1
|
Hoffbeck C, Middleton DMRL, Wallbank JA, Boey JS, Taylor MW. Culture-Independent Species-Level Taxonomic and Functional Characterisation of Bacteroides, the Core Bacterial Genus Within Reptile Guts. Mol Ecol 2025; 34:e17685. [PMID: 39917835 PMCID: PMC11874691 DOI: 10.1111/mec.17685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
The genus Bacteroides is a widespread and abundant bacterial taxon associated with gut microbiotas. Species within Bacteroides fill many niches, including as mutualists, commensals and pathogens for their hosts. Within many reptiles, Bacteroides is a dominant, 'core' gut bacterium that sometimes exhibits increased abundance in times of food scarcity, such as during hibernation. Here, we take a two-pronged approach to better characterise Bacteroides populations in reptile guts. Firstly, we leverage published 16S rRNA gene sequence datasets to determine the species-level distributions of Bacteroides members in reptile hosts. Secondly, we mine publicly available metagenomes to extract data for Bacteroides from reptiles, birds, amphibians and mammals, to compare the functional potential of Bacteroides in different host taxa. The 16S rRNA gene analyses revealed that B. acidifaciens is the most common Bacteroides species in reptile guts, and that different orders of reptiles differ in which Bacteroides species they harbour. The taxonomy of Bacteroides species recovered from metagenomic assembly did not differ between reptile orders or substantially across birds, amphibians and mammals. Metagenome-assembled genomes for Bacteroides species were marginally more related when their hosts were more closely related, with reptile hosts in particular harbouring markedly more unique Bacteroides MAGs compared to other hosts. Our findings indicate that hosts harbour similar profiles of Bacteroides species across broad comparisons, but with some differences between reptile groups, and that Bacteroides appears to perform largely similar roles in vertebrate host guts regardless of host relatedness.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | | | | | - Jian S. Boey
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Michael W. Taylor
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
2
|
Nascimento ML, Serrano I, Cunha E, Lopes F, Pascoal P, Pereira M, Nunes M, Tavares L, Dias R, Oliveira M. Exploring the Gastrointestinal Microbiome of Eurasian Griffon Vultures ( Gyps fulvus) Under Rehabilitation in Portugal and Their Potential Role as Reservoirs of Human and Animal Pathogens. Vet Sci 2024; 11:622. [PMID: 39728962 DOI: 10.3390/vetsci11120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
The Eurasian griffon vulture (Gyps fulvus), a widely distributed scavenger, plays a crucial role in ecosystem health by consuming decomposing carcasses. Scavengers have adapted to avoid disease from the rotting carrion they feed on, probably through a specialized gut microbiome. This study aimed to characterize the gut microbiome of G. fulvus (n = 8) present in two rehabilitation centers in mainland Portugal and evaluate their potential as reservoirs of pathogens. Samples were studied through high-throughput 16S rDNA amplicon sequencing of the hypervariable V3-V4 regions and further analyzed using the Qiime2 bioinformatics platform. Our results showed that factors such as sex, location, and time of sampling did not significantly affect the gut microbiome of the griffon vulture. Its composition was highly similar to that of phylogenetically closed animals. However, several potential human and veterinary pathogens were identified. In conclusion, the gut microbiome of Gyps fulvus in rehabilitation centers is not significantly altered by stress associated with captivity. Its composition is similar to that of other vultures and scavengers due to their identic diet and needs, suggesting a well-conserved functional gut microbiome, which seems to be influenced by season. The potential risks posed by the identified pathogens to humans and other animals should be further investigated.
Collapse
Affiliation(s)
- Mariana Limede Nascimento
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Filipa Lopes
- CERAS-Wildlife Study and Rehabilitation Centre, Quercus ANCN, Rua Tenente Valadim 19, 6000-284 Castelo Branco, Portugal
| | - Pedro Pascoal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marcelo Pereira
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Mónica Nunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ricardo Dias
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Schmiedová L, Černá K, Li T, Těšický M, Kreisinger J, Vinkler M. Bacterial communities along parrot digestive and respiratory tracts: the effects of sample type, species and time. Int Microbiol 2024; 27:127-142. [PMID: 37222909 PMCID: PMC10830831 DOI: 10.1007/s10123-023-00372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.
Collapse
Affiliation(s)
- Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| | - Kateřina Černá
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tao Li
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Dalazen G, Sellera FP, Fuentes-Castillo D, Sano E, Fontana H, Cardoso B, Esposito F, Silveira LF, Matushima ER, Lincopan N. Stenotrophomonas maltophilia Belonging to Novel Sequence Types ST473 and ST474 in Wild Birds Inhabiting the Brazilian Amazonia. Curr Microbiol 2023; 81:20. [PMID: 38008776 DOI: 10.1007/s00284-023-03532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum β-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.
Collapse
Affiliation(s)
- Gislaine Dalazen
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Fábio Parra Sellera
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Luis Fábio Silveira
- Zoology Museum of the University of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Eliana Reiko Matushima
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Rodarte KA, Fair JM, Bett BK, Kerfua SD, Fasina FO, Bartlow AW. A scoping review of zoonotic parasites and pathogens associated with abattoirs in Eastern Africa and recommendations for abattoirs as disease surveillance sites. Front Public Health 2023; 11:1194964. [PMID: 37529427 PMCID: PMC10387540 DOI: 10.3389/fpubh.2023.1194964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Abattoirs are facilities where livestock are slaughtered and are an important aspect in the food production chain. There are several types of abattoirs, which differ in infrastructure and facilities, sanitation and PPE practices, and adherence to regulations. In each abattoir facility, worker exposure to animals and animal products increases their risk of infection from zoonotic pathogens. Backyard abattoirs and slaughter slabs have the highest risk of pathogen transmission because of substandard hygiene practices and minimal infrastructure. These abattoir conditions can often contribute to environmental contamination and may play a significant role in disease outbreaks within communities. To assess further the risk of disease, we conducted a scoping review of parasites and pathogens among livestock and human workers in abattoirs across 13 Eastern African countries, which are hotspots for zoonoses. Our search results (n = 104 articles) showed the presence of bacteria, viruses, fungi, and macroparasites (nematodes, cestodes, etc.) in cattle, goats, sheep, pigs, camels, and poultry. Most articles reported results from cattle, and the most frequent pathogen detected was Mycobacterium bovis, which causes bovine tuberculosis. Some articles included worker survey and questionnaires that suggested how the use of PPE along with proper worker training and safe animal handling practices could reduce disease risk. Based on these findings, we discuss ways to improve abattoir biosafety and increase biosurveillance for disease control and mitigation. Abattoirs are a 'catch all' for pathogens, and by surveying animals at abattoirs, health officials can determine which diseases are prevalent in different regions and which pathogens are most likely transmitted from wildlife to livestock. We suggest a regional approach to biosurveillance, which will improve testing and data gathering for enhanced disease risk mapping and forecasting. Next generation sequencing will be key in identifying a wide range of pathogens, rather than a targeted approach.
Collapse
Affiliation(s)
- Katie A. Rodarte
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Jeanne M. Fair
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Bernard K. Bett
- International Livestock Research Institute and ILRI/BMZ One Health Research, Education, Outreach and Awareness Centre, Nairobi, Kenya
| | - Susan D. Kerfua
- National Livestock Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - Folorunso O. Fasina
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Nairobi, Kenya
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Andrew W. Bartlow
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
6
|
Martinez-Hernandez JE, Berrios P, Santibáñez R, Cuesta Astroz Y, Sanchez C, Martin AJM, Trombert AN. First metagenomic analysis of the Andean condor ( Vultur gryphus) gut microbiome reveals microbial diversity and wide resistome. PeerJ 2023; 11:e15235. [PMID: 37434868 PMCID: PMC10332357 DOI: 10.7717/peerj.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/28/2023] [Indexed: 07/13/2023] Open
Abstract
Background The Andean condor (Vultur gryphus) is the largest scavenger in South America. This predatory bird plays a crucial role in their ecological niche by removing carcasses. We report the first metagenomic analysis of the Andean condor gut microbiome. Methods This work analyzed shotgun metagenomics data from a mixture of fifteen captive Chilean Andean condors. To filter eukaryote contamination, we employed BWA-MEM v0.7. Taxonomy assignment was performed using Kraken2 and MetaPhlAn v2.0 and all filtered reads were assembled using IDBA-UD v1.1.3. The two most abundant species were used to perform a genome reference-guided assembly using MetaCompass. Finally, we performed a gene prediction using Prodigal and each gene predicted was functionally annotated. InterproScan v5.31-70.0 was additionally used to detect homology based on protein domains and KEGG mapper software for reconstructing metabolic pathways. Results Our results demonstrate concordance with the other gut microbiome data from New World vultures. In the Andean condor, Firmicutes was the most abundant phylum present, with Clostridium perfringens, a potentially pathogenic bacterium for other animals, as dominating species in the gut microbiome. We assembled all reads corresponding to the top two species found in the condor gut microbiome, finding between 94% to 98% of completeness for Clostridium perfringens and Plesiomonas shigelloides, respectively. Our work highlights the ability of the Andean condor to act as an environmental reservoir and potential vector for critical priority pathogens which contain relevant genetic elements. Among these genetic elements, we found 71 antimicrobial resistance genes and 1,786 virulence factors that we associated with several adaptation processes.
Collapse
Affiliation(s)
- J. Eduardo Martinez-Hernandez
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- CGNA (Agriaquaculture Nutritional Genomic Center), Temuco, Chile
| | - Pablo Berrios
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Región Metropolitana, Chile
| | - Rodrigo Santibáñez
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Yesid Cuesta Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Carolina Sanchez
- Centro de Oncología de Precisión, Escuela de Medicina, Universidad Mayor, Santiago, Chile
- Advanced Genomics Core, Universidad Mayor, Santiago, Chile
| | - Alberto J. M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Annette N. Trombert
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Región Metropolitana, Chile
| |
Collapse
|
7
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
8
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Krumbeck JA, Turner DD, Diesel A, Hoffman AR, Heatley JJ. Skin microbiota of quaker parrots (Myiopsitta monachus) with normal feathering or feather loss via next-generation sequencing technology. J Exot Pet Med 2022. [DOI: 10.1053/j.jepm.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Ives AM, Brenn-White M, Buckley JY, Kendall CJ, Wilton S, Deem SL. A Global Review of Causes of Morbidity and Mortality in Free-Living Vultures. ECOHEALTH 2022; 19:40-54. [PMID: 35000042 DOI: 10.1007/s10393-021-01573-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Vulture species worldwide play a key role in ecosystems as obligate scavengers, and several populations have had precipitous declines. Research on vulture health is critical to conservation efforts including free-living vultures and captive breeding programs, but is limited to date. In this systematic review, we determined the reported causes of free-living vulture species morbidity and mortality worldwide. The most commonly reported cause of mortality was from toxins (60%), especially lead and pesticides, followed by traumatic injury (49%), including collisions with urban infrastructure and gunshot. Neglected areas of research in free-living vulture health include infectious diseases (16%), endocrine and nutritional disorders (6%), and neoplasia (< 1%). Almost half of the studies included in the review were conducted in either Spain or the USA, with a paucity of studies conducted in South America and sub-Saharan Africa. The highest number of studies was on Griffon (Gyps fulvus) (24%) and Egyptian vultures (Neophron percnopterus) (19%), while half of all vulture species had five or fewer studies. Future investigations on free-living vulture health should focus on neglected areas of research, such as infectious diseases, and areas with gaps in the current literature, such as South America, sub-Saharan Africa, and under-studied vulture species.
Collapse
Affiliation(s)
- Angela M Ives
- The Cooke Veterinary Medical Center, 1520 Volvo Parkway, Chesapeake, VA, 23320, USA.
| | - Maris Brenn-White
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, 63110, USA
| | - Jacqueline Y Buckley
- Department of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, Chicago, IL, USA
| | | | - Sara Wilton
- University of Missouri, Columbia, MO, 65211, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, 63110, USA
| |
Collapse
|
11
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
12
|
Wiemeyer GM, Plaza PI, Bustos CP, Muñoz AJ, Lambertucci SA. Exposure to Anthropogenic Areas May Influence Colonization by Zoonotic Microorganisms in Scavenging Birds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5231. [PMID: 34069136 PMCID: PMC8156487 DOI: 10.3390/ijerph18105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Wild bird species have commonly been implicated as potential vectors of pathogens to other species, humans included. However, the habitat where birds live could influence the probability to acquire these pathogens. Here, we evaluated if the characteristics of the environment used by obligate scavenging birds (vultures) influence their colonization by zoonotic pathogens. For this, we particularly focused on Salmonella spp., a zoonotic pathogen commonly present in bird species. The occurrence of this bacteria was evaluated in free ranging Andean condors (Vultur gryphus) using natural environments from Argentina and compared with those obtained from condors under human care. In addition, we compared our results with those reported for other wild vultures using natural and anthropized environments at a global scale. We did not find Salmonella spp. in samples of wild condors. Captive condor samples presented Salmonella spp. with an occurrence of 2.8%, and one isolate of Meticilin Resistant Staphylococcus aureus, among other potential pathogenic microorganisms. Moreover, some species of free ranging vultures from diverse geographical areas using anthropized environments tend to present higher occurrences of Salmonella spp. These results highlight the importance of pristine ecosystems to protect vultures' health toward pathogenic microorganisms that can produce disease in these birds, but also in other species. We call for more studies evaluating differences in occurrence of zoonotic pathogens in vultures according to the quality of the environment they use. Even when vultures have not been implicated in zoonotic pathogen spread, our results add information to evaluate potential events of pathogen spillover between vultures and from these birds to other species.
Collapse
Affiliation(s)
- Guillermo María Wiemeyer
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral, San Carlos de Bariloche 1250 (R8400FRF), Argentina; (P.I.P.); (S.A.L.)
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709, USA
- Buenos Aires Zoo, República de la India 3000, CABA, Ciudad Autónoma de Buenos Aires CP1425, Argentina
- Hospital Escuela, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires CP1427, Argentina
| | - Pablo Ignacio Plaza
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral, San Carlos de Bariloche 1250 (R8400FRF), Argentina; (P.I.P.); (S.A.L.)
| | - Carla Paola Bustos
- Cátedra de Enfermedades Infecciosas, Laboratorio Escuela Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires CP1427, Argentina; (C.P.B.); (A.J.M.)
| | - Alejandra Jimena Muñoz
- Cátedra de Enfermedades Infecciosas, Laboratorio Escuela Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires CP1427, Argentina; (C.P.B.); (A.J.M.)
| | - Sergio Agustín Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral, San Carlos de Bariloche 1250 (R8400FRF), Argentina; (P.I.P.); (S.A.L.)
| |
Collapse
|
13
|
Correction: California condor microbiomes: Bacterial variety and functional properties in captive-bred individuals. PLoS One 2020; 15:e0230738. [PMID: 32176726 PMCID: PMC7075564 DOI: 10.1371/journal.pone.0230738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0225858.].
Collapse
|