into the control group (CN), natural recovery group (NR), and Baohe pill decoction treatment group (BHP), with five mice in each group. After constructing a mouse diarrhea model by HFHPD induction, BHP was gavaged with Baohe pill decoction, and the other groups were gavaged with distilled water of equal. The intestinal contents were collected from ileal to jejunal and analyzed using metagenomic sequencing to characterize the intestinal content of lactase-producing bacteria in mice. Results The core active ingredients related to diarrhea in Baohe pill decoction were quercetin, luteolin, kaempferol, forsythin, and wogonin. And there was no intersection between the potential targets with the active ingredient of Baohe pill, lactase, and diarrhea. After the intervention of Baohe pill decoction, the Observed species, Chao1 index, and Operational Taxonomic Units (OTU) number increased in BHP (P > 0.05), while the Pielous evenness and Shannon index decreased (P > 0.05). In Beta diversity, the community structure of the NR was significantly different from CN and BHP (P < 0.05), and the community structure of the CN was not significant difference from BHP (P > 0.05). Compared to NR, the relative abundance of Bifidobacterium and Amycolatopsis increased, while the relative abundance of Lachnoclostridium, Sinorhizobium, Cedecea, and Escherichia decreased in BHP, but none of the significant differences (P > 0.05). Conclusion The therapeutic effect of Baohe pill decoction on diarrhea induced by HFHPD does not appear to involve the body’s lactase gene targets directly, but is associated with the change of the construction of lactase-producing bacterial communities.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| |
Collapse
|
12
|
Bajinka O, Qi M, Barrow A, Touray AO, Yang L, Tan Y. Pathogenicity of Salmonella During Schistosoma-Salmonella Co-infections and the Importance of the Gut Microbiota. Curr Microbiol 2021; 79:26. [PMID: 34905113 PMCID: PMC8669234 DOI: 10.1007/s00284-021-02718-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Antibiotic inefficacy in treating bacterial infections is largely studied in the context of developing resistance mechanisms. However, little attention has been paid to combined diseases mechanisms, interspecies pathogenesis and the resulting impact on antimicrobial treatment. This review will consider the co-infections of Salmonella and Schistosoma mansoni. It summarises the protective mechanisms that the pathophysiology of the two infections confer, which leads to an antibiotic protection phenomenon. This review will elucidate the functional characteristics of the gut microbiota in the context of these co-infections, the pathogenicity of these infections in infected mice, and the efficacy of the antibiotics used in treatment of these co-infections over time. Salmonella-Schistosoma interactions and the mechanism for antibiotic protection are not well established. However, antimicrobial drug inefficacy is an existing phenomenon in these co-infections. The treatment of schistosomiasis to ensure the efficacy of antibiotic therapy for bacterial infections should be considered in co-infected patients.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Microbiology, Central South University, Changsha, Hunan, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Amadou Barrow
- Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University, Heidelberg, Germany.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abdoulie O Touray
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Lulu Yang
- Department of Microbiology, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Microbiology, Central South University, Changsha, Hunan, China. .,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
13
|
Bhushan I, Sharma M, Mehta M, Badyal S, Sharma V, Sharma I, Singh H, Sistla S. Bioactive compounds and probiotics-a ray of hope in COVID-19 management. FOOD SCIENCE AND HUMAN WELLNESS 2021; 10:131-140. [PMID: 38620836 PMCID: PMC7982983 DOI: 10.1016/j.fshw.2021.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The use of bioactive compounds and probiotic bacteria against the viral diseases in human is known for a long time. Anti-viral, anti-inflammatory and anti-allergic properties of bioactive compounds and bacteria with probiotic properties in respiratory viral diseases may have significance to enhance immunity. This review highlights some of the important bioactive compounds and probiotic bacteria, suggesting them as a ray of hope in the milieu of the COVID-19 management.
Collapse
Affiliation(s)
- Indu Bhushan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Mahima Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Malvika Mehta
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Shivi Badyal
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Varun Sharma
- Birbal Sahni Institute of Palaeosciences, Lucknow, UP, India
| | - Indu Sharma
- Birbal Sahni Institute of Palaeosciences, Lucknow, UP, India
| | - Hemender Singh
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
14
|
Li X, Zhang C, Hui H, Tan Z. Effect of Gegenqinlian decoction on intestinal mucosal flora in mice with diarrhea induced by high temperature and humidity treatment. 3 Biotech 2021; 11:83. [PMID: 33505838 PMCID: PMC7815854 DOI: 10.1007/s13205-020-02628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The objective of this study is to investigate the regulation effects of the active ingredients in Gegenqinlian Decoction (GD) on the intestinal mucosal flora of mice with diarrhea induced by high temperature and humidity based on systems pharmacology approach. Fifteen mice were randomly assigned to three equal groups of five mice, namely control (ctcm) group, model (ctmm) group and treatment (cttm) group. Mice in the cttm group were given 20 mL/kg of GD and sterile water was used as a placebo control twice a day for four consecutive days. We used the third-generation molecular high-throughput sequencing technology to measure the intestinal mucosal flora changes in mice. Combined with network pharmacology to predict the medicinal substances and action targets of GD against diarrhea. Results showed that Operational Taxonomic Unit (OTU) number and Alpha diversity in the intestinal mucosal flora of cttm group recovered and higher than that of the ctcm group. There were differences in the community structure between the ctmm and cttm groups in the Principal Coordinates Analysis (PCoA). The relative abundance results indicated dominant bacteria species (such as Lactobacillus crispatus, Muribaculum intestinal, Neisseria mucosa) in the intestinal mucosa of the three groups. Moreover, we screened out 146 active ingredients in GD corresponding to 252 component targets, and 328 disease targets in diarrhea to obtain 31 drug-disease common targets. Protein-protein interaction (PPI) networks mainly involved the core proteins such as Tumor necrosis factor (TNF) and Interleukin-6 (IL-6). Enrichment analyses showed that GD played a role in the treatment of diarrhea by regulating the hypoxia inducible factor-1 (HIF-1), vascular endothelial growth factor (VEGF) and adipocytokine signaling pathways and so on. In brief, the active ingredients of GD could intervene from oxidative stress and inflammatory response through multiple targets and multiple channels to adjust the balance of intestinal mucosa flora, thereby playing a role in the treatment of diarrhea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02628-0.
Collapse
Affiliation(s)
- Xiaoya Li
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Chenyang Zhang
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Huaying Hui
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| |
Collapse
|
15
|
Recent advances in the application of probiotic yeasts, particularly Saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol Biol Rep 2021; 48:951-960. [PMID: 33389533 PMCID: PMC7778720 DOI: 10.1007/s11033-020-06110-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Today, the increasing rate of cancer-related mortality, has rendered cancer a major global challenge, and the second leading cause of death worldwide. Conventional approaches in the treatment of cancer mainly include chemotherapy, surgery, immunotherapy, and radiotherapy. However, these approaches still come with certain disadvantages, including drug resistance, and different side effects such as gastrointestinal (GI) irritation (e.g., diarrhea, mucositis). This has encouraged scientists to look for alternative therapeutic methods and adjuvant therapies for a more proper treatment of malignancies. Application of probiotics as an adjuvant therapy in the clinical management of cancer appears to be a promising strategy, with several notable advantages, e.g., increased safety, higher tolerance, and negligible GI side effects. Both in vivo and in vitro analyses have indicated the active role of yeast probiotics in mitigating the rate of cancer cell proliferation, and the induction of apoptosis through regulating the expression of cancer-related genes and cellular pathways. Strain-specific anti-cancer activities of yeast probiotics strongly suggest that their administration along with the current cancer therapies may be an efficient method to reduce the side effects of these approaches. The main purpose of this article is to evaluate the efficacy of yeast probiotics in alleviating the adverse effects associated with cancer therapies.
Collapse
|
16
|
Shao H, Zhang C, Wang C, Tan Z. Intestinal mucosal bacterial diversity of antibiotic-associated diarrhea (AAD) mice treated with Debaryomyces hansenii and Qiweibaizhu powder. 3 Biotech 2020; 10:392. [PMID: 32832342 PMCID: PMC7429618 DOI: 10.1007/s13205-020-02383-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
The aim was to investigate the combined effect of Debaryomyces hansenii and Qiweibaizhu powder (QWBZP) on the bacterial diversity of the intestinal mucosa of antibiotic-associated diarrhea (AAD) mice, for the potential treatment of diarrhea, especially which is induced by administration of antibiotics. Eighteen (18) mice were randomly assigned to three equal groups of six mice, namely Normal (mn group), Placebo control (mm group) and D. hansenii and QWBZP (DQ) treatment (mdq group). Mice were gavaged with a solution (23.33 mL·kg-1·day-1) consisting of gentamicin and cefradine to establish AAD. The DQ treatment group was gavaged with DQ for 4 days, and sterile water was used as a placebo control. The metagenome DNA of the intestinal mucosal microbiota was extracted, and the 16S rRNA gene was sequenced. Analysis showed that there were 288 OTUs for the normal group, 443 for the placebo control group, and 229 for the DQ treatment group. Phylogenetically, the gut microbiota of the DQ treatment group and the normal group were closer to each other than to the placebo control group. Both the DQ and placebo-treated groups included Stenotrophomonas, Robinsoniella, Bacteroidales S24-7 group norank, Citrobacter, and Glutamicibacter, but their abundances were significantly higher in the DQ treatment group than in the placebo control group. This suggested that the combined use of D. hansenii and QWBZP overcame the influence of dysbacteriosis and could lead to the recovery of intestinal mucosal microbiota homeostasis. This positive effect is likely related to short-chain fatty acid (SCFA)-producing bacteria, such as members of Micrococcaceae, Lachnospiraceae, and Bacteroidales S24-7 group, which could play beneficial roles in protecting the mucosal barrier and stimulating the immune response in mice.
Collapse
Affiliation(s)
- Haoqing Shao
- Hunan University of Chinese Medicine, Changsha, Hunan China
| | - Chenyang Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan China
| | - Chunhui Wang
- Hunan Edible Fungus Research Institute, Changsha, Hunan China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan China
| |
Collapse
|
17
|
Zhang C, Shao H, Peng X, Liu T, Tan Z. Microbiotal characteristics colonized in intestinal mucosa of mice with diarrhoea and repeated stress. 3 Biotech 2020; 10:372. [PMID: 32832332 PMCID: PMC7399726 DOI: 10.1007/s13205-020-02368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
To understand the role of intestinal mucosal microbiota on mental stress-related diarrhoea, we collected the intestinal mucosa of mice treated with Folium senna extract gavage combined with restraint and tail pinch stress for 7 days; and intestinal mucosal microbiota characteristics were analyzed by 16S rRNA Pacbio SMRT gene full-length sequencing. The results showed that the diversity (i.e., alpha diversity including the Chao1, Simpson, ACE, and Shannon indices and beta diversity including the NMDS of weighted UniFrac distances) and composition of the microbial community in the intestinal mucosa of mice with diarrhoea and repeated stress changed significantly (P < 0.05). In the co-occurrence network, Staphylococcus sciuri and Escherichia fergusonii was identified as putative keystone species. Moreover, the characteristics of the intestinal microbial species was analyzed by LEfSe, Metastats, and group difference, and ten altered gut microbiota species can be used as characteristic microbes in the mice with diarrhoea and repeated stress: the abundances of Stigmatella aurantiaca, Candidatus arthromitus sp. SFB-mouse, Erythrobacter gaetbuli, Desulfitobacterium hafniense, Ochrobactrum pituitosum, and Candidatus arthromitus sp. SFB-mouse-NL in the model group were significantly lower than those in the control group (P < 0.05); whereas Microbacterium dextranolyticum, Klebsiella pneumoniae, Escherichia sp. BBDP27, and Streptococcus danieliae were enriched in the control group (P < 0.05). Collectively, mental stress-related diarrhoea increased the intestinal microbiota diversity. The species associated with mental stress-related diarrhoea including Microbacterium dextranolyticum, Klebsiella pneumoniae, Escherichia sp. BBDP27, and Streptococcus danieliae were significantly enriched; while the species which are beneficial to mental stress-related diarrhoea are Stigmatella aurantiaca, Candidatus arthromitus sp. SFB-mouse, Erythrobacter gaetbuli, Desulfitobacterium hafniense, Ochrobactrum pituitosum, and Candidatus arthromitus sp. SFB-mouse-NL for its significantly depleted.
Collapse
Affiliation(s)
- Chenyang Zhang
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Haoqing Shao
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007 Hunan Province China
| | - Tianhao Liu
- College of Chinese Medicine, Jinan University, No. 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632 Guangdong China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| |
Collapse
|
18
|
Angulo M, Reyes-Becerril M, Medina-Córdova N, Tovar-Ramírez D, Angulo C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl Microbiol Biotechnol 2020; 104:7689-7699. [PMID: 32686006 DOI: 10.1007/s00253-020-10780-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Debaryomyces hansenii comes of age as a new potential probiotic for terrestrial and aquatic animals. Probiotic properties, including inmunostimulatory effects, gut microbiota modulation, enhanced cell proliferation and differentiation, and digestive function improvements have been related to the oral delivery of D. hansenii. Its functional compounds, such as cell wall components and polyamines, have been identified and implicated in its immunomodulatory activity. In addition, in vitro studies using immune cells have shown standpoints on the possible recognition, regulation, and effector immune mechanisms stimulated by this yeast. This review describes historic, cutting-edge research findings, implications, and perspectives on the use of D. hansenii as a promising probiotic for animals. KEY POINTS: • Debaryomyces hansenii has probiotic effects in terrestrial and aquatic animals. • Nutritional effects could be associated to probiotic D. hansenii strains. • β-D-Glucan and polyamines from D. hansenii are associated to probiotic properties. • Adoption by the industry is expected in the next years.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Noe Medina-Córdova
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Todos Santos, Agricultura s/n entre México y Durango, Emiliano Zapata, La Paz, B.C.S., C.P: 23070, Mexico
| | - Dariel Tovar-Ramírez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, Mexico.
| |
Collapse
|