1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Gordon RA, Cosgrove HA, Marinov A, Gingras S, Tilstra JS, Campbell AM, Bastacky SI, Kashgarian M, Perl A, Nickerson KM, Shlomchik MJ. NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7. JCI Insight 2024; 9:e178563. [PMID: 39042716 PMCID: PMC11343599 DOI: 10.1172/jci.insight.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haylee A. Cosgrove
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Jeremy S. Tilstra
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | | |
Collapse
|
3
|
Yow SJ, Rosli SN, Hutchinson PE, Chen KW. Differential signalling requirements for RIPK1-dependent pyroptosis in neutrophils and macrophages. Cell Death Dis 2024; 15:479. [PMID: 38965211 PMCID: PMC11224406 DOI: 10.1038/s41419-024-06871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
TLR4 and TNFR1 signalling promotes potent proinflammatory signal transduction events, thus, are often hijacked by pathogenic microorganisms. We recently reported that myeloid cells retaliate Yersinia blockade of TAK1/IKK signalling by triggering RIPK1-dependent caspase-8 activation that promotes downstream GSDMD and GSDME-mediated pyroptosis in macrophages and neutrophils respectively. However, the upstream signalling events for RIPK1 activation in these cells are not well defined. Here, we demonstrate that unlike in macrophages, RIPK1-driven pyroptosis and cytokine priming in neutrophils are driven through TNFR1 signalling, while TLR4-TRIF signalling is dispensable. Furthermore, we demonstrate that activation of RIPK1-dependent pyroptosis in neutrophils during Yersinia infection requires IFN-γ priming, which serves to induce surface TNFR1 expression and amplify soluble TNF secretion. In contrast, macrophages utilise both TNFR1 and TLR4-TRIF signalling to trigger cell death, but only require TRIF but not autocrine TNFR1 for cytokine production. Together, these data highlight the emerging theme of cell type-specific regulation in cell death and immune signalling in myeloid cells.
Collapse
Affiliation(s)
- See Jie Yow
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paul E Hutchinson
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Predicting the Immune Microenvironment and Prognosis with a NETosis-Related lncRNA Signature in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3191474. [PMID: 36147630 PMCID: PMC9485711 DOI: 10.1155/2022/3191474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Background. The mechanistic aspects of the involvement of long noncoding RNAs (lncRNAs) in NETosis, the process of neutrophil extracellular trap (NET) formation in head and neck squamous cell carcinoma (HNSCC), lack comprehensive elucidation. The involvement of these molecules in the immune microenvironment and plausible HNSCC prognosis remain to see the light of the day. The plausible functioning of NETosis-related lncRNAs with their plausible prognostic impact in HNSCC was probed in this work. Methods. The scrutiny of lncRNAs linked to NETosis entailed the probing of twenty-four genes associated with the process employing Pearson’s correlation analysis on HNSCC patients’ RNA sequencing data from The Cancer Genome Atlas (TCGA) database. The application of univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses yielded a NETosis-related lncRNA signature that was subjected to probing for its suitability in prognosis employing survival and nomogram analyses. Results. The NETosis-related lncRNA signature inclusive of five lncRNAs facilitated patients to be segregated as high-risk and low-risk groups with the former documenting a poor prognosis. Regression unearthed that the risk score was an independent factor for prognosis. The receiver operating characteristic (ROC) or receiver operating characteristic curve analysis documented a one-year area under time-dependent ROC curve (AUC) value of 0.711 that is corroborative of the accuracy of this signature. Additional probing documented an evident enriching of immune-linked pathways in the low-risk patients, while the high-risk patients documented an immunologically “cold” profile as per the infiltration of immune cells. We verified lncRNA expression from our NETosis-related lncRNA signature in vitro, which reflects the reliability of our model to a certain extent. Moreover, we also verified the function of the lncRNA. We found that LINC00426 contributes to the innate immune cGAS-STING signaling pathway, which explain to some extent the role of our prognostic model in predicting “hot” and “cold” tumors. Conclusions. The plausible prognostic relevance of the NETosis-related lncRNA signature (with five lncRNAs) emerges that is suggestive of its promise in targeting HNSCC.
Collapse
|
7
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple manifestations, with a majority of SLE patients having cutaneous involvement. Despite ongoing research, the relationship between SLE and cutaneous lupus erythematosus (CLE) pathogeneses remains unknown. This review will compare advances in understanding the cause and pathogenesis of SLE and CLE. RECENT FINDINGS Recently, mechanisms by which immune cell populations contribute to the pathogenesis of SLE and CLE have been queried. Studies have pointed to transitional B cells and B-cell activating factor (BAFF) signaling as potential drivers of SLE and CLE, with belimumab clinical data supporting these hypotheses. Ustekinumab trials and an exciting regulatory T cell (Treg) adoptive transfer in an SLE patient with cutaneous disease have suggested a role for T-cell-targeted therapies. The theory that neutrophil extracellular traps may be a source of autoantigens in SLE remains controversial, while neutrophils have been suggested as early drivers of cutaneous disease. Finally, plasmacytoid dendritic cells (pDCs) have been studied as a potential therapeutic target in SLE, and anti-blood DC antigen (anti-BDCA) antibody clinical trials have shown promise in treating cutaneous disease. SUMMARY Although recent findings have contributed to understanding SLE and CLE pathogenesis, the mechanistic link between these diseases remains an area requiring further research.
Collapse
|